Journal Home > Volume 2 , Issue 1

Natural gas hydrate is an ice-like substance which is sometimes called"combustible ice"since it can literally be lighted on fire and burned as fuel.Natural gas hydrate is characterized by widespread distribution, large reserves and little pollution.This paper introduced the distributions of hydrate, hydrate reserves and properties of hydrate.The main exploration methods, such as geophysical exploration and geochemical exploration have been presented.In addition, the main production techniques of natural gas hydrate including depressurization, thermal stimulation and chemical injection have been summed up.Finally, the challenges and outlooks of natural gas hydrate production have been proposed.


menu
Abstract
Full text
Outline
About this article

Review of exploration and production technology of natural gas hydrate

Show Author's information Yudong Cui1Cheng Lu1,2Mingtao Wu1Yue Peng1Yanbin Yao1Wanjing Luo1( )
School of Energy Resources, China University of Geosciences, Beijing 100083, P. R. China
The Key Laboratory of Unconventional Petroleum Geology, China Geological Survey, Beijing 100029, P. R. China

Abstract

Natural gas hydrate is an ice-like substance which is sometimes called"combustible ice"since it can literally be lighted on fire and burned as fuel.Natural gas hydrate is characterized by widespread distribution, large reserves and little pollution.This paper introduced the distributions of hydrate, hydrate reserves and properties of hydrate.The main exploration methods, such as geophysical exploration and geochemical exploration have been presented.In addition, the main production techniques of natural gas hydrate including depressurization, thermal stimulation and chemical injection have been summed up.Finally, the challenges and outlooks of natural gas hydrate production have been proposed.

Keywords: Gas hydrate, property of natural gas hydrate, exploration methods, production methods

References(54)

Aregbe, A.G. Gas hydrate-properties, formation and benefits. Open J. Yangtze Oil Gas 2017, 2(1): 27-44.

Bohrmann, G., Torres, M.E. Gas Hydrates in Marine Sediments. Berlin, Heidelberg, UK, Springer, 2006.

Boswell, R., Shipp, C., Reichel, T., et al. Prospecting for marine gas hydrate resources. Interpretation 2016, 4(1): 13-24.

Carroll, J. Natural Gas Hydrates: A Guide for Engineers. Burlington, USA, Gulf Professional Publishing, 2009.

Davidson, D.W. Clathrate Hydrates. Boston, USA, Springer, 1973.

DOI

Demirbas, A. Processes for Methane Production From Gas Hydrates. London, UK, Springer, 2010a.

Demirbas, A. Methane hydrates as a potential energy resource. Energy Convers. Manag. 2010b, 51(7): 1547-1571.

Dong, F., Zang, X., Li, D., et al. Experimental investigation on propane hydrate dissociation by high concentration methanol and ethylene glycol solution injection. Energy Fuels 2009, 23(3): 1563-1567.

Englezos, P. Clathrate hydrates. Ind. Eng. Chem. Res. 1993, 32(7): 1251-1274.

Fan, S., Zhang, Y., Tian, G., et al. Natural gas hydrate dissociation by presence of ethylene glycol. Energy Fuels 2005, 20(1): 324-326.

Ginsburg, G.D., Solovev, V.A. Submarine gas hydrate estimation: Theoretical and empirical approaches. Paper OTC-7693-MS Presented at Offshore Technology Conference, Houston, Texas, 1-4 May, 1995.https://doi.org/10.4043/7693-MS
DOI
Grace, J., Collett, T., Colwell, F., et al. Energy from gas hydrates—assessing the opportunities and challenges for Canada. Report of the Expert Panel on Gas Hydrates, CCA, 2008.

Haacke, R.R., Westbrook, G.K., Hyndman, R.D. Gas hydrate, fluid flow and free gas: Formation of the bottom-simulating reflector. Earth Planet. Sci. Lett. 2007, 261(3-4): 407-420.

Hammerschmidt, E.G. Formation of gas hydrates in natural gas transmission lines. Ind. Eng. Chem. 1934, 26(8): 851-855.

