Journal Home > Volume 28 , Issue 2

The discovery of ferroelectricity in hafnium oxide (HfO2) based thin films in 2011 renewed the interest in ferroelectrics. These new ferroelectrics possess completely different crystal morphology with conventional perovskite ferroelectrics, and present more robust ferroelectric properties upon aggressive scaling and compatibility with standard integrated circuit fabrication processes. In this article, we give a brief introduction to the conventional ferroelectric memories, then review the basic properties, recent progress, and memory applications of these HfO2-based ferroelectrics.


menu
Abstract
Full text
Outline
About this article

Recent Progress and Applications of HfO2-Based Ferroelectric Memory

Show Author's information Xiao Liu1Xiangshun Geng1Houfang Liu1Minghao Shao1Ruiting Zhao1Yi Yang1 Tian-Ling Ren1 ( )
Beijing National Research Center for Information Science and Technology (BNRist), School of Integrated Circuits, Tsinghua University, Beijing 100084, China

Abstract

The discovery of ferroelectricity in hafnium oxide (HfO2) based thin films in 2011 renewed the interest in ferroelectrics. These new ferroelectrics possess completely different crystal morphology with conventional perovskite ferroelectrics, and present more robust ferroelectric properties upon aggressive scaling and compatibility with standard integrated circuit fabrication processes. In this article, we give a brief introduction to the conventional ferroelectric memories, then review the basic properties, recent progress, and memory applications of these HfO2-based ferroelectrics.

Keywords: ferroelectric memory, non-volatile memory, hafnium oxide, fluorite structure material

References(76)

