AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Capillarity Article
View PDF
Submit Manuscript AI Chat Paper
Show Outline
Show full outline
Hide outline
Show full outline
Hide outline
Invited Review | Open Access

A brief review of the phase-field-based lattice Boltzmann method for multiphase flows

School of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430073, P. R. China
School of Mathematics and Statics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
Show Author Information


In this paper, we present a brief overview of the phase-field-based lattice Boltzmann method (LBM) that is a distinct and efficient numerical algorithm for multiphase flow problems. We first give an introduction to the mathematical theory of phase-field models for multiphase flows, and then present some recent progress on the LBM for the phase-field models which are composed of the classic Navier-Stokes equations and the Cahn-Hilliard or Allen-Cahn equation. Finally, some applications of the phase-field-based LBM are also discussed.


Abadi, R.H., Rahimian, M.H., Fakhari, A. Conservative phase-field lattice-Boltzmann model for ternary fluids. J. Comput. Phys. 2018, 374: 668-691.
Aidun, C.K., Clausen, J.R. Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 2010, 42: 439-472.
Allen, S., Cahn, J. Mechanisms of phase transformations within the miscibility gap of Fe-rich Fe-Al alloys. Acta. Metall. 1976, 24(5): 425-437.
Amaya-Bower, L., Lee, T. Single bubble rising dynamics for moderate Reynolds number using lattice Boltzmann method. Comput. Fluids 2010, 39(7): 1191-1207.
Anderson, D.M., McFadden, G.B., Wheeler, A.A. Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 1998, 30(1): 139-165.
Anna, S. Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech. 2016, 48: 285-309.
Bandalassi, V.E., Ceniceros, H.D., Banerjee, S. Computation of multiphase systems with phase field models, J. Comput. Phys. 2003, 190: 371-397.
Bhaga, D., Weber, M.E. Bubbles in viscous liquids: shapes, wakes and velocities. J. Fluid Mech. 1981, 105: 61-85.
Bonhomme, R., Magnaudet, J., Duval, F., et al. Inertial dynamics of air bubbles crossing a horizontal fluid-fluid interface. J. Fluid Mech. 2012, 707: 405-443.
Brassel, M., Bretin, E. A modified phase field approximation for mean curvature flow with conservation of the volume. Math. Meth. Appl. Sci. 2011, 34: 1157-1180.
Brennen, C.E. Fundamentals of multiphase flow. Cambridge university press, 2005.
Cahn, J.W., Hilliard, J.E. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 1958, 28(2): 258-267.
Cahn, J.W., Hilliard, J.E. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 1959, 31(3): 688-699.
Chai, Z., He, N., Guo, Z., et al. Lattice Boltzmann model for high-order nonlinear partial differential equations. Phys. Rev. E 2018a, 97: 013304.
Chai, Z., Liang, H., Du, R., et al. A lattice Boltzmann model for two-phase flow in porous media. SIAM J. Sci. Comput. 2019, 41: B746-B772.
Chai, Z., Shi, B., Guo, Z. A multiple-relaxation-time lattice Boltzmann model for general nonlinear anisotropic convection-diffusion equations. J. Sci. Comput. 2016, 69(1): 355-390.
Chai, Z., Sun, D., Wang, H., et al. A comparative study of local and nonlocal Allen-Cahn equations with mass conservation. Int. J. Heat Mass Transf. 2018b, 122: 631-642.
Chai, Z., Zhao, T. Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor. Phys. Rev. E 2002, 86: 016705.
Chen, L., Kang, Q., Mu, Y., et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. Int. J. Heat Mass Transf. 2014, 76: 210-236.
Chen, X., Hu G. Multiphase flow in mircrofluidic devices. Adv. Appl. Mech. 2015, 45: 201503.
Chiu, P.H., Lin, Y.T. A conservative phase field method for solving incompressible two-phase flows. J. Comput. Phys. 2011, 230(1): 185-204.
Chopard, B., Falcone, J.L., Latt, J. The lattice Boltzmann advection-diffusion model revisited. Eur. Phys. J. Spec. Top. 2009, 171(1): 245-249.