Hao, Y.M., Bo, Q.W., Chen, Y.M., et al. Laboratory investigation of pressure development of natural gas hydrates. Pet. Explor. Dev. 2006, 33(2): 217-220.

Hesse, R. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: What have we learned in the past decade. Earth-Sci. Rev. 2003, 61(1-2): 149-179.

Hesse, R., Harrison, W.E. Gas hydrates (clathrates) causing pore-water freshening and oxygen-isotope fractionation in deep-water sedimentary sections of terrigenous continental margins. Earth Planet. Sci. Lett. 1981, 55(3): 453-461.

Holbrook, W.S., Hoskins, H., Wood, W.T., et al. Methane hydrate and free gas on the blake ridge from vertical seismic profiling. Science 1996, 273(5283): 1840-1843.

Hyndman, R.D., Spence, G.D., Chapman, R., et al. Geophysical studies of marine gas hydrate in northern cascadia. Geophys. Monogr. 2001, 124: 273-295.

Kennett, J.P., Cannariato, K.G., Hendy, I.L., et al. Methane hydrates in quaternary climate change: The clathrate gun hypothesi, in Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis, edited by J.P. Kennett, K.G. Cannariato, I.L. Hendy and R.J. Behl, American Geophysical Union, pp. 1-9, 2013.
Krason, J., Finley, P.D. Messoyakh gas field-russia: West siberian basin. AAPG Special Volumes 1992, 197-220.

Kumar, B.G.V., Singh, A.P., Ganguly, S. Effect of heat diffusion in the burden on the dissociation of methane in a hydrate bearing formation. J. Nat. Gas Sci. Eng. 2014, 16(16): 70-76.

Lee, J. Experimental study on the dissociation behavior and productivity of gas hydrate by brine injection scheme in porous rock. Energy Fuels 2009, 24(1): 456-463.

Lee, J.Y., Ryu, B.J., Yun, T.S., et al. Review on the gas hydrate development and production as a new energy resource. KSCE J. Civ. Eng. 2011, 15(4): 689-696.

Li, X.S., Xu, C.G., Zhang, Y., et al. Investigation into gas production from natural gas hydrate: A review. Appl. Energy 2016, 172: 286-322.

Macdonald, I.R., Bender, L.C., Vardaro, M., et al. Thermal and visual time-series at a seafloor gas hydrate deposit on the Gulf of Mexico slope. Earth Planet. Sci. Lett. 2005, 233(1-2): 45-59.

MacKay, M.E., Jarrard, R.D., Westbrook, G.K., et al. Origin of bottom-simulating reflectors: Geophysical evidence from the Cascadia accretionary prism. Geology 1994, 22(5): 459-462.

DOI

Makogon, Y.F. Hydrates of Hydrocarbons. Tulsa and Oklahoma, PennWell Books, 1997.

Makogon, Y.F., Holditch, S.A., Makogon, T.Y. Natural gas-hydrates-A potential energy source for the 21st Century. J. Pet. Sci. Eng. 2007, 56(1): 14-31.

Moridis, G.J. Toward production from gas hydrates: current status, assessment of resources, and simulation-based evaluation of technology and potential. SPE Reserv. Eval. Eng. 2009, 12(5): 745-771.

Moridis, G.J., Collett, T.S., Boswell, R., et al. Gas Hydrates As a Potential Energy Source: State of Knowledge and Challenges. New York, USA, Springer, 2013.

DOI

Moridis, G.J., Collett, T.S., Pooladi-Darvish, M., et al. Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits. SPE Reserv. Eval. Eng. 2011, 14(1): 76-112.

Moridis, G.J., Kowalsky, M. Gas production from unconfined Class 2 oceanic hydrate accumulations. Paper OTC 18866 Presented at 2007 Offshore Technology Conference, Houston, Texas, USA, 30 April-3 May, 2007.

Moridis, G.J., Kowalsky, M.B., Pruess, K. Depressurization-induced gas production from class-1 hydrate deposits. SPE Reserv. Eval. Eng. 2007, 10(5): 458-481.

