Journal Home > Volume 1 , Issue 1

Polyoxometalates (POMs) can enable energy level tuning to match perovskite layers. They are considered electronic bridges to modify perovskite and improve the performance of photovoltaic devices. Therefore, in the present work, we dispersed the vacancy POMs K8[α-SiW11O39]·H2O ({SiW11}) in the metal-organic frameworks (MOFs) to modify the perovskite layer. {SiW11} could adjust the energy level between the layers of the perovskite photodetector. Moreover, the hydrogen bonds formed between SiW11@ZIF-8 and perovskite effectively passivated the grain boundaries (GBs) of the perovskite layer. X-ray diffraction spectroscopy (XRD) showed that the crystallinity of perovskite was significantly improved. In addition, scanning electron microscopy (SEM) images demonstrated that the average size of perovskite grains increased from 254.50 to 719.27 nm, proving the effective passivation of the GBs. Furthermore, a series of tests such as infrared spectroscopy (IR), N2 adsorption/desorption isotherms, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) also proved that {SiW11} could be successfully loaded into the pores of ZIF-8 through electrostatic interactions. The photocurrent of the SiW11@ZIF-8 doped device reached 41.95 μA, about three times as high as that of the blank device (14.41 μA). Also, under unencapsulated conditions, it could still maintain more than 90% stability for nearly 700 h. This work demonstrates the potential application of POM@MOF-type composites in the field of perovskite photodetectors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Grain boundaries passivation of high efficiency and stable perovskite photodetector by polyoxometalate-based composite SiW11@ZIF-8

Show Author's information Sijie DuanXueying XuWeilin Chen( )Jingjing ZhiFengrui Li
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China

Abstract

Polyoxometalates (POMs) can enable energy level tuning to match perovskite layers. They are considered electronic bridges to modify perovskite and improve the performance of photovoltaic devices. Therefore, in the present work, we dispersed the vacancy POMs K8[α-SiW11O39]·H2O ({SiW11}) in the metal-organic frameworks (MOFs) to modify the perovskite layer. {SiW11} could adjust the energy level between the layers of the perovskite photodetector. Moreover, the hydrogen bonds formed between SiW11@ZIF-8 and perovskite effectively passivated the grain boundaries (GBs) of the perovskite layer. X-ray diffraction spectroscopy (XRD) showed that the crystallinity of perovskite was significantly improved. In addition, scanning electron microscopy (SEM) images demonstrated that the average size of perovskite grains increased from 254.50 to 719.27 nm, proving the effective passivation of the GBs. Furthermore, a series of tests such as infrared spectroscopy (IR), N2 adsorption/desorption isotherms, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) also proved that {SiW11} could be successfully loaded into the pores of ZIF-8 through electrostatic interactions. The photocurrent of the SiW11@ZIF-8 doped device reached 41.95 μA, about three times as high as that of the blank device (14.41 μA). Also, under unencapsulated conditions, it could still maintain more than 90% stability for nearly 700 h. This work demonstrates the potential application of POM@MOF-type composites in the field of perovskite photodetectors.

Keywords: passivation, metal-organic framework, polyoxometalates, perovskite photodetector

References(74)

[1]

Chen, C. C.; Nguyen, V. S.; Chiu, H. C.; Chen, Y. D.; Wei, T. C.; Yeh, C. Y. Anthracene-bridged sensitizers for dye-sensitized solar cells with 37% efficiency under dim light. Adv. Energy Mater. 2022, 12, 2104051.

[2]

Schol, P. R.; Zhang, W. S.; Scharl, T.; Kunzmann, A.; Peukert, W.; Schröder, R. R.; Guldi, D. M. Intrinsic and extrinsic incorporation of indium and single-walled carbon nanotubes for improved ZnO-based DSSCs. Adv. Energy Mater. 2022, 12, 2103662.

