Journal Home > Volume 1 , Issue 2

Four new metal–organic frameworks ([Ag3(dpdo)3.5(DMF)(PW12O40)]∙H2O (1), [Ag3(dpdo)5(DMF)2(PW12O40)]∙2CH3OH (2), [Ag3(dpdo)5(DMF)2(PMo12O40)]∙4H2O (3), and H0.5[Ag4.5(dpdo)5(DMF)(BW12O40)]∙5H2O (4); dpdo = 4,4'-dipyridine-N,N'-dioxide) based on polyoxometalates were created, and their properties were examined using infrared (IR) spectroscopy, powder X-ray diffraction, elemental analysis, and comprehensive single-crystal structure investigations. In compounds 1 and 4, the secondary building blocks ([Ag6O20] and [Ag3O14] for 1 and 4, respectively) serve as nodes that connect the dpdo ligands with the polyanions ([PW12O40]3− and [BW12O40]5− for 1 and 4, respectively) to create a three-dimensional (3D) framework. By joining Ag ions and dpdo ligands and enclosing the polyanions ([PW12O40]3− and [PMo12O40]3− for compounds 2 and 3, respectively) as templates and counterions, compounds 2 and 3 display a two-dimensional (2D) gridlike network. Additionally, the solid state optical, luminescent, and ultraviolet–visible (UV–vis) spectral features of compounds 14 as well as the electrochemical characteristics of compounds 13 were examined.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Syntheses, crystal structures, and properties of four polyoxometalate-based metal–organic frameworks based on Ag(I) and 4,4′-dipyridine-N,N′-dioxide

Show Author's information Haiyan LiHui PanYanhua FanYan Bai ( )Dongbin Dang ( )
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China

Abstract

Four new metal–organic frameworks ([Ag3(dpdo)3.5(DMF)(PW12O40)]∙H2O (1), [Ag3(dpdo)5(DMF)2(PW12O40)]∙2CH3OH (2), [Ag3(dpdo)5(DMF)2(PMo12O40)]∙4H2O (3), and H0.5[Ag4.5(dpdo)5(DMF)(BW12O40)]∙5H2O (4); dpdo = 4,4'-dipyridine-N,N'-dioxide) based on polyoxometalates were created, and their properties were examined using infrared (IR) spectroscopy, powder X-ray diffraction, elemental analysis, and comprehensive single-crystal structure investigations. In compounds 1 and 4, the secondary building blocks ([Ag6O20] and [Ag3O14] for 1 and 4, respectively) serve as nodes that connect the dpdo ligands with the polyanions ([PW12O40]3− and [BW12O40]5− for 1 and 4, respectively) to create a three-dimensional (3D) framework. By joining Ag ions and dpdo ligands and enclosing the polyanions ([PW12O40]3− and [PMo12O40]3− for compounds 2 and 3, respectively) as templates and counterions, compounds 2 and 3 display a two-dimensional (2D) gridlike network. Additionally, the solid state optical, luminescent, and ultraviolet–visible (UV–vis) spectral features of compounds 14 as well as the electrochemical characteristics of compounds 13 were examined.

Keywords: electrocatalysis, metal–organic frameworks, polyoxometalates, crystal structures

References(64)

[1]

Abdi, J.; Banisharif, F.; Khataee, A. Amine-functionalized Zr-MOF/CNTs nanocomposite as an efficient and reusable photocatalyst for removing organic contaminants. J. Mol. Lid. 2021, 334, 116129.

[2]

Li, X. F.; Zhu, Q. L. MOF-based materials for photo- and electrocatalytic CO2 reduction. EnergyChem 2020, 2, 100033.

[3]

Wang, Q.; Gao, Q. Y.; Al-Enizi, A. M.; Nafady, A.; Ma, S. Q. Recent advances in MOF-based photocatalysis: Environmental remediation under visible light. Inorg. Chem. Front. 2020, 7, 300–339.

[4]

Lin, R. B.; Xiang, S. C.; Xing, H. B.; Zhou, W.; Chen, B. L. Exploration of porous metal-organic frameworks for gas separation and purification. Coordin. Chem. Rev. 2019, 378, 87–103.

[5]

Lázaro, I. A.; Forgan, R. S. Application of zirconium MOFs in drug delivery and biomedicine. Coordin. Chem. Rev. 2019, 380, 230–259.