Cristini, V., Tan, Y. Theory and numerical simulation of droplet dynamics in complex flows-a review. Lab Chip 2004, 4(4): 257-264.
d’Humieres, D. Generalized lattice-Boltzmann equations. in: B.D. Shizgal, D.P. Weave (Eds.), Rarefied Gas Dynamics: Theory and Simulations, Prog. Astronaut. Aeronaut, vol. 159, AIAA, Washington, DC, 1992, pp. 450-458.
Ding, H., Spelt, P.D., Shu, C. Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 2007, 226(2): 2078-2095.
Ding, H., Spelt, P.D.M. Wetting condition in diffuse interface simulations of contact line motion. Phys. Rev. E 2007, 75(4): 046708.
Dong, H., Carr, W.W., Bucknall, D.G., et al. Temporally-resolved inkjet drop impaction on surfaces. AIChE J. 2007, 53(10): 2606-2617.
Fakhari, A., Geier, M., Bolster, D. A simple phase-field model for interface tracking in three dimensions. Comput. Math. Appl. 2016a, 78(4): 1154-1165.
Fakhari, A., Geier, M., Lee, T. A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows. J. Comput. Phys. 2016b, 315: 434-457.
Fakhari, A., Rahimian, M.H. Phase-field modeling by the method of lattice Boltzmann equations. Phys. Rev. E 2010, 81(3): 036707.
Folch, R., Casademunt, J., Hernández-Machado, A. Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. Phys. Rev. E 1999, 60: 1724-1733.
Gan, H., Shan, X., Eriksson, T., et al. Reduction of droplet volume by controlling actuating waveforms in inkjet printing for micro-pattern formation. J. Micromech. Microeng. 2009, 19(5): 055010.
Geier, M., Fakhari, A., Lee, T. Conservative phase-field lattice Boltzmann model for interface tracking equation. Phys. Rev. E 2015, 91(6): 063309.
Goncharov, V.N. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett. 2002, 88(13): 134502.
Gunstensen, A.K., Rothman, D.H., Zaleski, S., et al. Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 1991, 43(8): 4320.
Guo, Z., Shi, B., Wang, N. Lattice BGK model for incompressible Navier-Stokes equation. J. Comput. Phys. 2000, 165(1): 288-306.
Guo, Z., Shu, C. Lattice Boltzmann method and its applications in engineering. Singapore: World Scientific, 2013.
Guo, Z., Zheng, C., Shi, B. Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow. Phys. Rev. E 2008, 77: 036707.
Guo, Z., Zheng, C., Shi, B. Force imbalance in lattice Boltzmann equation for two-phase flows. Phys. Rev. E 2011, 83(3): 036707.
He, X., Chen, S., Zhang, R. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J. Comput. Phys. 1999a, 152(2): 642-663.
He, X., Zhang, R., Chen, S., et al. On the three-dimensional Rayleigh-Taylor instability. Phys. Fluids 1999b, 11(5): 1143-1152.
Hirt, C.W., Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39(1): 201-225.
Hohenberg, P.C., Halperin, B.I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 1977, 49(3): 435.
Hu, Y., Li, D., Jin, L., et al. Hybrid Allen-Cahn-based lattice Boltzmann model for incompressible two-phase flows: The reduction of numerical dispersion. Phys. Rev. E 2019a, 99(2): 023302.
Hu, Y., Li, D., Niu, X., et al. A diffuse interface lattice Boltzmann model for thermocapillary flows with large density ratio and thermophysical parameters contrasts. Int. J. Heat Mass Transf. 2019b, 138: 809-824.
Hua, J., Lin, P., Liu, C., et al. Energy law preserving C0 finite element schemes for phase field models in two-phase flow computations. J. Comput. Phys. 2011, 230(19): 7115-7131.
Hua, J., Lou, J. Numerical simulation of bubble rising in viscous liquid, J. Comput. Phys. 2007, 222: 769-795.