[3]

Luo, Y. D.; Tang, R.; Chen, S.; Hu, J. G.; Liu, Y. K.; Li, Y. F.; Liu, X. S.; Zheng, Z. H.; Su, Z. H.; Ma, X. F. et al. An effective combination reaction involved with sputtered and selenized Sb precursors for efficient Sb2Se3 thin film solar cells. Chem. Eng. J. 2020, 393, 124599.

[4]

Xia, R.; Xu, Y. B.; Chen, B. B.; Kanda, H.; Franckevičius, M.; Gegevičius, R.; Wang, S. B.; Chen, Y. F.; Chen, D. M.; Ding, J. N. et al. Interfacial passivation of wide-bandgap perovskite solar cells and tandem solar cells. J. Mater. Chem. A 2021, 9, 21939–21947.

[5]

Xia, J. X.; Luo, J. S.; Yang, H.; Zhao, F. J.; Wan, Z. Q.; Malik, H. A.; Shi, Y.; Han, K. L.; Yao, X. J.; Jia, C. Y. Vertical phase separated cesium fluoride doping organic electron transport layer: A facile and efficient “bridge” linked heterojunction for perovskite solar cells. Adv. Funct. Mater. 2020, 30, 2001418.

[6]

You, S.; Zeng, H. P.; Ku, Z. L.; Wang, X. Z.; Wang, Z.; Rong, Y. G.; Zhao, Y.; Zheng, X.; Luo, L.; Li, L. et al. Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Adv. Mater. 2020, 32, 2003990.

[7]

Liu, J.; Dong, Q. S.; Wang, M. H.; Ma, H. R.; Pei, M. Z.; Bian, J. M.; Shi, Y. T. Efficient planar perovskite solar cells with carbon quantum dot-modified spiro-MeOTAD as a composite hole transport layer. ACS Appl. Mater. Interfaces 2021, 13, 56265–56272.

[8]

Liu, C.; Zhang, L. Z.; Li, Y.; Zhou, X. Y.; She, S. Y.; Wang, X. Z.; Tian, Y. Q.; Jen, A. K. Y.; Xu, B. M. Highly stable and efficient perovskite solar cells with 22.0% efficiency based on inorganic-organic dopant-free double hole transporting layers. Adv. Funct. Mater. 2020, 30, 1908462.

[9]

Wang, B. N.; Li, N.; Yang, L.; Dall’Agnese, C.; Jena, A. K.; Sasaki, S. I.; Miyasaka, T.; Tamiaki, H.; Wang, X. F. Chlorophyll derivative-sensitized TiO2 electron transport layer for record efficiency of Cs2AgBiBr6 double perovskite solar cells. J. Am. Chem. Soc. 2021, 143, 2207–2211.

[10]

Ge, B.; Zhou, Z. R.; Wu, X. F.; Zheng, L. R.; Dai, S.; Chen, A. P.; Hou, Y.; Yang, H. G.; Yang, S. Self-organized Co3O4-SrCO3 percolative composites enabling nanosized hole transport pathways for perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2106121.

[11]

Ozturk, T.; Sarilmaz, A.; Akin, S.; Dursun, H.; Ozel, F.; Akman, E. Quinary nanocrystal-based passivation strategy for high efficiency and stable perovskite photovoltaics. Solar RRL 2022, 6, 2100737.

[12]

Wang, M. H.; Yin, Y. F.; Cai, W. X.; Liu, J.; Han, Y. L.; Feng, Y. L.; Dong, Q. S.; Wang, Y. D.; Bian, J. M.; Shi, Y. T. Synergetic co-modulation of crystallization and co-passivation of defects for FAPBI3 perovskite solar cells. Adv. Funct. Mater. 2022, 32, 2108567.

[13]

Zhu, H. W.; Ren, Y. M.; Pan, L. F.; Ouellette, O.; Eickemeyer, F. T.; Wu, Y. H.; Li, X. G.; Wang, S. R.; Liu, H. L.; Dong, X. F. et al. Synergistic effect of fluorinated passivator and hole transport dopant enables stable perovskite solar cells with an efficiency near 24%. J. Am. Chem. Soc. 2021, 143, 3231–3237.