[6]

Qiu, J. H.; Zhang, X. G.; Feng, Y.; Zhang, X. F.; Wang, H. T.; Yao, J. F. Modified metal-organic frameworks as photocatalysts. Appl. Catal. B Environ. 2018, 231, 317–342.

[7]

Van Vleet, M. J.; Weng, T. T.; Li, X. Y.; Schmidt, J. R. In situ, time-resolved, and mechanistic studies of metal-organic framework nucleation and growth. Chem. Rev 2018, 118, 3681–3721.

[8]

Weinstock, I. A.; Schreiber, R. E.; Neumann, R. Dioxygen in polyoxometalate mediated reactions. Chem. Rev. 2018, 118, 2680–2717.

[9]

Liu, R. J.; Zhang, G. J.; Cao, H. B.; Zhang, S. J.; Xie, Y. B.; Haider, A.; Kortz, U.; Chen, B. H.; Dalal, N. S.; Zhao, Y. S. et al. Enhanced proton and electron reservoir abilities of polyoxometalate grafted on graphene for high-performance hydrogen evolution. Energy Environ. Sci. 2016, 9, 1012–1023.

[10]

Ma, Y. Y.; Wu, C. X.; Feng, X. J.; Tan, H. Q.; Yan, L. K.; Liu, Y.; Kang, Z. H.; Wang, E. B.; Li, Y. G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ. Sci. 2017, 10, 788–798.

[11]

Tang, Y. J.; Liu, C. H.; Huang, W.; Wang, X. L.; Dong, L. Z.; Li, S. L.; Lan, Y. Q. Bimetallic carbides-based nanocomposite as superior electrocatalyst for oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 16977–16985.

[12]

Li, S. J.; Zhou, Y. F.; Peng, Q. P.; Wang, R. Y.; Feng, X. G.; Liu, S. X.; Ma, X. M.; Ma, N. N.; Zhang, J.; Chang, Y. et al. Controllable synthesis and catalytic performance of nanocrystals of rare-earth-polyoxometalates. Inorg. Chem. 2018, 57, 6624–6631.

[13]

Taleghani, S.; Mirzaei, M.; Eshtiagh-Hosseini, H.; Frontera, A. Tuning the topology of hybrid inorganic-organic materials based on the study of flexible ligands and negative charge of polyoxometalates: A crystal engineering perspective. Coordin. Chem. Rev. 2016, 309, 84–106.

[14]

Ma, P. T.; Hu, F.; Wang, J. P.; Niu, J. Y. Carboxylate covalently modified polyoxometalates: From synthesis, structural diversity to applications. Coordin. Chem. Rev. 2019, 378, 281–309.

[15]

Zhao, M. J.; Chen, X. S.; Chi, G. X.; Shuai, D.; Wang, L.; Chen, B. N.; Li, J. Research progress on the inhibition of enzymes by polyoxometalates. Inorg. Chem. Front. 2020, 7, 4320–4332.

[16]

Li, X. H.; He, P.; Wang, T.; Zhang, X. W.; Chen, W. L.; Li, Y. G. Keggin-type polyoxometalate-based ZIF-67 for enhanced photocatalytic nitrogen fixation. ChemSusChem 2020, 13, 2769–2778.

[17]

He, C. B.; Liu, D. M.; Lin, W. B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108.

[18]

Jiang, J. C.; Yaghi, O. M. Brønsted acidity in metal-organic frameworks. Chem. Rev. 2015, 115, 6966–6997.

[19]

Wang, X. L.; Zhao, D.; Tian, A. X.; Ying, J. Three 3D silver-bis(triazole) metal-organic frameworks stabilized by high-connected Wells-Dawson polyoxometallates. Dalton Trans. 2014, 43, 5211–5220.

[20]

Hao, H. F.; Zhou, W. Z.; Zang, H. Y.; Tan, H. Q.; Qi, Y. F.; Wang, Y. H.; Li, Y. G. Keggin-type polyoxometalate-based metal-organic networks for photocatalytic dye degradation. Chem. Asian J. 2015, 10, 1676–1683.

[21]

Zhang, Y. T.; Wang, X. L.; Li, S. B.; Song, B. Q.; Shao, K. Z.; Su, Z. M. Ligand-directed assembly of polyoxovanadate-based metal-organic polyhedra. Inorg. Chem. 2016, 55, 8770–8775.

[22]

Nohra, B.; El Moll, H.; Rodriguez Albelo, L. M.; Mialane, P.; Marrot, J.; Mellot-Draznieks, C.; O’Keeffe, M.; Biboum, R. N.; Lemaire, J.; Keita, B. et al. Polyoxometalate-based metal organic frameworks (POMOFs): Structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 13363–13374.