Huang, H., Huang, J., Lu, Y. A mass-conserving axisymmetric multiphase lattice Boltzmann method and its application in simulation of bubble rising, J. Comput. Phys. 2014, 269: 386-402.
Huang, H., Sukop, M., Lu, X. Multiphase lattice Boltzmann methods: Theory and application. John Wiley & Sons, 2015.
Inamuro, T., Konishi, N., Ogino, F. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach. Comput. Phys. Commun. 2000, 129(1-3): 32-45.
Jacqmin, D. Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys. 1999, 155(1): 96-127.
Jullien, M., Tsang, M., Cohen, C., et al. Droplet breakup in microfluidic T-junctions at small capillary numbers. Phys. Fluids 2009, 21(7): 072001.
Kendon, V.M., Cates, M.E., Pagonabarraga, I., et al., Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: A lattice Boltzmann study, J. Fluid Mech. 2001, 440: 147-203.
Kim, J., Lee, S., Choi, Y. A conservative Allen-Cahn equation with a space Ctime dependent Lagrange multiplier. Int. J. Eng. Sci. 2014, 84: 11-17.
Kim, J., Jeong, D., Yang, S.D., et al. A finite difference method for a conservative Allen-Cahn equation on non-flat surfaces. J. Comput. Phys. 2017, 334: 170-181.
Kintses, B., Van Vliet, L., Devenish, S., et al. Microfluidic droplets: New integrated workflows for biological experiments. Curr. Opin. Chem. Biol. 2010, 14(5): 548-555.
Krüger, T., Kusumaatmaja, H., Kuzmin, A., et al. The lattice Boltzmann method: Principles and practice. Springer, Switzerland, 2017.
Kurtoglu, I.O., Lin, C.L. Lattice Boltzmann study of bubble dynamics. Numer. Heat Transf. B 2006, 50(4): 333-351.
Lallemand, P., Luo, L.S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 2000, 61(6): 6546.
Lee, D., Kim, J. Comparison study of the conservative Allen-Cahn and the Cahn-Hilliard equations. Math. Comput. Simul. 2016, 119: 35-56.
Lee, H., Kim, J. An efficient and accurate numerical algorithm for the vector-valued Allen-Cahn equations. Comput. Phys. Commun. 2012, 183: 2107-2115.
Lee, T., Lin, C.L. A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J. Comput. Phys. 2005, 206(1): 16-47.
Leshansky, A., Afkhami, S., Jullien, M., et al. Obstructed breakup of slender drops in a microfluidic T junction. Phys. Rev. Lett. 2012, 108(26): 264502.
Li, Q., Luo, K., Gao, Y., et al. Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows. Phys. Rev. E 2012, 85(2): 026704.
Li, Q., Luo, K., Kang, Q., et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 2016, 52: 62-105.
Li, W., Vigil R.D., Beresnev I.A., et al. Vibration-induced mobilization of trapped oil ganglia in porous media: Experimental validation of a capillary-physics mechanism. J. Colloid Interface Sci. 2005, 289(1): 193-199.
Liang H, Liu H, Chai Z, et al. Lattice Boltzmann method for contact-line motion of binary fluids with high density ratio. Phys. Rev. E 2019b, 99(6): 063306.
Liang, H., Li, Q., Shi, B., et al. Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability. Phys. Rev. E 2016b, 93(3): 033113.
Liang, H., Li, Y., Chen, J., et al. Axisymmetric lattice Boltzmann model for multiphase flows with large density ratio. Int. J. Heat Mass Tran. 2019a, 130: 1189-1205.
Liang, H., Shi, B., Chai, Z. Lattice Boltzmann modeling of three-phase incompressible flows. Phys. Rev. E 2016a, 93(1): 013308.
Liang, H., Shi, B., Chai, Z. An efficient phase-field-based multiple-relaxation-time lattice Boltzmann model for three-dimensional multiphase flows. Comput. Math. Appl. 2017, 73(7): 1524-1538.
Liang, H., Shi, B., Guo Z., et al. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows, Phys. Rev. E 2014, 89: 053320.
Liang, H., Xu, J., Chen, J., et al. Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows. Phys. Rev. E 2018, 97(3): 033309.