[14]

Fan, W. Q.; Zhang, S. C.; Xu, C. Z.; Si, H. N.; Xiong, Z. Z.; Zhao, Y. Q.; Ma, K. K.; Zhang, Z.; Liao, Q. L.; Kang, Z. et al. Grain boundary perfection enabled by pyridinic nitrogen doped graphdiyne in hybrid perovskite. Adv. Funct. Mater. 2021, 31, 2104633.

[15]

Fahim, M.; Firdous, I.; Tsang, S. W.; Daoud, W. A. Engineering intrinsic flexibility in polycrystalline perovskite film by grain boundary stitching for high mechanical endurance. Nano Energy 2022, 96, 107058.

[16]

Castro-Méndez, A. F.; Hidalgo, J.; Correa-Baena, J. P. The role of grain boundaries in perovskite solar cells. Adv. Energy Mater. 2019, 9, 1901489.

[17]

Rana, P. J. S.; Febriansyah, B.; Koh, T. M.; Muhammad, B. T.; Salim, T.; Hooper, T. J. N.; Kanwat, A.; Ghosh, B.; Kajal, P.; Lew, J. H. et al. Alkali additives enable efficient large area (>55 cm2) slot-die coated perovskite solar modules. Adv. Funct. Mater. 2022, 32, 2113026.

[18]

Wang, Z.; You, S.; Zheng, G. H. J.; Tang, Z. G.; Zhang, L. J.; Zhang, J. C.; Li, X.; Gao, X. Y. Tartaric acid additive to enhance perovskite multiple preferential orientations for high-performance solar cells. J. Energy Chem. 2022, 69, 406–413.

[19]

Jiang, Z. X.; Fu, J. F.; Zhang, J. J.; Chen, Q. Y.; Zhang, Z. L.; Ji, W. X.; Wang, A. L.; Zhang, T. Y.; Zhou, Y.; Song, B. Reducing trap densities of perovskite films by the addition of hypoxanthine for high-performance and stable perovskite solar cells. Chem. Eng. J. 2022, 436, 135269.

[20]

Yuan, L. G.; Luo, H. M.; Wang, J. R.; Xu, Z. H.; Li, J.; Jiang, Q. S.; Yan, K. Y. Quantifying the energy loss for a perovskite solar cell passivated with acetamidine halide. J. Mater. Chem. A 2021, 9, 4781–4788.

[21]

Xin, C. G.; Zhang, J. B.; Zhou, X.; Ma, L. C.; Hou, F. H.; Shi, B.; Pan, S. J.; Chen, B. B.; Wang, P. Y.; Zhang, D. K. et al. Defects healing in two-step deposited perovskite solar cells via formamidinium iodide compensation. ACS Appl. Energy Mater. 2020, 3, 3318–3327.

[22]

Son, D. Y.; Lee, J. W.; Choi, Y. J.; Jang, I. H.; Lee, S.; Yoo, P. J.; Shin, H.; Ahn, N.; Choi, M.; Kim, D. et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 2016, 1, 16081.

[23]

Yang, M. J.; Zhang, T. Y.; Schulz, P.; Li, Z.; Li, G.; Kim, D. H.; Guo, N. J.; Berry, J. J.; Zhu, K.; Zhao, Y. X. Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3Br-selective ostwald ripening. Nat. Commun. 2016, 7, 12305.

[24]
Li, M. H. ; Zhou, J. J. ; Tan, L. G. ; Liu, Y. ; Wang, S. Y. ; Jiang, C. F. ; Li, H. ; Zhao, X. ; Gao, X. Y. ; Tress, W. et al. Brominated PEAI as multi-functional passivator for high-efficiency perovskite solar cell. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12360.
[25]

Qi, W. J.; Zhou, X.; Li, J. L.; Cheng, J.; Li, Y. L.; Ko, M. J.; Zhao, Y.; Zhang, X. D. Inorganic material passivation of defects toward efficient perovskite solar cells. Sci. Bull. 2020, 65, 2022–2032.

