AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (647.9 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Phytochemicals of lentil (Lens culinaris) and their antioxidant and anti-inflammatory effects

Bing ZhangaHan PengaZeyuan DengaRong Tsaob( )
State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
Guelph Research & Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
Show Author Information

Abstract

Lentils contain a plethora of bioactive phytochemicals such as extractable and insoluble-bound phenolics, carotenoids, tocopherols, saponins, phytic acid, and phytosterols, which have been increasingly attributed to the health benefits of lentil consumption in the diet. The concentration and stability of these phytochemicals in lentils may be affected by several processing parameters including different thermal processing, exogenous enzyme treatment and germination. Consumption of lentils has been associated with the risk reduction of many diseases due to the potential antioxidant activity and anti-inflammatory potential of phytochemicals in lentils. This mini review is intended to provide most current information on the phytochemical composition of lentils, and the potential antioxidant and anti-inflammatory properties of these compounds.

References

 

Adebamowo, C.A., Cho, E., Sampson, L., Katan, M.B., Spiegelman, D., Willett, W.C. and Holmes, M.D. (2005). Dietary flavonols and flavonol-rich foods intake and the risk of breast cancer. Int. J. Cancer 114(4): 628-633.

 

Aguilera, Y., Dueñas, M., Estrella, I., Hernández, T., Benitez, V., Esteban, R.M. and Martín-Cabrejas, M.A. (2010). Evaluation of phenolic profile and antioxidant properties of Pardina lentil as affected by industrial dehydration. J. Agric. Food Chem. 58(18): 10101-10108.

 

Alshikh, N., de Camargo, A.C. and Shahidi, F. (2015). Phenolics of selected lentil cultivars: Antioxidant activities and inhibition of low-density lipoprotein and DNA damage. J. Funct. Foods 18: 1022-1038.

 

Amarowicz, R., Estrella, I., Hernández, T., Dueñas, M., Troszyńska, A., Kosińska, A. and Pegg, R.B. (2009). Antioxidant activity of a red lentil extract and its fractions. Int. J. Mol. Sci. 10(12): 5513-5527.

 

Amarowicz, R., Estrella, I., Hernández, T., Robredo, S., Troszyńska, A., Kosińska, A. and Pegg, R.B. (2010). Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chem. 121(3): 705-711.

 

Amarowicz, R. and Pegg, R.B. (2008). Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol. 110(10): 865-878.

 

Amarowicz, R., Troszynska, A., Barylko-Pikienla, N. and Shahidi, F. (2004). Polyphenolics extracts from legume seeds: correlations between total antioxidant activity, total phenolics content, tannins content and astringency. J. Food Lipids 11(4): 278-286.

 

Anderson, J.W. and Major, W.A. (2007). Pulses and lipaemia, short- and long-term effect: Potential in the prevention of cardiovascular disease. Br. J. Nutr. S3: 263-271.

 

Andreasen, M.F., Kroon, P.A., Williamson, G. and Garcia-Conesa, M. -T. (2001). Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals. J. Agric. Food Chem. 49(11): 5679-5684.

 

Andreasen, M.F., Landbo, A. -K., Christensen, L.P., Hansen, Å. and Meyer, A.S. (2001). Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins. J. Agric. Food Chem. 49(8): 4090-4096.

 

Ayet, G., Burbano, C., Cuadrado, C., Pedrosa, M., Robredo, L., Muzquiz, M., De la Cuadra, C., Castano, A. and Osagie, A. (1997). Effect of germination, under different environmental conditions, on saponins, phytic acid and tannins in lentils (Lens culinaris). J. Sci. Food Agric. 74(2): 273-279.

 

Bartolome, B. and Gómez-Cordovés, C. (1999). Barley spent grain: release of hydroxycinnamic acids (ferulic and p-coumaric acids) by commercial enzyme preparations. J. Sci. Food Agric. 79(3): 435-439.

 

Berger, A., Jones, P.J. and Abumweis, S.S. (2004). Plant sterols: factors affecting their efficacy and safety as functional food ingredients. Lipids Health Disease 3: 5.

 

Bhatty, R. (1988). Composition and quality of lentil (Lens culinaris Medik): a review. Can. Inst. Food Sci. Technol. J. 21(2): 144-160.

 

Biehler, E., Alkerwi, A., Hoffmann, L., Krause, E., Guillaume, M., Lair, M. -L. and Bohn, T. (2012). Contribution of violaxanthin, neoxanthin, phytoene and phytofluene to total carotenoid intake: assessment in Luxembourg. J. Food Comp. Anal. 25(1): 56-65.

