Journal Home > Volume 1 , Issue 1

Both polyoxometalates (POMs) and metalloporphyrins exhibit high Arial. 9 efficiency. In this work, we designed two new composite catalysts with [5,10,15,20-tetra-(4-carboxylphenyl)-porphyrinato]-ferric chloride (FeTCPP) and H3PW12O40 (PW12)/H3PMo12O40 (PMo12), forming FeTCPP-PW12 and FeTCPP-PMo12 composite catalysts. The diameter of the catalyst particles was controlled by varying the dosage of the two reactants. The synthesis method of the catalysts is simple to operate and it can be obtained by ordinary precipitation after dissolution. Furthermore, the catalysts exhibited satisfactory activity and stability under the condition of repetitive tests. Our findings showed that phenol was almost completely degraded in 10 min under photocatalytic conditions catalyzed by the FeTCPP-PMo12 photocatalyst. This work provides new concepts for developing new types of materials for environmental applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fast degradation of phenol over porphyrin-polyoxometalate composite photocatalysts under visible light

Show Author's information Zhinan XiaLibo WangQiu ZhangFengyan Li ( )Lin Xu ( )
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China

Abstract

Both polyoxometalates (POMs) and metalloporphyrins exhibit high Arial. 9 efficiency. In this work, we designed two new composite catalysts with [5,10,15,20-tetra-(4-carboxylphenyl)-porphyrinato]-ferric chloride (FeTCPP) and H3PW12O40 (PW12)/H3PMo12O40 (PMo12), forming FeTCPP-PW12 and FeTCPP-PMo12 composite catalysts. The diameter of the catalyst particles was controlled by varying the dosage of the two reactants. The synthesis method of the catalysts is simple to operate and it can be obtained by ordinary precipitation after dissolution. Furthermore, the catalysts exhibited satisfactory activity and stability under the condition of repetitive tests. Our findings showed that phenol was almost completely degraded in 10 min under photocatalytic conditions catalyzed by the FeTCPP-PMo12 photocatalyst. This work provides new concepts for developing new types of materials for environmental applications.

Keywords: photocatalytic, polyoxometalates, metalloporphyrins, degradation of phenol

References(29)

[1]

Arques, A.; Amat, A. M.; García-Ripoll, A.; Vicente, R. Detoxification and/or increase of the biodegradability of aqueous solutions of dimethoate by means of solar photocatalysis. J. Hazard. Mater. 2007, 146, 447–452.

[2]

Scott, T.; Zhao, H. L.; Deng, W.; Feng, X. H.; Li, Y. Photocatalytic degradation of phenol in water under simulated sunlight by an ultrathin MgO coated Ag/TiO2 nanocomposite. Chemosphere 2019, 216, 1–8.

[3]

Rayati, S.; Zakavi, S.; Noroozi, V.; Motlagh, S. H. Electron-deficient Mn(III)-porphyrin catalyzed oxidation of hydrocarbons with tetra-n-butylammonium hydrogen monopersulfate: Effect of counter ions and nitrogen donors. Catal. Commun. 2008, 10, 221–226.

[4]

Kosal, M. E.; Chou, J. H.; Wilson, S. R.; Suslick, K. S. A functional zeolite analogue assembled from metalloporphyrins. Nat. Mater. 2002, 1, 118–121.

[5]

Torrent-Sucarrat, M.; Arrastia, I.; Arrieta, A.; Cossío, F. P. Stereoselectivity, different oxidation states, and multiple spin states in the cyclopropanation of olefins catalyzed by Fe-porphyrin complexes. ACS Catal. 2018, 8, 11140–11153.

[6]

Usov, P. M.; Huffman, B.; Epley, C. C.; Kessinger, M. C.; Zhu, J.; Maza, W. A.; Morris, J. A. Study of electrocatalytic properties of metal-organic framework PCN-223 for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2017, 9, 33539–33543.

[7]

Lin, L.; Hou, C. C.; Zhang, X. H.; Wang, Y. J.; Chen, Y.; He, T. Highly efficient visible-light driven photocatalytic reduction of CO2 over g-C3N4 nanosheets/tetra(4-carboxyphenyl)porphyrin iron(III) chloride heterogeneous catalysts. Appl. Catal. B: Environ. 2018, 221, 312–319.

[8]

Mishra, J.; Pattanayak, D. S.; Das, A. A.; Mishra, D. K.; Rath, D.; Sahoo, N. K. Enhanced photocatalytic degradation of cyanide employing Fe-porphyrin sensitizer with hydroxyapatite palladium doped TiO2 nano-composite system. J. Mol. Liquids 2019, 287, 110821.

[9]

Liu, J. X.; Zhang, X. B.; Li, Y. L.; Huang, S. L.; Yang, G. Y. Polyoxometalate functionalized architectures. Coordin. Chem. Rev. 2020, 414, 213260.

[10]

Gumerova, N. I.; Rompel, A. Synthesis, structures and applications of electron-rich polyoxometalates. Nat. Rev. Chem. 2018, 2, 0112.

[11]

Li, K.; Lin, X. L.; Zeng, K.; Gao, X. F.; Cen, W.; Liu, Y. F.; Yang, G. P. Effect of Na(I)-H2O clusters on self-assembly of sandwich-type U(VI)-containing silicotungstates and the efficient catalytic activity for the synthesis of substituted phenylsulfonyl-1H-pyrazoles. Tungsten 2022, 4, 149–157.

[12]

Yanga, G. P.; Liu, Y. F.; Lin, X. L.; Ming, B. M.; Li, K.; Hu, C. W. Self-assembly of a new 3D platelike ternary-oxo-cluster: An efficient catalyst for the synthesis of pyrazoles. Chin. Chem. Lett. 2022, 33, 354–357.