[23]

Zhou, W. L.; Liang, J.; Qin, C.; Shao, K. Z.; Wang, F. M.; Su, Z. M. Syntheses, crystal structures and properties of inorganic-organic hybrids constructed from Keggin-type polyoxometalates and silver coordination compounds. CrystEngComm 2014, 16, 7410–7418.

[24]

Tian, A. X.; Ning, Y. L.; Ying, J.; Zhang, J. W.; Hou, X.; Li, T. J.; Wang, X. L. Highly efficient usage of the hydrothermal technique through the one-pot method to construct four Keggin-based compounds containing pendent ligands. Dalton Trans. 2015, 44, 10499–10507.

[25]

Wang, X. L.; Li, N.; Tian, A. X.; Ying, J.; Liu, G. C.; Lin, H. Y.; Zhang, J. W.; Yang, Y. Two polyoxometalate-directed 3D metal-organic frameworks with multinuclear silver-ptz cycle/belts as subunits. Dalton Trans. 2013, 42, 14856–14865.

[26]

Cui, L. P.; Yu, K.; Lv, J. H.; Guo, C. H.; Zhou, B. B. A 3D POMOF based on a {AsW12} cluster and a Ag-MOF with interpenetrating channels for large-capacity aqueous asymmetric supercapacitors and highly selective biosensors for the detection of hydrogen peroxide. J. Mater. Chem. A 2020, 8, 22918–22928.

[27]

Dang, D. B.; Zheng, Y. N.; Bai, Y.; Guo, X. Y.; Ma, P. T.; Niu, J. Y. Assembly of polyoxometalate-based metal-organic frameworks with silver(I)-Schiff base coordination polymeric chains as building blocks. Cryst. Growth Des. 2012, 12, 3856–3867.

[28]

Li, L.; Cheng, M.; Bai, Y.; An, B.; Dang, D. B. A polyoxometalate-based inorganic-organic hybrid polymer constructed from silver-Schiff base building block and Keggin-type cluster: Synthesis, crystal structure and photocatalytic performance for the degradation of rhodamine B. Spectrochim. Acta Part A 2015, 150, 846–854.

[29]

Dang, D. B.; Zheng, G. S.; Bai, Y.; Yang, F.; Gao, H.; Ma, P. T.; Niu, J. Y. Construction of polyoxometalate-based inorganic-organic compounds using silver(I) double helicates as secondary building blocks. Inorg. Chem. 2011, 50, 7907–7909.

[30]

Bai, Y.; Zhang, G. Q.; Dang, D. B.; Ma, P. T.; Gao, H.; Niu, J. Y. Assembly of polyoxometalate-based inorganic-organic compounds from silver-Schiff base building blocks: Synthesis, crystal structures and luminescent properties. CrystEngComm 2011, 13, 4181–4187.

[31]

Dang, D. B.; An, B.; Bai, Y.; Niu, J. Y. Assembly of a phospho-molybdic Wells-Dawson-based silver coordination polymer derived from Keggin polyoxoanion cluster. Dalton Trans. 2012, 41, 13856–13861.

[32]

An, B.; Zhou, R. M.; Sun, L.; Bai, Y.; Dang, D. B. Crystal structures and spectral properties of two polyoxometalate-based inorganic-organic compounds from silver-azine building blocks with bis-bidentate and tridentate ligands. Spectrochim. Acta Part A 2014, 128, 319–326.

[33]

An, H. Y.; Li, Y. G.; Wang, E. B.; Xiao, D. R.; Sun, C. Y.; Xu, L. Self-assembly of a series of extended architectures based on polyoxometalate clusters and silver coordination complexes. Inorg. Chem. 2005, 44, 6062–6070.

[34]

Chen, J. X.; Lan, T. Y.; Huang, Y. B.; Wei, C. X.; Li, Z. S.; Zhang, Z. C. Hydrothermal synthesis, crystal structure and properties of a 3D-framework polyoxometalate assembly: [Ag(4,4′-bipy)](OH){[Ag(4,4′-bipy)]2[PAgW12O40]}·35H2O. J. Solid State Chem. 2006, 179, 1904–1910.

[35]

Uchida, S.; Kawamoto, R.; Tagami, H.; Nakagawa, Y.; Mizuno, N. Highly selective sorption of small unsaturated hydrocarbons by nonporous flexible framework with silver ion. J. Am. Chem. Soc. 2008, 130, 12370–12376.