[26]

Zhang, H.; Wu, Y. Z.; Shen, C.; Li, E. P.; Yan, C. X.; Zhang, W. W.; Tian, H.; Han, L. Y.; Zhu, W. H. Efficient and stable chemical passivation on perovskite surface via bidentate anchoring. Adv. Energy Mater. 2019, 9, 1803573.

[27]

Tao, R.; Fang, W. C.; Li, F. Y.; Sun, Z. X.; Xu, L. Lanthanide-containing polyoxometalate as luminescent down-conversion material for improved printable perovskite solar cells. J. Alloys Compd. 2020, 823, 153738.

[28]

Fan, X.; Zhang, J.; Yang, Y. L.; Xia, D. B.; Dong, Y. Y.; Qiu, L. L.; Wang, J. Q.; Cao, W.; Wang, W.; Hu, B. Y. et al. New insight into the grafted transition metal ions in trilacunary Keggin polyoxometalates dopants for efficient and stable perovskite solar cells. J. Power Sources 2021, 504, 230073.

[29]

Dong, Y. Y.; Yang, Y. L.; Qiu, L. L.; Dong, G. H.; Xia, D. B.; Liu, X. D.; Li, M. R.; Fan, R. Q. Polyoxometalate-based inorganic-organic hybrid [Cu(phen)2]2[(α-Mo8O26)]: A new additive to spiro-OMeTAD for efficient and stable perovskite solar cells. ACS Appl. Energy Mater. 2019, 2, 4224–4233.

[30]

Zhou, Y.; Lu, Q. C.; Liu, Q. D.; Yang, H. Z.; Liu, J. L.; Zhuang, J.; Shi, W. X.; Wang, X. Architecting hybrid donor-acceptor dendritic nanosheets based on polyoxometalate and porphyrin for high-yield solar water purification. Adv. Funct. Mater. 2022, 32, 2112159.

[31]

Cui, Y. Q.; Xing, Z. P.; Guo, M. J.; Qiu, Y. L.; Fang, B.; Li, Z. Z.; Yang, S. L.; Zhou, W. Hollow core-shell potassium phosphomolybdate@cadmium sulfide@bismuth sulfide Z-scheme tandem heterojunctions toward optimized photothermal-photocatalytic performance. J. Colloid Interface Sci. 2022, 607, 942–953.

[32]

Di, Y. M.; Li, M. H.; You, M. H.; Zhang, S. Q.; Lin, M. J. Photochromic and room temperature phosphorescent donor-acceptor hybrid crystals regulated by core-substituted naphthalenediimides. Inorg. Chem. 2021, 60, 16233–16240.

[33]

Zhao, Y. N.; Qin, X.; Zhao, X. Y.; Wang, X.; Tan, H. Q.; Sun, H. Y.; Yan, G.; Li, H. W.; Ho, W.; Lee, S. C. Polyoxometalates-doped Bi2O3-x/bi photocatalyst for highly efficient visible-light photodegradation of tetrabromobisphenol A and removal of NO. Chin. J. Catal. 2022, 43, 771–781.

[34]

Lei, J.; Fan, X. X.; Liu, T.; Xu, P.; Hou, Q.; Li, K.; Yuan, R. M.; Zheng, M. S.; Dong, Q. F.; Chen, J. J. Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries. Nat. Commun. 2022, 13, 202.

[35]

Schwiedrzik, L.; Brieskorn, V.; González, L. Flexibility enhances reactivity: Redox isomerism and Jahn-teller effects in a bioinspired Mn4O4 cubane water oxidation catalyst. ACS Catal. 2021, 11, 13320–13329.

[36]

Park, H.; Choi, W. Photoelectrochemical investigation on electron transfer mediating behaviors of polyoxometalate in UV-illuminated suspensions of TiO2 and Pt/TiO2. J. Phys. Chem. B 2003, 107, 3885–3890.

[37]

Guan, J. Y.; Pal, T.; Kamiya, K.; Fukui, N.; Maeda, H.; Sato, T.; Suzuki, H.; Tomita, O.; Nishihara, H.; Abe, R. et al. Two-dimensional metal-organic framework acts as a hydrogen evolution cocatalyst for overall photocatalytic water splitting. ACS Catal. 2022, 12, 3881–3889.