 

Boudjou, S., Oomah, B.D., Zaidi, F. and Hosseinian, F. (2013). Phenolics content and antioxidant and anti-inflammatory activities of legume fractions. Food Chem. 138(2–3): 1543-1550.

 

Boye, J.I., Roufik, S., Pesta, N. and Barbana, C. (2010). Angiotensin I-converting enzyme inhibitory properties andSDS-PAGE of red lentil protein hydrolysates. LWT-Food Sci. Technool. 43: 987-991.

 

Cevallos-Casals, B.A. and Cisneros-Zevallos, L. (2010). Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chem. 119(4): 1485-1490.

 

D'Arcy, A. and Jay, M. (1978). Les flavonoïdes des graines de Lens culinaris. Phytochemistry 17(4): 826-827.

 

Dahl, W.J., Foster, L.M. and Tyler, R.T. (2012). Review of the health benefits of peas (Pisum sativum L.). Br. J. Nut. 108(S1): S3-S10.

 

de Jong, A., Plat, J. and Mensink, R.P. (2003). Metabolic effects of plant sterols and stanols (Review). J. Nutr. Biochem. 14(7): 362-369.

 

DellaPenna, D. and Pogson, B.J. (2006). Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol. 57: 711-738.

 

Dueñas, M., Hernández, T. and Estrella, I. (2002). Phenolic composition of the cotyledon and the seed coat of lentils (Lens culinaris L.). Eur. Food Res. Technol. 215(6): 478-483.

 

Dueñas, M., Hernández, T. and Estrella, I. (2007). Changes in the content of bioactive polyphenolic compounds of lentils by the action of exogenous enzymes. Effect on their antioxidant activity. Food Chem. 101(1): 90-97.

 

Dueñas, M., Sun, B., Hernández, T., Estrella, I. and Spranger, M.I. (2003). Proanthocyanidin composition in the seed coat of lentils (Lens culinaris L.). J. Agric. Food Chem. 51(27): 7999-8004.

 

Duenas, M., Hernandez, T. and Estrella, I. (2006). Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem. 98(1): 95-103.

 

Elhardallou, S.B. and Walker, A.F. (1994). Phytic acid content of three legumes in the raw, cooked and fibre forms. Phytochem. Anal. 5(5): 243-246.

 

Fernandez-Orozco, R., Zieliński, H. and Piskuła, M.K. (2003). Contribution of low-molecular-weight antioxidants to the antioxidant capacity of raw and processed lentil seeds. Food/Nahrung 47(5): 291-299.

 

Frias, J., Doblado, R., Antezana, J.R. and Vidal-Valverde, C. (2003). Inositol phosphate degradation by the action of phytase enzyme in legume seeds. Food Chem. 81(2): 233-239.

 

Garcia-Mora, P., Penas, E., Frias, J. and Martinez-Villaluenga, C. (2014). Savinase, the most suitable enzyme for releasing peptides from lentil (Lens culinaris var. Castellana) protein concentrates with multifunctional properties. J. Agric. Food Chem. 62: 4166-4174.

 

Graf, E. and Eaton, J.W. (1990). Antioxidant functions of phytic acid. Free Rad. Biol. Med. 8(1): 61-69.

 

Gumienna, M., Lasik, M. and Czarnecki, Z. (2009). Influence of plant extracts addition on the antioxidative properties of products obtained from green lentil seeds during in vitro digestion process. Pol. J. Food Nutr. Sci. 59(4): 295-298.

 

Han, H. and Baik, B.K. (2008). Antioxidant activity and phenolic content of lentils (Lens culinaris), chickpeas (Cicer arietinum L.), peas (Pisum sativum L.) and soybeans (Glycine max), and their quantitative changes during processing. Int. J. Food Sci. Technol. 43(11): 1971-1978.

 

Hanson, M.G., Zahradka, P. and Taylor, C.G. (2014). Lentil-based diets attenuate hypertension and large-artery remodelling in spontaneously hypertensive rats. Br. J. Nutr. 111: 690-698.

 

Kalogeropoulos, N., Chiou, A., Ioannou, M., Karathanos, V.T., Hassapidou, M. and Andrikopoulos, N.K. (2010). Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem. 121(3): 682-690.

 

López-Amorós, M., Hernández, T. and Estrella, I. (2006). Effect of germination on legume phenolic compounds and their antioxidant activity. J. Food Comp. Anal. 19(4): 277-283.

