Journal Home > Volume 2 , Issue 2

For lithium–sulfur (Li–S) batteries, the problems of polysulfides shuttle effect, slow dynamics of sulfur species and growth of lithium dendrite during charge/discharge processes have greatly impeded its practical development. Of core importance to advance the performances of Li–S batteries lies in the selection and design of novel materials with strong polysulfides adsorption ability and enhanced redox electrocatalytic behavior. Graphene, affording high electrical conductivity, superior carrier mobility, and large surface area, has presented great potentials in improving the performances of Li–S cells. However, the properties of intrinsic graphene are far enough to achieve the multiple management toward electrochemical catalysis of energy storage systems. In addition, a general and objective understanding of its role in Li–S systems is still lacking. Along this line, we summarize the design routes from three aspects, including defect engineering, dimension adjustment, and heterostructure modulation, to perfect the graphene properties. Thus-synthesized graphene materials are explored as multifunctional electrocatalysts targeting high-efficiency and long-lifespan Li–S batteries, based on which the regulating role of graphene is comprehensively analyzed. This project provides a perspective on the effective engineering management of graphene materials to boost Li–S chemistry, meanwhile promote the practical application process for graphene materials.


menu
Abstract
Full text
Outline
About this article

A review in rational design of graphene toward advanced Li–S batteries

Show Author's information Haina Ci1( )Zixiong Shi2Menglei Wang2Yan He1Jingyu Sun2( )
College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
College of Energy, Soochow Institute for Energy and Materials Innovations Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China

Abstract

For lithium–sulfur (Li–S) batteries, the problems of polysulfides shuttle effect, slow dynamics of sulfur species and growth of lithium dendrite during charge/discharge processes have greatly impeded its practical development. Of core importance to advance the performances of Li–S batteries lies in the selection and design of novel materials with strong polysulfides adsorption ability and enhanced redox electrocatalytic behavior. Graphene, affording high electrical conductivity, superior carrier mobility, and large surface area, has presented great potentials in improving the performances of Li–S cells. However, the properties of intrinsic graphene are far enough to achieve the multiple management toward electrochemical catalysis of energy storage systems. In addition, a general and objective understanding of its role in Li–S systems is still lacking. Along this line, we summarize the design routes from three aspects, including defect engineering, dimension adjustment, and heterostructure modulation, to perfect the graphene properties. Thus-synthesized graphene materials are explored as multifunctional electrocatalysts targeting high-efficiency and long-lifespan Li–S batteries, based on which the regulating role of graphene is comprehensively analyzed. This project provides a perspective on the effective engineering management of graphene materials to boost Li–S chemistry, meanwhile promote the practical application process for graphene materials.

Keywords: graphene, defect engineering, dimension adjustment, heterostructure modulation, Li–S electrochemistry

References(110)

[1]

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

[2]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[3]

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

[4]

Cai, W. L.; Yao, Y. X.; Zhu, G. L.; Yan, C.; Jiang, L. L.; He, C. X.; Huang, J. Q.; Zhang, Q. A review on energy chemistry of fast-charging anodes. Chem. Soc. Rev. 2020, 49, 3806–3833.

[5]

Mauger, A.; Armand, M.; Julien, C. M.; Zaghib, K. Challenges and issues facing lithium metal for solid-state rechargeable batteries. J. Power Sources 2017, 353, 333–342.

[6]

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506.

[7]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Erratum: Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2011, 11, 172.

[8]

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

[9]

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

[10]

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

[11]

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

[12]

Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.

[13]

Chen, Y.; Wang, T. Y.; Tian, H. J.; Su, D. W.; Zhang, Q.; Wang, G. X. Advances in lithium–sulfur batteries: From academic research to commercial viability. Adv. Mater. 2021, 33, 2003666.

[14]

Chung, S. H.; Manthiram, A. Current status and future prospects of metal–sulfur batteries. Adv. Mater. 2019, 31, 1901125.

[15]

Shao, Q. J.; Wu, Z. S.; Chen, J. Two-dimensional materials for advanced Li–S batteries. Energy Storage Mater. 2019, 22, 284–310.

[16]

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 2017, 29, 1601759.

[17]

Wang, J. N.; Yi, S. S.; Liu, J. W.; Sun, S. Y.; Liu, Y. P.; Yang, D. W.; Xi, K.; Gao, G. X.; Abdelkader, A.; Yan, W. et al. Suppressing the shuttle effect and dendrite growth in lithium–sulfur batteries. ACS Nano 2020, 14, 9819–9831.

[18]

Ji, Y. C.; Yang, K.; Liu, M. Q.; Chen, S. M.; Liu, X. H.; Yang, B.; Wang, Z. J.; Huang, W. Y.; Song, Z. B.; Xue, S. D. et al. PIM-1 as a multifunctional framework to enable high-performance solid-state lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2104830.