[13]

Yang, G. P.; Zhang, X. L.; Liu, Y. F.; Zhang, D. D.; Li, K.; Hu, C. W. Self-assembly of Keggin-type U(VI)-containing tungstophosphates with a sandwich structure: An efficient catalyst for the synthesis of sulfonyl pyrazoles. Inorg. Chem. Front. 2021, 8, 4650–4656.

[14]

Yonesato, K.; Ito, H.; Itakura, H.; Yokogawa, D.; Kikuchi, T.; Mizuno, N.; Yamaguchi, K.; Suzuki, K. Controlled assembly synthesis of atomically precise ultrastable silver nanoclusters with polyoxometalates. J. Am. Chem. Soc. 2019, 141, 19550–19554.

[15]

Yan, D. D.; Wei, T. T.; Fang, W. C.; Jin, Z. B.; Li, F. Y.; Xia, Z. N.; Xu, L. A visible-light-responsive TaON/CdS photocatalytic film with a ZnS passivation layer for highly extraordinary NO2 photodegradation. RSC Adv. 2020, 10, 32662–32670.

[16]

Lamare, R.; Ruppert, R.; Boudon, C.; Ruhlmann, L.; Weiss, J. Porphyrins and polyoxometalate scaffolds. Chem.—Eur. J. 2021, 27, 16071–16081.

[17]

Othman, I.; Haija, M. A.; Ismail, I.; Zain, J. H.; Banat, F. Preparation and catalytic performance of CuFe2O4 nanoparticles supported on reduced graphene oxide (CuFe2O4/rGO) for phenol degradation. Mater. Chem. Phys. 2019, 238, 121931.

[18]

Saka, E. T.; Kahriman, N. (E)-4-(4-(3-(2-Fluoro-5-(trifluoromethyl)phenyl)acryloyl)phenoxy) substituted Co(II) and Cu(II) phthalocyanines and their catalytic activities on the oxidation of phenols. J. Organomet Chem. 2019, 895, 48–54.

[19]

Li, X.; Li, J. L.; Huang, W. G.; Zhang, X. Z.; Zhang, B.; Cai, T. Metalloporphyrin-bound Janus nanocomposites with dual stimuli responsiveness for nanocatalysis in living radical polymerization. Nanoscale 2018, 10, 19254–19261.

[20]

Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H. C. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem., Int. Ed. 2012, 51, 10307–10310.

[21]

Chen, Y. L.; Sun, X.; Biswas, S.; Xie, Y.; Wang, Y.; Hu, X. Y. Integrating polythiophene derivates to PCN-222(Fe) for electrocatalytic sensing of L-dopa. Biosens. Bioelectron. 2019, 141, 111470.

[22]

Zhao, L. Z.; Si, D. D.; Zhao, Y. X.; Wang, L. X.; An, H. Q.; Ye, H.; Xin, Q. P.; Zhang, Y. Z. Copper nanocomposite decorated two-dimensional metal organic frameworks of metalloporphyrin with peroxidase-mimicking activity. Colloids Surf. A: Physicochem. Eng. Aspects 2022, 644, 128876.

[23]

Wei, M.; Wan, J. M.; Hu, Z. W.; Peng, Z. Q.; Wang, B.; Wang, H. G. Preparation, characterization and visible-light-driven photocatalytic activity of a novel Fe(III) porphyrin-sensitized TiO2 nanotube photocatalyst. Appl. Surf. Sci. 2017, 391, 267–274.

[24]

Xia, Z. N.; Shi, B. F.; Zhu, W. J.; Lü, C. L. Temperature-responsive polymer-tethered Zr-porphyrin MOFs encapsulated carbon dot nanohybrids with boosted visible-light photodegradation for organic contaminants in water. Chem. Eng. J. 2021, 426, 131794.

[25]

Zhu, W.; Xia, Z.; Shi, B.; Lü, C. Water-triggered conversion of Cs4PbBr6@TiO2 into Cs4PbBr6/CsPbBr3@TiO2 three-phase heterojunction for enhanced visible-light-driven photocatalytic degradation of organic pollutants. Mater. Today Chem. 2022, 24, 100880.

[26]

Zhou, C. Y. ; Lai, C. ; Xu, P. ; Zeng, G. M. ; Huang, D. L. ; Zhang, C. ; Cheng, M. ; Hu, L. ; Wan, J. ; Liu, Y. et al. In situ grown AgI/Bi12O17Cl2 heterojunction photocatalysts for visible light degradation of sulfamethazine: Efficiency, pathway, and mechanism. ACS Sustainable Chem. Eng. 2018, 6, 4174–4184.

[27]

Shi, A. Y.; Li, H. H.; Yin, S.; Zhang, J. C.; Wang, Y. H. H2 evolution over g-C3N4/CsxWO3 under NIR light. Appl Catal. B: Environ. 2018, 228, 75–86.

[28]

Xu, H. Q.; Hu, J. H.; Wang, D. K.; Li, Z. H.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron-hole separation via electron trap states. J. Am. Chem. Soc. 2015, 137, 13440–13443.

[29]

Lu, N. ; Lu, Y. ; Liu, F. Y. ; Zhao, K. ; Yuan, X. ; Zhao, Y. H. ; Li, Y. ; Qin, H. W. ; Zhu, J. H3PW12O40/TiO2 catalyst-induced photodegradation of bisphenol A (BPA): Kinetics, toxicity and degradation pathways. Chemosphere 2013, 91, 1266–1272.

File
0001_ESM.pdf (535.1 KB)
Publication history
Copyright
Rights and permissions

Publication history

Received: 11 May 2022
Revised: 09 June 2022
Accepted: 22 June 2022
Published: 29 July 2022
Issue date: September 2022

Copyright

© The Author(s) 2022. Polyoxometalates published by Tsinghua University Press.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return