 

Lukito, W. (2001). Candidate foods in the Asia-Pacific region for cardiovascular protection: Nuts, soy, lentils, and tempe. Asia Pacific J. Clin. Nutr. 10: 128-133.

 

Marathe, S.A., Rajalakshmi, V., Jamdar, S.N. and Sharma, A. (2011). Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India. Food Chem. Toxicol. 49(9): 2005-2012.

 

Mirali, M., Ambrose, S.J., Wood, S.A., Vandenberg, A. and Purves, R.W. (2014). Development of a fast extraction method and optimization of liquid chromatography–mass spectrometry for the analysis of phenolic compounds in lentil seed coats. J. Chromatogr. B 969: 149-161.

 

Mudryj, A.N., Yu, N., Hartman, T.J., Mitchell, D.C., Lawrence, F.R. and Aukema, H.M. (2012). Pulse consumption in Canadian adults influences nutrient intakes. Br. J. Nutr. 108(S1): S27-S36.

 

Rizkalla, S.W., Bellisle, F. and Slama, G. (2003). Health benefits of low glycaemic index foods, such as pulse in diabetic patients and healthy individuals. Br. J. Nutr. 88(S3): 255-262.

 

Rochfort, S. and Panozzo, J. (2007). Phytochemicals for health, the role of pulses. J. Agric. Food Chem. 55(20): 7981-7994.

 

Ruiz, R.G., Price, K.R., Arthur, A.E., Rose, M.E., Rhodes, M.J. and Fenwick, R.G. (1996). Effect of soaking and cooking on the saponin content and composition of chickpeas (Cicer arietinum) and lentils (Lens culinaris). J. Agric. Food Chem. 44(6): 1526-1530.

 

Ruiz, R.G., Price, K.R., Rose, M.E. and Fenwick, G.R. (1997). Effect of seed size and testa colour on saponin content of Spanish lentil seed. Food Chem. 58(3): 223-226.

 

Ryan, E., Galvin, K., O'Connor, T., Maguire, A. and O'Brien, N. (2007). Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum. Nutr. 62(3): 85-91.

 

Sagratini, G., Zuo, Y., Caprioli, G., Cristalli, G., Giardinà, D., Maggi, F., Molin, L., Ricciutelli, M., Traldi, P. and Vittori, S. (2009). Quantification of Soyasaponins I and βg in Italian Lentil Seeds by Solid-Phase Extraction (SPE) and High-Performance Liquid Chromatography− Mass Spectrometry (HPLC-MS). J. Agric. Food Chem., 57(23): 11226-11233.

 

Scalbert, A. and Williamson, G. (2000). Dietary Intake and Bioavailability of Polyphenols. J. Nutr. 130(8): 2073S-2085S.

 

Schneider, A.V. (2002). Overview of the market and consumption of puises in Europe. Br. J. Nutr. 88(S3): 243-250.

 

Sezik, E., Yeşilada, E., Honda, G., Takaishi, Y., Takeda, Y. and Tanaka, T. (2001). Traditional medicine in Turkey X. Folk medicine in Central Anatolia. J. Ethnopharmacol. 75(2–3): 95-115.

 

Surh, Y. -J. (2002). Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem. Toxicol. 40(8): 1091-1097.

 

Surh, Y. -J., Chun, K. -S., Cha, H. -H., Han, S.S., Keum, Y. -S., Park, K. -K. and Lee, S.S. (2001). Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mut. Res. /Fund. Mol. Mech. Mutagen. 480–481: 243-268.

 

Świeca, M., Gawlik-Dziki, U., Kowalczyk, D. and Złotek, U. (2012). Impact of germination time and type of illumination on the antioxidant compounds and antioxidant capacity of Lens culinaris sprouts. Sci. Horticul. 140: 87-95.

 

Tabas, I. and Glass, C.K. (2013). Anti-Inflammatory Therapy in Chronic Disease: Challenges and Opportunities. Science 339(6116): 166-172.

 

Takeoka, G.R., Dao, L.T., Tamura, H. and Harden, L.A. (2005). Delphinidin 3-O-(2-O-β-D-glucopyranosyl-α-L-arabinopyranoside): A novel anthocyanin identified in beluga black lentils. J. Agric. Food Chem. 53(12): 4932-4937.