[1]
J. Valasek, Piezo-electric and allied phenomena in Rochelle salt, Phys. Rev., vol. 17, no. 4, pp. 475–481, 1921.
[2]
A. R. Ubbelohde and I. Woodward, Isotope effect in potassium dihydrogen phosphate, Nature, vol. 144, no. 3649, pp. 632–632, 1939.
[3]
J. F. Scott and C. A. P. de Carlos, Ferroelectric memories, Science, vol. 246, no. 4936, pp. 1400–1405, 1989.
[4]
W. Cochran, Crystal stability and the theory of ferroelectricity, Adv. Phys., vol. 9, no. 36, pp. 387–423, 1960.
[5]
W. J. Merz, Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals, Phys. Rev., vol. 95, no. 3, pp. 690–698, 1954.
[6]
W. J. Merz, The electric and optical behavior of BaTiO3 single-domain crystals, Phys. Rev., vol. 76, no. 8, pp. 1221–1225, 1949.
[7]
W. Cochran, Dynamical, scattering and dielectric properties of ferroelectric crystals, Adv. Phys., vol. 18, no. 72, pp. 157–192, 1969.
[8]
G. Shirane, F. Jona, and R. Pepinsky, Some aspects of ferroelectricity, Proc. IRE, vol. 43, no. 12, pp. 1738–1793, 1955.
[9]
S. Skinner, Magnetically ordered ferroelectric materials, IEEE Trans. Parts, Mater. Packag., vol. 6, no. 2, pp. 68–90, 1970.
[10]
D. W. Bondurant and F. P. Gnadinger, Ferroelectrics for nonvolatile RAMs, IEEE Spectr., vol. 26, no. 7, pp. 30–33, 1989.
[11]
W. A. Geideman, Progress in ferroelectric memory technology, IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 38, no. 6, pp. 704–711, 1991.
[12]
T. Sumi, Ferroelectric nonvolatile memory technology, IEICE Trans. on Electron., vol. 79, no. 6, pp. 812–818, 1996.
[13]
P. Zurcher, R. E. Jones, P. Y. Chu, D. J. Taylor, B. E. White, S. Zafar, B. Jiang, Y. J. T. Lii, and S. J. Gillespie, Ferroelectric nonvolatile memory technology: Applications and integration challenges, IEEE Trans. Comp., Packag., Manufact. Technol.: Part A, vol. 20, no. 2, pp. 175–181, 1997.
[14]
T. Schenk, E. Yurchuk, S. Mueller, U. Schroeder, S. Starschich, U. Böttger, and T. Mikolajick, About the deformation of ferroelectric hystereses, Appl. Phys. Rev., vol. 1, no. 4, p. 041103, 2014.
[15]
S. J. Kim, J. Mohan, S. R. Summerfelt, and J. Kim, Ferroelectric Hf0.5Zr0.5O2 thin films: A review of recent advances, JOM, vol. 71, no. 1, pp. 246–255, 2019.
[16]
Z. M. Dang, J. K. Yuan, J. W. Zha, T. Zhou, S. T. Li, and G. H. Hu, Fundamentals, processes and applications of high-permittivity polymer-matrix composites, Prog. Mater. Sci., vol. 57, no. 4, pp. 660–723, 2012.
[17]
G. H. Haertling, Ferroelectric ceramics: History and technology, J. Am. Ceram. Soc., vol. 82, no. 4, pp. 797–818, 1999.
[18]
T. S. Büscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, Ferroelectricity in Hafnium oxide thin films, Appl. Phys. Lett., vol. 99, no. 10, p. 102903, 2011.
[19]
M. H. Park, D. H. Lee, K. Yang, J. Y. Park, G. T. Yu, H. W. Park, M. Materano, T. Mittmann, P. D. Lomenzo, T. Mikolajick, et al., Review of defect chemistry in fluorite-structure ferroelectrics for future electronic devices, J. Mater. Chem. C, vol. 8, no. 31, pp. 10526–10550, 2020.
[20]
J. Müeller, U. Schröder, T. S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, et al., Ferroelectricity in yttrium-doped hafnium oxide, J. Appl. Phys., vol. 110, no. 11, p. 14113, 2011.
[21]
J. Müeller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, Ferroelectricity in simple binary ZrO2 and HfO2, Nano Lett., vol. 12, no. 8, pp. 4318–4323, 2012.
[22]
A. Facchetti, M. H. Yoon, and T. J. Marks, Gate dielectrics for organic field-effect transistors: New opportunities for organic electronics, Adv. Mater., vol. 17, no. 14, pp. 1705–1725, 2005.
[23]
J. Robertson, High dielectric constant gate oxides for metal oxide Si transistors, Rep. Prog. Phys., vol. 69, no. 2, pp. 327–396, 2005.
[24]
J. Robertson, High dielectric constant oxides, Eur. Phys. J.–Appl. Phys., vol. 28, no. 3, pp. 265–291, 2004.
[25]
Z. Fan, J. S. Chen, and J. Wang, Ferroelectric HfO2-based materials for next-generation ferroelectric memories, J. Adv. Dielect., vol. 6, no. 2, p. 1630003, 2016.