[19]

Chen, S. M.; Song, Z. B.; Ji, Y. C.; Yang, K.; Fang, J. J.; Wang, L.; Wang, Z. J.; Zhao, Y.; Zhao, Y. L.; Yang, L. Y. et al. Suppressing polysulfide shuttling in lithium–sulfur batteries via a multifunctional conductive binder. Small Methods 2021, 5, 2100839.

[20]

Chen, X.; Wang, Y. B.; Wang, J. N.; Liu, J. W.; Sun, S. Y.; Zhu, L.; Ma, Q. Y.; Zhu, N. R.; Wang, X.; Chen, J. et al. A COF-like conductive conjugated microporous poly(aniline) serving as a current collector modifier for high-performance Li-S batteries. J. Mater. Chem. A 2022, 10, 1359–1368.

[21]

Guo, J. L.; Huang, Y. Y.; Zhao, S. Y.; Li, Z. X.; Wang, Z.; Shao, G. S.; Liu, J. P. Array-structured double-ion cooperative adsorption sites as multifunctional sulfur hosts for lithium-sulfur batteries with low electrolyte/sulfur ratio. ACS Nano 2021, 15, 16322–16334.

[22]

Zhao, S. Y.; Pei, H. Y.; Yang, Q.; Liu, K. L.; Huang, Y. Y.; Wang, Z.; Shao, G. S.; Liu, J. P.; Guo, J. L. Catalytic hosts with strong adsorption strength for long shelf-life lithium-sulfur batteries under lean electrolyte. Nano Res. 2022, 16, 427–438.

[23]

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

[24]

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

[25]

Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.

[26]

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

[27]

Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.

[28]

Yang, T.; Xia, J.; Piao, Z. H.; Yang, L.; Zhang, S. C.; Xing, Y. L.; Zhou, G. M. Graphene-based materials for flexible lithium–sulfur batteries. ACS Nano 2021, 15, 13901–13923.

[29]

Sun, C.; Liu, Y. Q.; Sheng, J. Z.; Huang, Q. K.; Lv, W.; Zhou, G. M.; Cheng, H. M. Status and prospects of porous graphene networks for lithium-sulfur batteries. Mater. Horiz. 2020, 7, 2487–2518.

[30]

Huang, H. B.; Shi, H. D.; Das, P.; Qin, J. Q.; Li, Y. G.; Wang, X.; Su, F.; Wen, P. C.; Li, S. Y.; Lu, P. F. et al. The chemistry and promising applications of graphene and porous graphene materials. Adv. Funct. Mater. 2020, 30, 1909035.

[31]

Fang, R. P.; Chen, K.; Yin, L. C.; Sun, Z. H.; Li, F.; Cheng, H. M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium–sulfur batteries. Adv. Mater. 2019, 31, 1800863.

[32]

Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 2011, 5, 26–41.

[33]

Pang, J. B.; Mendes, R. G.; Wrobel, P. S.; Wlodarski, M. D.; Ta, H. Q.; Zhao, L.; Giebeler, L.; Trzebicka, B.; Gemming, T.; Fu, L. et al. Self-terminating confinement approach for large-area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition. ACS Nano 2017, 11, 1946–1956.

[34]

Ugeda, M. M.; Brihuega, I.; Guinea, F.; Gómez-Rodríguez, J. M. Missing atom as a source of carbon magnetism. Phys. Rev. Lett. 2010, 104, 096804.

[35]

Wang, S. N.; Wang, R.; Wang, X. W.; Zhang, D. D.; Qiu, X. H. Nanoscale charge distribution and energy band modification in defect-patterned graphene. Nanoscale 2012, 4, 2651–2657.

[36]

Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

[37]

Guan, L.; Hu, H.; Li, L. Q.; Pan, Y. Y.; Zhu, Y. F.; Li, Q.; Guo, H. L.; Wang, K.; Huang, Y. C.; Zhang, M. D. et al. Intrinsic defect-rich hierarchically porous carbon architectures enabling enhanced capture and catalytic conversion of polysulfides. ACS Nano 2020, 14, 6222–6231.

[38]

Cai, W. L.; Song, Y. Z.; Fang, Y. T.; Wang, W. W.; Yu, S. L.; Ao, H. S.; Zhu, Y. C.; Qian, Y. T. Defect engineering on carbon black for accelerated Li–S chemistry. Nano Res. 2020, 13, 3315–3320.

[39]

Lin, L.; Deng, B.; Sun, J. Y.; Peng, H. L.; Liu, Z. F. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 2018, 118, 9281–9343.