[36]

Zhang, C. J.; Chen, Y. G.; Pang, H. J.; Shi, D. M.; Hu, M. X.; Li, J. Synthesis and characterization of the highest connected 3D α-metatungstate POM/TMC hybrid with AgI···AgI interactions. Inorg. Chem. Commun. 2008, 11, 765–768.

[37]

Wang, X. L.; Lu, Y.; Fu, H.; Meng, J. X.; Wang, E. B. The construction of a new POMs-based inorganic-organic hybrid framework involving in-situ ligand conversion from 1,3-bis(4-pyridyl)propane to isonicotinic acid. Inorg. Chim. Acta 2011, 370, 203–206.

[38]

Zhang, C. X.; Chen, Y. G.; Zhang, Z. C.; Liu, D. D.; Meng, H. X. Synthesis and properties of two new 3D organic-inorganic hybrid compounds constructed from Keggin clusters, pyridine-2,3-dicarboxylate and Ag(I) ions. Solid State Sci. 2012, 14, 1289–1294.

[39]

Zhang, Z. F.; Ma, H. Y.; Pang, H. J.; Zhang, C. J.; Yu, T. T.; Li, S. B.; Zhao, C. Y. Assembly of a new Keggin-templated supramolecular compound by silver salt and 4,4′-dipyridine-N,N′-dioxide ligand. Inorg. Chem. Commun. 2016, 72, 91–95.

[40]

Wang, X. L.; Zhang, R.; Wang, X.; Lin, H. Y.; Liu, G. C. An effective strategy to construct novel polyoxometalate-based hybrids by deliberately controlling organic ligand transformation in situ. Inorg. Chem. 2016, 55, 6384–6393.

[41]

Wang, X. L.; Rong, X.; Lin, H. Y.; Liu, D. N.; Wang, X.; Liu, G. C.; Song, G. A series of novel polyoxometalate-based AgI-complexes constructed from asymmetric pyridyl-monoamide ligand: Synthesis, structures and selective separation of cationic dyes. Inorg. Chim. Acta 2017, 461, 279–289.

[42]

Wang, X. L.; Song, G.; Lin, H. Y.; Wang, X.; Liu, G. C.; Rong, X. Polyoxometalate-induced different metal-organic frameworks based on isonicotinic acid and AgI ion: Syntheses, structures and properties. Inorg. Chem. Commun. 2017, 84, 168–173.

[43]

Duan, C. Y.; Wei, M. L.; Guo, D.; He, C.; Meng, Q. J. Crystal structures and properties of large protonated water clusters encapsulated by metal-organic frameworks. J. Am. Chem. Soc. 2010, 132, 3321–3330.

[44]

Wei, M. L.; He, C.; Hua, W. J.; Duan, C. Y.; Li, S. H.; Meng, Q. J. A large protonated water cluster H+(H2O)27 in a 3D metal-organic framework. J. Am. Chem. Soc. 2006, 128, 13318–13319.

[45]

Wei, M. L.; Xu, H. Y.; Sun, R. P. Three porous coordination polymers of Co2+ and dpdo ligands with channels hosting polyanion chains. J. Coord. Chem. 2009, 62, 1989–2002.

[46]

Wei, M. L.; He, C.; Sun, Q. Z.; Meng, Q. J.; Duan, C. Y. Zeolite ionic crystals assembled through direct incorporation of polyoxometalate clusters within 3D metal-organic frameworks. Inorg. Chem. 2007, 46, 5957–5966.

[47]

Bai, Y.; Li, M. M.; Huang-Fu, Y. J.; Dang, D. B. Two polyoxometalate-based coordination polymers constructed from Mn(II)-4,4′-bipyridine-N,N-dioxide building blocks and Keggin-type clusters: Syntheses, crystal structures and spectral properties. Spectrochim. Acta Part A 2013, 115, 690–696.

[48]

Yu, T. T.; Ma, H. Y.; Zhang, C. J.; Pang, H. J.; Li, S. B.; Liu, H. A 3D-4f heterometallic 3D POMOF based on lacunary Dawson polyoxometalates. Dalton Trans. 2013, 42, 16328–16333.

[49]

Yu, T. T.; Ma, H. Y.; Li, S. B.; Liu, H.; Pang, H. J. Interdigitated architectures assembled from α-metatungstates and lanthanide-organic complexes. Inorg. Chem. Commun. 2013, 33, 43–47.