[26]
U. Schroeder, S. Slesazeck, H. Mulaosmanovic, and T. Mikolajick, Nonvolatile field-effect transistors using ferroelectric-doped HfO2 films, in Ferroelectric-Gate Field Effect Transistor Memories: Device Physics and Applications, 2nd ed, B. E. Park, H. Ishiwara, M. Okuyama, S. Sakai, and S. M. Yoon, eds. Singapore: Springer, 2020, pp. 79–96.
DOI
[27]
A. Onodera and M. Takesada, Ferroelectricity in simple binary crystals, Crystals, vol. 7, no. 8, p. 232, 2017.
[28]
M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, and C. S. Hwang, Review and perspective on ferroelectric HfO2-based thin films for memory applications, MRS Commun., vol. 8, no. 3, pp. 795–808, 2018.
[29]
K. Florent, S. Lavizzari, M. Popovici, L. Di Piazza, U. Celano, G. Groeseneken, and J. Van Houdt, Understanding ferroelectric Al:HfO2 thin films with Si-based electrodes for 3D applications, J. Appl. Phys., vol. 121, no. 20, p. 204103, 2017.
[30]
T. Mimura, T. Shimizu, and H. Funakubo, Ferroelectricity in YO1.5-HfO2 films around 1 μm in thickness, Appl. Phys. Lett., vol. 115, no. 3, p. 032901, 2019.
[31]
M. Cavalieri, É. O’Connor, C. Gastaldi, I. Stolichnov, and A. M. Ionescu, Experimental investigation of pulsed laser deposition of ferroelectric Gd:HfO2 in a CMOS BEOL compatible process, ACS Appl. Electron. Mater., vol. 2, no. 6, pp. 1752–1758, 2020.
[32]
A. I. Khan, A. Keshavarzi, and S. Datta, The future of ferroelectric field-effect transistor technology, Nat. Electron., vol. 3, no. 10, pp. 588–597, 2020.
[33]
M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, and C. S. Hwang, Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides, Adv. Electron. Mater., vol. 5, no. 3, p. 1800522, 2019.
[34]
R. Materlik, C. Künneth, and A. Kersch, The origin of ferroelectricity in Hf1-xZrxO2: A computational investigation and a surface energy model, J. Appl. Phys., vol. 117, no. 13, p. 134109, 2015.
[35]
X. H. Xu, F. T. Huang, Y. B. Qi, S. Singh, K. M. Rabe, D. Obeysekera, J. J. Yang, M. W. Chu, and S. W. Cheong, Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y, Nat. Mater., vol. 20, no. 6, pp. 826–832, 2021.
[36]
S. Sinharoy, H. Buhay, D. R. Lampe, and M. H. Francombe, Integration of ferroelectric thin films into nonvolatile memories, J. Vacuum Sci. Technol. A, vol. 10, no. 4, pp. 1554–1561, 1992.
[37]
S. Hoshino, K. Shimaoka, and N. Niimura, Ferroelectricity in solid hydrogen halides, Phys. Rev. Lett., vol. 19, no. 22, pp. 1286–1288, 1967.
[38]
R. Athle, A. E. O. Persson, A. Irish, H. Menon, R. Timm, and M. Borg, Effects of TiN top electrode texturing on ferroelectricity in Hf1-xZrxO2, ACS Appl. Mater. Interfaces, vol. 13, no. 9, pp. 11089–11095, 2021.
[39]
P. Polakowski and J. Müeller, Ferroelectricity in undoped hafnium oxide, Appl. Phys. Lett., vol. 106, no. 23, p. 232905, 2015.
[40]
M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, et al., Ferroelectricity and antiferroelectricity of doped thin HfO2-based films, Adv. Mater., vol. 27, no. 11, pp. 1811–1831, 2015.
[41]
T. F. Song, R. Bachelet, G. Saint-Girons, R. Solanas, I. Fina, and F. Sánchez, Epitaxial ferroelectric La-doped Hf0.5Zr0.5O2 thin films, ACS Appl. Electron. Mater., vol. 2, no. 10, pp. 3221–3232, 2020.
[42]
H. J. Lee, M. Lee, K. Lee, J. Jo, H. Yang, Y. Kim, S. C. Chae, U. Waghmare, and J. H. Lee, Scale-free ferroelectricity induced by flat phonon bands in HfO2, Science, vol. 369, no. 6509, pp. 1343–1347, 2020.
[43]
M. Hoffmann, U. Schroeder, T. Schenk, T. Shimizu, H. Funakubo, O. Sakata, D. Pohl, M. Drescher, C. Adelmann, R. Materlik, et al., Stabilizing the ferroelectric phase in doped hafnium oxide, J. Appl. Phys., vol. 118, no. 7, p. 072006, 2015.
[44]
T. Mikolajick, U. Schroeder, and S. Slesazeck, The past, the present, and the future of ferroelectric memories, IEEE Trans. Electron Devices, vol. 67, no. 4, pp. 1434–1443, 2020.