[40]

Ci, H. N.; Wang, M. L.; Sun, Z. T.; Wei, C. H.; Cai, J. S.; Lu, C.; Cui, G.; Liu, Z. F.; Sun, J. Y. Direct insight into sulfiphilicity–lithiophilicity design of bifunctional heteroatom-doped graphene mediator toward durable Li–S batteries. J. Energy Chem. 2022, 66, 474–482.

[41]

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

[42]

Ai, W.; Jiang, J.; Zhu, J. H.; Fan, Z. X.; Wang, Y. L.; Zhang, H.; Huang, W.; Yu, T. Supramolecular polymerization promoted in situ fabrication of nitrogen-doped porous graphene sheets as anode materials for Li-ion batteries. Adv. Energy Mater. 2015, 5, 1500559.

[43]

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

[44]

Coletti, C.; Riedl, C.; Lee, D. S.; Krauss, B.; Patthey, L.; Von Klitzing, K.; Smet, J. H.; Starke, U. Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys. Rev. B 2010, 81, 235401.

[45]

Liu, H. T.; Liu, Y. Q.; Zhu, D. B. Chemical doping of graphene. J. Mater. Chem. 2011, 21, 3335–3345.

[46]

Yuan, S. Y.; Bao, J. L.; Wang, L. N.; Xia, Y. Y.; Truhlar, D. G.; Wang, Y. G. Graphene-supported nitrogen and boron rich carbon layer for improved performance of lithium–sulfur batteries due to enhanced chemisorption of lithium polysulfides. Adv. Energy Mater. 2016, 6, 1501733.

[47]

Vélez, P.; Para, M. L.; Luque, G. L.; Barraco, D.; Leiva, E. P. M. Modeling of substitutionally modified graphene structures to prevent the shuttle mechanism in lithium–sulfur batteries. Electrochim. Acta 2019, 309, 402–414.

[48]

Wei, N.; Yu, L. H.; Sun, Z. T.; Song, Y. Z.; Wang, M. L.; Tian, Z. N.; Xia, Y.; Cai, J. S.; Li, Y. Y.; Zhao, L. et al. Scalable salt-templated synthesis of nitrogen-doped graphene nanosheets toward printable energy storage. ACS Nano 2019, 13, 7517–7526.

[49]

Ai, W.; Li, J. W.; Du, Z. Z.; Zou, C. J.; Du, H. F.; Xu, X.; Chen, Y.; Zhang, H. B.; Zhao, J. F.; Li, C. M. et al. Dual confinement of polysulfides in boron-doped porous carbon sphere/graphene hybrid for advanced Li–S batteries. Nano Res. 2018, 11, 4562–4573.

[50]

Li, G. R.; Li, H. Y.; Zeng, H. B. Recent progress of boron-based materials in lithium–sulfur battery. J. Inorg. Mater. 2022, 37, 152–162.

[51]

Peng, L. L.; Wei, Z. Y.; Wan, C. Z.; Li, J.; Chen, Z.; Zhu, D.; Baumann, D.; Liu, H. T.; Allen, C. S.; Xu, X. et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 2020, 3, 762–770.

[52]

Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium–sulfur batteries. Adv. Mater. 2015, 27, 6021–6028.

[53]

Zhou, X. Y.; Liao, Q. C.; Bai, T.; Yang, J. Rational design of graphene @ nitrogen and phosphorous dual-doped porous carbon sandwich-type layer for advanced lithium–sulfur batteries. J. Mater. Sci. 2017, 52, 7719–7732.

[54]

Zhang, M.; Wang, L.; Wang, B.; Zhang, B.; Sun, X. P.; Wang, D. B.; Kong, Z.; Xu, L. Q. Phosphorus-modified Fe4N@N, P co-doped graphene as an efficient sulfur host for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2021, 9, 6538–6546.

[55]

Zhang, S. L.; Xu, Z. L.; Jiang, Z. Y.; Xiao, Z. H.; Tang, A. D.; Yang, H. M. The unique interconnected structure of hollow carbon skeleton doped by F and N facilitating rapid Li ions diffusion in lithium–sulfur batteries. Carbon 2022, 195, 207–218.

[56]

Sun, L. Z.; Yuan, G. W.; Gao, L. B.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z. F. Chemical vapour deposition. Nat. Rev. Methods Primers 2021, 1, 5.

[57]

Chen, K.; Shi, L. R.; Zhang, Y. F.; Liu, Z. F. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chem. Soc. Rev. 2018, 47, 3018–3036.

[58]

Shi, Z. X.; Ci, H. N.; Yang, X. Z.; Liu, Z. F.; Sun, J. Y. Direct-chemical vapor deposition-enabled graphene for emerging energy storage: Versatility, essentiality, and possibility. ACS Nano 2022, 16, 11646–11675.