[50]

Wolfle, I.; Lodaya, J.; Sauerwein, B.; Schuster, G. B. Photoinduced electron transfer reactions: Nitrogen-oxygen bond cleavage in reduced N-(aryloxy)pyridinium and N, N′-dialkoxy-4, 4'-bipyridinium salts. J. Am. Chem. Soc. 1992, 114, 9304–9309.

[51]

Sheldrick, G. M. Phase annealing in SHELX-90: Direct methods for larger structures. Acta Crystallogr. Sect. A 1990, 46, 467–473.

[52]
Sheldrick, G. M. SHELXS97 and SHELXL97. Programs for crystal structure analysis; University of Göttingen: Göttingen, Germany, 1997.
[53]

Thouvenot, R.; Fournier, M.; Franck, R.; Rocchiccioli-Deltcheff, C. Vibrational investigations of polyoxometalates. 3. Isomerism in molybdenum(VI) and tungsten(VI) compounds related to the Keggin structure. Inorg. Chem. 1984, 23, 598–605.

[54]

Kan, W. Q.; Yang, J.; Liu, Y. Y.; Ma, J. F. Series of inorganic-organic hybrid materials constructed from octamolybdates and metal-organic frameworks: Syntheses, structures, and physical properties. Inorg. Chem. 2012, 51, 11266–11278.

[55]

Lu, X. X.; Luo, Y. H.; Xu, Y.; Zhang, H. Temperature-dependent assembly of two 3D [BW12O40]5−-based coordination polymers with visible light driven photocatalytic properties. CrystEngComm 2015, 17, 1631–1636.

[56]

Wu, N.; Qin, Y.; Wang, X. L.; Qin, C.; Wang, E. B. Two layered copper-bis(triazole) assemblies with Keggin polyoxoanions as pendants: Syntheses, structures and photocatalytic properties. Inorg. Chem. Commun. 2013, 37, 174–177.

[57]

Li, X. Y.; Li, X.; Wang, J.; Zhai, H. J.; Chen, X. B. Synthesis of ZnSe microdisks and nanobelts and their visible-light photocatalytic properties. J. Mater. Sci. 2017, 52, 3821–3830.

[58]

Yang, L.; Zhu, J. G.; Xiao, D. Q. Microemulsion-mediated hydrothermal synthesis of ZnSe and Fe-doped ZnSe quantum dots with different luminescence characteristics. RSC Adv. 2012, 2, 8179–8188.

[59]

Zhang, H.; Yu, K.; Gao, S.; Wang, C. M.; Wang, C. X.; Wang, H. Y.; Zhou, B. B. Two unusual organic-inorganic hybrid 3-D frameworks based on Keggin-type heteropoly blue anion-chains, 40-membered macrocycles, and sodium linker units. CrystEngComm 2014, 16, 8449–8456.

[60]

Wang, X. L.; Cao, J. J.; Liu, G. C.; Tian, A. X.; Luan, J.; Lin, H. Y.; Zhang, J. W.; Li, N. Keggin-based 3D frameworks tuned by silver polymeric motifs: Effect of the bi(triazole) substituent group on the architectures. CrystEngComm 2014, 16, 5732–5740.

[61]

Hu, H. L.; Zhang, W. S.; Gong, J. J.; Dong, H.; Zhao, F. F.; Huang, H.; Liu, Y.; Zhang, G. J.; Kang, Z. H. Can tetrazole-functionalized ligands realize the role-control of Keggin-type POMs in hybrid frameworks? CrystEngComm 2014, 16, 5642–5649.

[62]

Shin, H.; Jung, S.; Bae, S.; Lee, W.; Kim, H. Nitrite reduction mechanism on a Pd surface. Environ. Sci. Technol. 2014, 48, 12768–12774.

[63]

Gulis, G.; Czompolyova, M.; Cerhan, J. R. An ecologic study of nitrate in municipal drinking water and cancer incidence in Trnava district, Slovakia. Environ. Res. 2002, 88, 182–187.

[64]

Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

File
0007_ESM.pdf (1.7 MB)
Publication history
Copyright
Rights and permissions

Publication history

Received: 11 July 2022
Revised: 21 August 2022
Accepted: 19 September 2022
Published: 13 October 2022
Issue date: December 2022

Copyright

© The Author(s) 2022. Polyoxometalates published by Tsinghua University Press.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return