 

Teklehaymanot, T., Giday, M., Medhin, G. and Mekonnen, Y. (2007). Knowledge and use of medicinal plants by people around Debre Libanos monastery in Ethiopia. J. Ethnopharmacol. 111(2): 271-283.

 

Thavarajah, D., Thavarajah, P., Sarker, A. and Vandenberg, A. (2009). Lentils (Lens culinaris Medikus Subspecies culinaris): a whole food for increased iron and zinc intake. J. Agric. Food Chem. 57(12): 5413-5419.

 

Villegas, R., Gao, Y. -T., Yang, G., Li, H. -L., Elasy, T.A., Zheng, W. and Shu, X.O. (2008). Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women's Health Study. Amer. J. Clin. Nutri. 87(1): 162-167.

 

Wu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X. and Liang, G. (2011). Evaluation and Discovery of Novel Synthetic Chalcone Derivatives as Anti-Inflammatory Agents. J. Med. Chem. 54(23): 8110-8123.

 

Xu, B. and Chang, S. (2007). A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 72(2): S159-S166.

 

Xu, B. and Chang, S.K. (2009). Phytochemical profiles and health-promoting effects of cool-season food legumes as influenced by thermal processing. J. Agric. Food Chem. 57(22): 10718-10731.

 

Xu, B. and Chang, S.K. (2010). Phenolic substance characterization and chemical and cell-based antioxidant activities of 11 lentils grown in the Northern United States. J. Agric. Food Chem. 58(3): 1509-1517.

 

Xu, B. and Chang, S.K. (2012). Comparative study on antiproliferation properties and cellular antioxidant activities of commonly consumed food legumes against nine human cancer cell lines. Food Chem. 134(3): 1287-1296.

 

Xu, B. and Chang, S.K.C. (2008). Effect of soaking, boiling, and steaming on total phenolic contentand antioxidant activities of cool season food legumes. Food Chem. 110(1): 1-13.

 

Yeo, J. and Shahidi, F. (2015). Critical Evaluation of Changes in the Ratio of Insoluble Bound to Soluble Phenolics on Antioxidant Activity of Lentils during Germination. J. Agric. Food Chem. 63(2): 379-381.

 

Zhang, B., Deng, Z., Ramdath, D.D., Tang, Y., Chen, P.X., Liu, R., Liu, Q. and Tsao, R. (2015). Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem. 172: 862-872.

 

Zhang, B., Deng, Z., Tang, Y., Chen, P., Liu, R., Ramdath, D.D., Liu, Q., Hernandez, M. and Tsao, R. (2014a). Fatty acid, carotenoid and tocopherol compositions of 20 Canadian lentil cultivars and synergistic contribution to antioxidant activities. Food Chem. 161: 296-304.

 

Zhang, B., Deng, Z., Tang, Y., Chen, P.X., Liu, R., Ramdath, D.D., Liu, Q., Hernandez, M. and Tsao, R. (2014b). Effect of domestic cooking on carotenoids, tocopherols, fatty acids, phenolics, and antioxidant activities of lentils (Lens culinaris). J. Agric. Food Chem. 62(52): 12585-12594.

 

Zhang, B., Deng, Z., Tang, Y., Chen, P.X., Ramdath, D.D., Liu, R., Liu, Q., Hernandez, M. and Tsao, R. (2017). Bioaccessibility, in vitro antioxidant and anti-inflammatory activities of phenolics in cooked green lentil (Lens culinaris). J. Funct. Foods 32: 248-255.

 

Zou, Y., Chang, S.K., Gu, Y. and Qian, S.Y. (2011). Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. Morton) extract and its fractions. J. Agric. Food Chem. 59(6): 2268-2276.

 

Zupfer, J., Churchill, K., Rasmusson, D. and Fulcher, R. (1998). Variation in ferulic acid concentration among diverse barley cultivars measured by HPLC and microspectrophotometry. J. Agric. Food Chem. 46(4): 1350-1354.

Journal of Food Bioactives
Pages 93-103
Cite this article:
Zhang B, Peng H, Deng Z, et al. Phytochemicals of lentil (Lens culinaris) and their antioxidant and anti-inflammatory effects. Journal of Food Bioactives, 2018, 1: 93-103. https://doi.org/10.31665/JFB.2018.1128

244

Views

32

Downloads

66

Crossref

Altmetrics

Received: 18 January 2018
Revised: 26 February 2018
Accepted: 26 February 2018
Published: 31 March 2018
© 2018 International Society for Nutraceuticals and Functional Foods. All rights reserved.
Return