[45]
J. Müller, E. Yurchuk, T. Schlösser, J. Paul, R. Hoffmann, S. Müller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, et al., Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG, in Proc. 2012 Symp. VLSI Technology, Honolulu, HI, USA, 2012, pp. 25&26.
[46]
H. Mulaosmanovic, E. T. Breyer, T. Mikolajick, and S. Slesazeck, Ferroelectric FETs with 20-nm-thick HfO2 layer for large memory window and high performance, IEEE Trans. Electron Devices, vol. 66, no. 9, pp. 3828–3833, 2019.
[47]
S. A. Kukushkin and M. A. Zakharov, Thermodynamics and kinetics of switching effects in ferroelectrics, Phys. Rev. B, vol. 280, pp. 219–239, 2002.
[48]
G. Catalan and J. F. Scott, Physics and applications of bismuth ferrite, Adv. Mater., vol. 21, no. 24, pp. 2463–2485, 2009.
[49]
Z. Fan, J. X. Xiao, J. X. Wang, L. Zhang, J. Y. Deng, Z. Y. Liu, Z. L. Dong, J. Wang, and J. S. Chen, Ferroelectricity and ferroelectric resistive switching in sputtered Hf0.5Zr0.5O2 thin films, Appl. Phys. Lett., vol. 108, no. 23, p. 232905, 2016.
[50]
A. K. Saha, K. Ni, S. Dutta, S. Datta, and S. Gupta, Phase field modeling of domain dynamics and polarization accumulation in ferroelectric HZO, Appl. Phys. Lett., vol. 114, no. 20, p. 202903, 2019.
[51]
T. Ali, P. Polakowski, S. Riedel, T. Büttner, T. Kämpfe, M. Rudolph, B. Pätzold, K. Seidel, D. Löhr, R. Hoffmann, et al., Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics, Appl. Phys. Lett., vol. 112, no. 22, p. 222903, 2018.
[52]
L. Van Hai, M. Takahashi, W. Zhang, and S. Sakai, 100-nm-size ferroelectric-gate field-effect transistor with 108-cycle endurance, Jpn. J. Appl. Phys., vol. 54, no. 8, p. 088004, 2015.
[53]
A. A. Bokov and Z. G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure, J. Mater. Sci., vol. 41, no. 1, pp. 31–52, 2006.
[54]
R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges, Adv. Mater., vol. 21, nos. 25&26, pp. 2632–2663, 2009.
[55]
E. T. Breyer, H. Mulaosmanovic, T. Mikolajick, and S. Slesazeck, Reconfigurable NAND/NOR logic gates in 28 nm HKMG and 22 nm FD-SOI FeFET technology, in Proc. 2017 IEEE Int. Electron Devices Meeting, San Francisco, CA, USA, 2017, pp. 28.5.1–28.5.4.
[56]
M. K. Kim, I. J. Kim, and J. S. Lee, CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory, Sci. Adv., vol. 7, no. 3, p. eabe1341, 2021.
[57]
T. Ali, K. Kühnel, M. Czernohorsky, C. Mart, M. Rudolph, B. Pätzold, M. Lederer, R. Olivo, D. Lehninger, F. Müller, et al., A study on the temperature-dependent operation of fluorite-structure-based ferroelectric HfO2 memory FeFET: A temperature-modulated operation, IEEE Trans. Electron Devices, vol. 67, no. 7, pp. 2793–2799, 2020.
[58]
T. Ali, P. Polakowski, S. Riedel, T. Büttner, T. Kämpfe, M. Rudolph, B. Pätzold, K. Seidel, D. Löhr, R. Hoffmann, et al., High endurance ferroelectric hafnium oxide-based FeFET memory without retention penalty, IEEE Trans. Electron Devices, vol. 65, no. 9, pp. 3769–3774, 2018.
[59]
S. Mueller, S. Slesazeck, T. Mikolajick, J. Müller, P. Polakowski, and S. Flachowsky, Next-generation ferroelectric memories based on FE-HfO2, in Proc. 2015 Joint IEEE Int. Symp. the Applications of Ferroelectric (ISAF), Int. Symp. Integrated Functionalities (ISIF), and Piezoelectric Force Microscopy Workshop (PFM), Singapore, 2015, pp. 233–236.
[60]
C. Wiemer, S. Ferrari, M. Fanciulli, G. Pavia, and L. Lutterotti, Combining grazing incidence X-ray diffraction and X-ray reflectivity for the evaluation of the structural evolution of HfO2 thin films with annealing, Thin Solid Films, vol. 450, no. 1, pp. 134–137, 2004.
[61]
A. Pal, V. K. Narasimhan, S. Weeks, K. Littau, D. Pramanik, and T. Chiang, Enhancing ferroelectricity in dopant-free hafnium oxide, Appl. Phys. Lett., vol. 110, no. 2, p. 022903, 2017.
[62]