[38]

Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H. Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L. et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew. Chem., Int. Ed. 2021, 60, 1433–1440.

[39]

Mialane, P.; Mellot-Draznieks, C.; Gairola, P.; Duguet, M.; Benseghir, Y.; Oms, O.; Dolbecq, A. Heterogenisation of polyoxometalates and other metal-based complexes in metal-organic frameworks: From synthesis to characterisation and applications in catalysis. Chem. Soc. Rev. 2021, 50, 6152–6220.

[40]

Liu, Y.; Tang, C. S.; Cheng, M.; Chen, M.; Chen, S.; Lei, L.; Chen, Y. S.; Yi, H.; Fu, Y. K.; Li, L. Polyoxometalate@metal-organic framework composites as effective photocatalysts. ACS Catal. 2021, 11, 13374–13396.

[41]

Liu, J. X.; Zhang, X. B.; Li, Y. L.; Huang, S. L.; Yang, G. Y. Polyoxometalate functionalized architectures. Coord. Chem. Rev. 2020, 414, 213260.

[42]

Karamzadeh, S.; Sanchooli, E.; Oveisi, A. R.; Daliran, S.; Luque, R. Visible-LED-light-driven photocatalytic synthesis of N-heterocycles mediated by a polyoxometalate-containing mesoporous zirconium metal-organic framework. Appl. Catal. B Environ. 2022, 303, 120815.

[43]

Laurans, M.; Trinh, K.; Dalla Francesca, K.; Izzet, G.; Alves, S.; Derat, E.; Humblot, V.; Pluchery, O.; Vuillaume, D.; Lenfant, S. et al. Covalent grafting of polyoxometalate hybrids onto flat silicon/silicon oxide: Insights from POMs layers on oxides. ACS Appl. Mater. Interfaces 2020, 12, 48109–48123.

[44]

Tountas, M.; Topal, Y.; Kus, M.; Ersöz, M.; Fakis, M.; Argitis, P.; Vasilopoulou, M. Water-soluble lacunary polyoxometalates with excellent electron mobilities and hole blocking capabilities for high efficiency fluorescent and phosphorescent organic light emitting diodes. Adv. Funct. Mater. 2016, 26, 2655–2665.

[45]

Wang, Y.; Xie, Y.; Deng, M. C.; Liu, T. F.; Yang, H. X. Incorporation of polyoxometalate in sulfonic acid-modified MIL-101-Cr for enhanced CO2 photoreduction activity. Eur. J. Inorg. Chem. 2021, 2021, 681–687.

[46]

Dong, G. H.; Ye, T. L.; Yang, Y. L.; Sheng, L.; Xia, D. B.; Wang, J. H.; Fan, X.; Fan, R. Q. SiW12-TiO2 mesoporous layer for enhanced electron-extraction efficiency and conductivity in perovskite solar cells. ChemSusChem 2017, 10, 2218–2225.

[47]

Li, X. H.; Chen, W. L.; He, P.; Wang, T.; Liu, D.; Li, Y. W.; Li, Y. G.; Wang, E. B. Dawson-type polyoxometalate-based vacancies g-C3N4 composite-nanomaterials for efficient photocatalytic nitrogen fixation. Inorg. Chem. Front. 2019, 6, 3315–3326.

[48]

Hayashi, H.; Côté, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Zeolite a imidazolate frameworks. Nat. Mater. 2007, 6, 501–506.

[49]

Ye, L.; Ying, Y. R.; Sun, D. R.; Qiao, J. L.; Huang, H. T. Ultrafine MO2C nanoparticles embedded in an MOF derived N and P Co-doped carbon matrix for an efficient electrocatalytic oxygen reduction reaction in zinc-air batteries. Nanoscale 2022, 14, 2065–2073.