Link, D., Anna, S., Weitz, D., et al. Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 2004, 92(5): 054503.
Liu, C., Shen, J. A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 2003, 179(3-4): 211-228.
Liu, H., Kang, Q., Leonardi C.R., et al. Multiphase lattice Boltzmann simulations for porous media applications. Comput. Geosci. 2016, 20(4): 777-805.
Liu, H., Valocchi, A.J., Zhang, Y., et al. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Phys. Rev. E 2013, 87(1): 013010.
Liu, H., Valocchi, A.J., Zhang, Y., et al. Lattice Boltzmann phase-field modeling of thermocapillary flows in a confined microchannel. J. Comput. Phys. 2014, 256: 334-356.
Liu, H., Zhang, Y. Phase-field modeling droplet dynamics with soluble surfactants. J. Comput. Phys. 2010, 229(24): 9166-9187.
Liu, X., Chai, Z., Shi, B. A phase-field-based lattice Boltzmann modeling of two-phase electro-hydrodynamic flows. Phys. Fluids 2019, 31: 092103.
Lou, Q., Guo, Z., Shi, B. Effects of force discretization on mass conservation in lattice Boltzmann equation for two-phase flows. Europhys. Let. 2012, 99(6): 64005.
Lowengrub, J., Truskinovsky, L. Quasi-incompressible Cahn-CHilliard fluids and topological transitions. P. Roy. Soc. A-Math. Phy. 1998, 454(1978): 2617-2654.
Muradoglu, M., Tasoglu, S. A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls. Comput. Fluids 2010, 39(4): 615-625.
Qian, Y.H., d’Humires, D., Lallemand, P. Lattice BGK models for Navier-Stokes equation. Europhys. Let. 1992, 17(6): 479.
Ren, F., Song, B., Sukop, M.C., et al. Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation. Phys. Rev. E 2016a, 94(2): 023311.
Ren, F., Song, B., Sukop, M.C. Terminal shape and velocity of a rising bubble by phase-field-based incompressible lattice Boltzmann model. Water Resour. Res. 2016b, 97: 100-109.
Rubinstein, J., Sternberg, P. Nonlocal reaction¡ªdiffusion equations and nucleation. IMA J. Appl. Math. 1992, 48(3): 249-264.
Scarbolo, L., Molin, D., Perlekar, P., et al. Unified framework for a side-by-side comparison of different multicomponent algorithms: Lattice Boltzmann vs. phase field model. J. Comput. Phys. 2013, 234: 263-279.
Shan, X., Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 1993, 47(3): 1815.
Shan, X., Chen, H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 1994, 49(4): 2941.
Shao, J.Y., Shu, C., Huang, H.B., et al. Free-energy-based lattice Boltzmann model for the simulation of multiphase flows with density contrast. Phys. Rev. E 2014, 89(3): 033309.
Shen, J. Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach. Multiscale Modeling And Analysis For Materials Simulation, 2012.
Shi, B., Deng, B., Du, R., et al. A new scheme for source term in LBGK model for convection- diffusion equation. Comput. Math. Appl. 2008, 55: 1568-1575.
Shi, B., Guo, Z. Lattice Boltzmann model for nonlinear convection-diffusion equations. Phys. Rev. E 2009, 79(1): 016701.
Smith, K.A., Solis, F.J., Chopp, D. A projection method for motion of triple junctions by level sets. Interface. Free Bound. 2002, 4(3): 263-276.
Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford: Clarendon Press, 2001.
Sun, Y., Beckermann, C. Sharp interface tracking using the phase-field equation. J. Comput. Phys. 2007, 220(2): 626-653.
Sussman, M., Smereka, P., Osher, S. A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 1994, 114(1): 146-159.
Sussman, M., Smith, K.M., Hussaini, M.Y., et al. A sharp interface method for incompressible two-phase flows. J. Comput. Phys. 2007, 221(2): 469-505.
Su, T., Li, Y., Liang, H., et al. Numerical study of single bubble rising dynamics using the phase field lattice Boltzmann method. Int. J. Mod. Phys. C 2018, 29(11): 1-27.