S. S. Cheema, D. Kwon, N. Shanker, R. Dos Reis, S. L. Hsu, J. Xiao, H. G. Zhang, R. Wagner, A. Datar, M. R. McCarter, et al., Enhanced ferroelectricity in ultrathin films grown directly on silicon, Nature, vol. 580, no. 7804, pp. 478–482, 2020.
[63]
S. Parkin, X. Jiang, C. Kaiser, A. Panchula, K. Roche, and M. Samant, Magnetically engineered spintronic sensors and memory, Proc. IEEE, vol. 91, no. 5, pp. 661–680, 2003.
[64]
J. S. Meena, S. M. Sze, U. Chand, and T. Y. Tseng, Overview of emerging nonvolatile memory technologies, Nanoscale Res. Lett., vol. 9, no. 1, p. 526, 2014.
[65]
X. Lyu, M. Si, P. R. Shrestha, K. P. Cheung, and P. D. Ye, First direct measurement of sub-nanosecond polarization switching in ferroelectric hafnium zirconium oxide, in Proc. 2019 IEEE Int. Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019, pp. 15.2.1–15.2.4.
[66]
T. Mikolajick, S. Slesazeck, M. H. Park, and U. Schroeder, Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors, MRS Bull., vol. 43, no. 5, pp. 340–346, 2018.
[67]
J. Muller, T. S. Boescke, U. Schroeder, R. Hoffmann, T. Mikolajick, and L. Frey, Nanosecond polarization switching and long retention in a novel MFIS-FET based on ferroelectric HfO2, IEEE Electron Device Lett., vol. 33, no. 2, pp. 185–187, 2012.
[68]
K. Ni, P. Sharma, J. C. Zhang, M. Jerry, J. A. Smith, K. Tapily, R. Clark, S. Mahapatra, and S. Datta, Critical role of interlayer in Hf0.5Zr0.5O2 ferroelectric FET nonvolatile memory performance, IEEE Trans. Electron Devices, vol. 65, no. 6, pp. 2461–2469, 2018.
[69]
T. Schenk, M. Hoffmann, J. Ocker, M. Pešić, T. Mikolajick, and U. Schroeder, Complex internal bias fields in ferroelectric hafnium oxide, ACS Appl. Mater. Interfaces, vol. 7, no. 36, pp. 20224–20233, 2015.
[70]
E. Yurchuk, J. Müller, S. Müller, J. Paul, M. Pešić, R. V. Bentum, U. Schroeder, and T. Mikolajick, Charge-trapping phenomena in HfO2-Based FeFET-Type nonvolatile memories, IEEE Trans. Electron Devices, vol. 63, no. 9, pp. 3501–3507, 2016.
[71]
D. Y. Zhou, J. Xu, Q. Li, Y. Guan, F. Cao, X. L. Dong, J. Müller, T. Schenk, and U. Schröder, Wake-up effects in Si-doped hafnium oxide ferroelectric thin films, Appl. Phys. Lett., vol. 103, no. 19, p. 192904, 2013.
[72]
J. Müller, P. Polakowski, S. Mueller, and T. Mikolajick, Ferroelectric hafnium oxide based materials and devices: Assessment of current status and future prospects, ECS J. Solid State Sci. Technol., vol. 4, no. 5, pp. N30–N35, 2015.
[73]
F. Huang, X. Chen, X. Liang, J. Qin, Y. Zhang, T. X. Huang, Z. Wang, B. Peng, P. H. Zhou, H. P. Lu, et al., Fatigue mechanism of yttrium-doped hafnium oxide ferroelectric thin films fabricated by pulsed laser deposition, Phys. Chem. Chem. Phys., vol. 19, no. 5, pp. 3486–3497, 2017.
[74]
S. Starschich, S. Menzel, and U. Böettger, Pulse wake-up and breakdown investigation of ferroelectric yttrium doped HfO2, J. Appl. Phys., vol. 121, no. 15, p. 154102, 2017.
[75]
R. R. Cao, Q. Liu, M. Liu, B. Song, D. S. Shang, Y. Yang, Q. Luo, S. Y. Wu, Y. Li, Y. Wang, et al., Improvement of endurance in HZO-based ferroelectric capacitor using Ru electrode, IEEE Electron Device Lett., vol. 40, no. 11, pp. 1744–1747, 2019.
[76]
D. Ielmini and H. S. P. Wong, In-memory computing with resistive switching devices, Nat. Electron., vol. 1, no. 6, pp. 333–343, 2018.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 01 March 2021
Revised: 23 November 2021
Accepted: 22 December 2021
Published: 29 September 2022
Issue date: April 2023

Copyright

© The author(s) 2023.

Acknowledgements

This work was supported by the National Key Basic R&D Program of China (Nos. 2016YFA0200400 and 2018YFC2001202), the National Natural Science Foundation of China (Nos. U20A20168, 61874065, and 51861145202), the Research Fund from Tsinghua University Initiative Scientific Research Program, the Beijing Innovation Center for Future Chip, and the Tsinghua-Fuzhou Institute for Date Technology (No. TFIDT2018008).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return