[50]

Jia, X. Y.; Wang, J. X.; Hu, H. B.; Song, Y. F. Three-dimensional carbon framework anchored polyoxometalate as a high-performance anode for lithium-ion batteries. Chem.—Eur. J. 2020, 26, 5257–5263.

[51]

Abdelkader-Fernández, V. K.; Fernandes, D. M.; Balula, S. S.; Cunha-Silva, L.; Freire, C. Oxygen evolution reaction electrocatalytic improvement in POM@ZIF nanocomposites: A bidirectional synergistic effect. ACS Appl. Energy Mater. 2020, 3, 2925–2934.

[52]

Wang, P. Y.; Zou, X. Q.; Tan, H. Q.; Wu, S.; Jiang, L. C.; Zhu, G. S. Ultrathin ZIF-8 film containing polyoxometalate as an enhancer for selective formaldehyde sensing. J. Mater. Chem. C 2018, 6, 5412–5419.

[53]

Han, J. Y.; Wang, D. P.; Du, Y. H.; Xi, S. B.; Chen, Z.; Yin, S. M.; Zhou, T. H.; Xu, R. Polyoxometalate immobilized in MIL-101(Cr) as an efficient catalyst for water oxidation. Appl. Catal. A Gen. 2016, 521, 83–89.

[54]

Wu, J.; Liao, L. W.; Yan, W. S.; Xue, Y.; Sun, Y. F.; Yan, X.; Chen, Y. X.; Xie, Y. Polyoxometalates immobilized in ordered mesoporous carbon nitride as highly efficient water oxidation catalysts. ChemSusChem 2012, 5, 1207–1212.

[55]

Li, X.; Ibrahim Dar, M.; Yi, C. Y.; Luo, J. S.; Tschumi, M.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Han, H. W.; Grätzel, M. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 2015, 7, 703–711.

[56]

Yousefi, M.; Eshghi, H.; Karimi-Nazarabad, M. Decoration of g-C3N4 by inorganic cluster of polyoxometalate through organic linker strategy for enhancing photoelectrocatalytic performance under visible light. Int. J. Hyd. Energy 2022, 47, 3001–3012.

[57]

Mukhopadhyay, S.; Debgupta, J.; Singh, C.; Kar, A.; Das, S. K. A keggin polyoxometalate shows water oxidation activity at neutral pH: POM@ZIF-8, an efficient and robust electrocatalyst. Angew. Chem., Int. Ed. 2018, 57, 1918–1923.

[58]

Yuan, X.; Qu, S. L.; Huang, X. Y.; Xue, X. G.; Yuan, C. L.; Wang, S. W.; Wei, L.; Cai, P. Design of core-shelled g-C3N4@ZIF-8 photocatalyst with enhanced tetracycline adsorption for boosting photocatalytic degradation. Chem. Eng. J. 2021, 416, 129148.

[59]

Zhou, L.; Li, N.; Owens, G.; Chen, Z. L. Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8. Chem. Eng. J. 2019, 362, 628–637.

[60]

Zhou, K.; Mousavi, B.; Luo, Z. X.; Phatanasri, S.; Chaemchuen, S.; Verpoort, F. Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J. Mater. Chem. A 2017, 5, 952–957.

[61]

Han, T. T.; Yang, J.; Liu, Y. Y.; Ma, J. F. Rhodamine 6G loaded zeolitic imidazolate framework-8 (ZIF-8) nanocomposites for highly selective luminescent sensing of Fe3+, Cr6+ and aniline. Microporous Mesoporous Mater. 2016, 228, 275–288.

[62]

Akbari Beni, F.; Gholami, A.; Ayati, A.; Niknam Shahrak, M.; Sillanpää, M. UV-switchable phosphotungstic acid sandwiched between ZIF-8 and Au nanoparticles to improve simultaneous adsorption and UV light photocatalysis toward tetracycline degradation. Microporous Mesoporous Mater 2020, 303, 110275.