Swift, M.R., Osborn, W., Yeomans, J. Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 1995, 75(5): 830.
Teh, S.Y., Lin, R., Hung, L.H., et al. Droplet microfluidics. Lab Chip 2008, 8(2): 198-220.
Unverdi, S.O., Tryggvason, G. A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 1992, 100(1): 25-37.
Wang, H., Chai, Z., Shi, B., et al. Comparative study of the lattice Boltzmann models for Allen-Cahn and Cahn-Hilliard equations. Phys. Rev. E 2016, 94(3): 033304.
Wang, H. Phase-field lattice Boltzmann method for flow and heat transfer of multiphase fluid. Ph.D Thesis, Huazhong University of Science and Technology, 2018.
Wang, Y., Shu, C., Shao, J.Y., et al. A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio. J. Comput. Phys. 2015, 290: 336-351.
Wörner, M. Numerical modeling of multiphase flows in microfluidics and microprocess engineering: A review of methods and applications. Microfluid. Nanofluid. 2012, 12(6): 841-886.
Yang, K., Guo, Z. Lattice Boltzmann method for binary fluids based on mass-conserving quasi-incompressible phase-field theory. Phys. Rev. E 2016, 93(4): 043303.
Yang, X., Forest, M.G., Li, H., et al. Modeling and simulations of drop pinch-off from liquid crystal filaments and the leaky liquid crystal faucet immersed in viscous fluids. J. Comput. Phys. 2013, 236: 1-14.
Yuan, H.Z., Chen, Z., Shu, C, et al. A free energy-based surface tension force model for simulation of multiphase flows by level-set method. J. Comput. Phys. 2017, 345: 404-426.
Yue, P., Feng, J., Liu, C., et al. A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 2004, 515: 293-317.
Yue, P., Zhou, C., Feng, J. Spontaneous shrinkage of drops and mass conservation in phase-field simulations. J. Comput. Phys. 2007, 223(1): 1-9.
Zhai, S., Weng, Z., Feng, X. Investigations on several numerical methods for the non-local Allen-Cahn equation. Int. J. Heat Mass Transf. 2015, 87: 111-118.
Zhang, S., Wang, M. A nonconforming finite element method for the Cahn-Hilliard equation. J. Comput. Phys. 2010, 229(19): 7361-7372.
Zheng, L., Zheng, S., Zhai, Q. Lattice Boltzmann equation method for the Cahn-Hilliard equation. Phys. Rev. E 2015, 91(1): 013309.
Zheng, L., Zheng, S., Zhai, Q.. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow. Phys. Lett. A 2016, 380(4): 596-603.
Zheng, L., Zheng, S. Phase-field-theory-based lattice Boltzmann equation method for N immiscible incompressible fluids. Phys. Rev. E 2019, 99(6): 063310.
Zheng, H., Shu, C., Chew, Y.T. Lattice Boltzmann interface capturing method for incompressible flows. Phys. Rev. E 2005, 72(5): 056705.
Zheng, H., Shu, C., Chew, Y.T. A lattice Boltzmann model for multiphase flows with large density ratio. J. Comput. Phys. 2006, 218(1): 353-371.
Zheng, H., Shu, C., Chew, Y.T., et al. Three-dimensional lattice Boltzmann interface capturing method for incompressible flows. Int. J. Numer. Methods Fluids 2008, 56(9): 1653-1671.
Zhou, Y. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 2017a, 720: 1-136.
Zhou, Y. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 2017b, 723: 1-160.
Zu, Y., He, S. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts. Phys. Rev. E 2013, 87(4): 043301.
Pages 33-52
Cite this article:
Wang H, Yuan X, Liang H, et al. A brief review of the phase-field-based lattice Boltzmann method for multiphase flows. Capillarity, 2019, 2(3): 33-52.










Received: 09 May 2019
Revised: 01 June 2019
Accepted: 02 June 2019
Published: 07 June 2019
© The Author(s) 2019

This article is distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.