Moridis, G.J., Reagan, M.T. Gas production from class 2 hydrate accumulations in the permafrost. Paper SPE 110858 Presented at 2007 SPE Annual Technical Conference and Exhibition, Anaheim, California, USA, 11-14 November, 2007.https://doi.org/10.2118/110858-MS
DOI

Moridis, G.J., Sloan, E.D. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments. Energy Convers. Manag. 2007, 48(6): 1834-1849.

Pecher, I.A., Kukowski, N., Ranero, C.S.R., et al. Gas hydrates along the Peru and Middle America trench systems. Geophys. Monogr. 2013, 124: 257-271.

Pecher, I.A., Ranero, C.R., Von Huene, R., et al. The nature and distribution of bottom simulating reflectors at the Costa Rican convergent margin. Geophys. J. Int. 1998, 133(2): 219-229.

Pooladi-Darvish, M. Gas production from hydrate reservoirs and its modeling. J. Pet. Technol. 2004, 56(6): 65-71.

Qi, Y., Wu, W., Liu, Y., et al. The influence of NaCl ions on hydrate structure and thermodynamic equilibrium conditions of gas hydrates. Fluid Phase Equilib. 2012, 325: 6-10.

Ruppel, C. Thermal state of the gas hydrate reservoir, in Natural Gas Hydrate: In Oceanic and Permafrost Environments, edited by M. D. Max, Springer, New York, pp. 29-42, 2000.https://doi.org/10.1007/978-94-011-4387-5_4
DOI
Sanden, K., Rushfeldt, P., Graff, O.F., et al. Long distance transport of Natural Gas Hydrate to Japan. Presented at the Proceedings of the Fifth International Conference on Gas Hydrates, Trondheim, Norway, 12-16 June, 2005.

Schlesinger, A., Cullen, J., Spence, G., et al. Seismic velocities on the Nova Scotian margin to estimate gas hydrate and free gas concentrations. Mar. Pet. Geol. 2012, 35(1): 105-115.

Singh, S.C., Minshull, T.A., Spence, G. Velocity structure of a gas hydrate reflector. Science 1993, 260(5105): 204-207.

Sira, J.H., Patil, S.L., Kamath, V.A. Study of hydrate dissociation by methanol and glycol injection. Paper SPE 20770 Presented at SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 23-26 September, 1990.https://doi.org/10.2118/20770-MS
DOI

Sloan, E.D., Koh, C.A. Clathrate Hydrates of the Natural Gases. New York, USA, CRC Press, 2008.

DOI
Tabatabaie, S.H. Unconventional reservoirs: Mathematical modeling of some non-linear problems. Canada, University of Calgary, 2014.

Thakur, N.K., Rajput, S. Exploration of Gas Hydrates: Geophysical Techniques. Berlin Heidelberg, German, Springer, 2010.

DOI
Tohidi, B. Advances in avoiding gas hydrate problems. Presented at Centre for Gas Hydrate Research & Hydrafact Ltd., Institute of Petroleum Engineering, Heriot-Watt University, 2014, 1-47.

Trehu, A.M. Gas hydrates in marine sediments: Lessons from scientific ocean drilling. Oceanography 2006, 19: 124-142.

Veluswamy, H.P., Kumar, R., Linga, P. Hydrogen storage in clathrate hydrates: Current state of the art and future directions. Appl. Energy 2014, 122: 112-132.

Wang, L.F., Fu, S.Y., Liang, J.Q., et al. A review on gas hydrate developments propped by worldwide national projects. Geology in China 2017, 44(3): 439-448. (in Chinese)

Yi, L., Liang, D. Decomposition mechanism of methane hydrate in brine solution by molecular dynamics simulation. Presented at The 8th international conference on gas hydrate Beijing, China, 28 July-1 August, 2014.

Yuan, Q., Sun, C.Y., Yang, X., et al. Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor. Energy 2012, 40(1): 47-58.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 January 2018
Revised: 26 January 2018
Accepted: 28 January 2018
Published: 05 February 2018
Issue date: March 2018

Copyright

© The Author(s) 2018

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51674227) and the Fundamental Research Funds for the Central Universities (Grant No. 2652015133).

Rights and permissions

This article is distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return