[63]

Mahmoudi, G.; Afkhami, F. A.; Kennedy, A. R.; Zubkov, F. I.; Zangrando, E.; Kirillov, A. M.; Molins, E.; Mitoraj, M. P.; Safin, D. A. Lead(II) coordination polymers driven by pyridine-hydrazine donors: From anion-guided self-assembly to structural features. Dalton Trans. 2020, 49, 11238–11248.

[64]

Li, M. H.; Di, Y. M.; Wang, Y. W.; You, M. H.; Lin, M. J. In-situ construction of novel naphthalenediimide/metal-iodide hybrid heterostructures for enhanced photoreduction of Cr (VI). Dyes Pigm 2021, 187, 109146.

[65]

Wang, P.; Chen, Z. R.; Li, H. H. Novel viologen/iodobismuthate hybrids: Structures, thermochromisms and theoretical calculations. J. Clust. Sci. 2020, 31, 943–950.

[66]

Dahéron, L.; Martinez, H.; Dedryvère, R.; Baraille, I.; Ménétrier, M.; Denage, C.; Delmas, C.; Gonbeau, D. Surface properties of LiCoO2 investigated by XPS analyses and theoretical calculations. J. Phys. Chem. C 2009, 113, 5843–5852.

[67]

Karvonen, L.; Valkeapää, M.; Liu, R. S.; Chen, J. M.; Yamauchi, H.; Karppinen, M. O-K and Co-L XANES study on oxygen intercalation in perovskite SrCoO3−δ. Chem. Mater 2010, 22, 70–76.

[68]

Wang, Y. D.; Wang, J. X.; Wei, M. J.; Liu, B. L.; Zang, H. Y.; Tan, H. Q.; Wang, Y. H.; Li, Y. G. Niobium oxyhydroxide-polyoxometalate composite as an efficient proton-conducting solid electrolyte. ChemElectroChem 2018, 5, 1125–1129.

[69]

Liu, K.; Yao, Z. X.; Song, Y. F. Polyoxometalates hosted in layered double hydroxides: Highly enhanced catalytic activity and selectivity in sulfoxidation of sulfides. Ind. Eng. Chem. Res. 2015, 54, 9133–9141.

[70]

Xu, X. Y.; Zhang, L. M.; Wang, T.; Li, Y. J.; Ji, T.; Chen, W. L.; Wang, C. L.; Lin, C. X. The dual effect of “inorganic fullerene” {Mo132} doped with SnO2 for efficient perovskite-based photodetectors. Mater. Chem. Front. 2021, 5, 6931–6940.

[71]

Lee, C. C.; Chen, C. I.; Liao, Y. T.; Wu, K. C. W.; Chueh, C. C. Enhancing efficiency and stability of photovoltaic cells by using perovskite/Zr-MOF heterojunction including bilayer and hybrid structures. Adv. Sci. 2019, 6, 1801715.

[72]

Du, S. N.; Li, G. T.; Cao, X. H.; Wang, Y.; Lu, H. L.; Zhang, S. D.; Liu, C.; Zhou, H. Oxide semiconductor phototransistor with organolead trihalide perovskite light absorber. Adv. Electron. Mater. 2017, 3, 1600325.

[73]

Xu, J. F.; Wang, H. W.; Yang, S. Y.; Ni, G. Q.; Zou, B. S. High-sensitivity broadband colloidal quantum dot heterojunction photodetector for night-sky radiation. J. Alloys Compd. 2018, 764, 446–451.

[74]

Wang, W.; Zhang, J.; Lin, K. F.; Dong, Y. Y.; Wang, J. Q.; Hu, B. Y.; Li, J.; Shi, Z.; Hu, Y. J.; Cao, W. et al. Construction of polyoxometalate-based material for eliminating multiple Pb-based defects and enhancing thermal stability of perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2105884.

File
0003_ESM.pdf (1.2 MB)
Publication history
Copyright
Rights and permissions

Publication history

Received: 13 April 2022
Revised: 29 July 2022
Accepted: 01 August 2022
Published: 25 August 2022
Issue date: September 2022

Copyright

© The Author(s) 2022. Polyoxometalates published by Tsinghua University Press.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return