[59]

Shi, Z. X.; Li, M.; Sun, J. Y.; Chen, Z. W. Defect engineering for expediting Li-S chemistry: Strategies, mechanisms, and perspectives. Adv. Energy Mater. 2021, 11, 2100332.

[60]

Li, B. Q.; Kong, L.; Zhao, C. X.; Jin, Q.; Chen, X.; Peng, H. J.; Qin, J. L.; Chen, J. X.; Yuan, H.; Zhang, Q. et al. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium–sulfur batteries. InfoMat 2019, 1, 533–541.

[61]

Liang, Z. W.; Shen, J. D.; Xu, X. J.; Li, F. K.; Liu, J.; Yuan, B.; Yu, Y.; Zhu, M. Advances in the development of single-atom catalysts for high-energy-density lithium–sulfur batteries. Adv. Mater. 2022, 34, 2200102.

[62]

Liu, D. B. ; Wu, C. Q. ; Chen, S. M. ; Ding, S. Q. ; Xie, Y. F. ; Wang, C. D. ; Wang, T. ; Haleem, Y. A. ; Rehman, Z. U. ; Sang, Y. et al. In situ trapped high-density single metal atoms within graphene: Iron-containing hybrids as representatives for efficient oxygen reduction. Nano Res. 2018, 11, 2217–2228.

[63]

Zhang, L. L.; Liu, D. B.; Muhammad, Z.; Wan, F.; Xie, W.; Wang, Y. J.; Song, L.; Niu, Z. Q.; Chen, J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium–sulfur batteries. Adv. Mater. 2019, 31, 1903955.

[64]

Qiu, Y.; Fan, L. S.; Wang, M. X.; Yin, X. J.; Wu, X.; Sun, X.; Tian, D.; Guan, B.; Tang, D. Y.; Zhang, N. Q. Precise synthesis of Fe-N2 sites with high activity and stability for long-life lithium–sulfur batteries. ACS Nano 2020, 14, 16105–16113.

[65]

Johnson, I.; Han, J. H.; Chen, M. W. 3D nanoporous graphene based single-atom electrocatalysts for energy conversion and storage. Acc. Mater. Res. 2022, 3, 1011–1021.

[66]

Zhou, G. M.; Zhao, S. Y.; Wang, T. S.; Yang, S. Z.; Johannessen, B.; Chen, H.; Liu, C. W.; Ye, Y. S.; Wu, Y. C.; Peng, Y. C. et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries. Nano Lett. 2020, 20, 1252–1261.

[67]

Zhai, P. B.; Wang, T. S.; Yang, W. W.; Cui, S. Q.; Zhang, P.; Nie, A. M.; Zhang, Q. F.; Gong, Y. J. Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes. Adv. Energy Mater. 2019, 9, 1804019.

[68]

Xu, K. L.; Zhu, M. G.; Wu, X.; Liang, J. W.; Liu, Y.; Zhang, T. W.; Zhu, Y. C.; Qian, Y. T. Dendrite-tamed deposition kinetics using single-atom Zn sites for Li metal anode. Energy Storage Mater. 2019, 23, 587–593.

[69]

Zhao, Z. Q.; Su, Z.; Chen, H. L.; Yi, S.; Zhang, W. Y.; Niu, B.; Zhang, Y. Y.; Long, D. H. Renewable biomass-derived carbon-based hosts for lithium-sulfur batteries. Sustainable Energy Fuels 2022, 6, 5211–5242.

[70]

Chen, M. Q.; Pan, Y. K.; Su, Z.; Long, D. H. Rapid gas-engineering to the manufacture of graphene-like mesoporous carbon nanosheets with a large aspect ratio. ACS Appl. Mater. Interfaces 2020, 12, 47792–47801.

[71]

Chen, K. N.; Wang, Q. R.; Niu, Z. Q.; Chen, J. Graphene-based materials for flexible energy storage devices. J. Energy Chem. 2018, 27, 12–24.

[72]

Wang, H. M.; Wang, H. M.; Wang, Y. L.; Su, X. Y.; Wang, C. Y.; Zhang, M. C.; Jian, M. Q.; Xia, K. L.; Liang, X. P.; Lu, H. J. et al. Laser writing of Janus graphene/Kevlar textile for intelligent protective clothing. ACS Nano 2020, 14, 3219–3226.

[73]

Cheng, H. Y.; Li, Q.; Zhu, L. L.; Chen, S. Graphene fiber-based wearable supercapacitors: Recent advances in design, construction, and application. Small Methods 2021, 5, 2100502.

[74]

Xu, Z.; Liu, Y. J.; Zhao, X. L.; Peng, L.; Sun, H. Y.; Xu, Y.; Ren, X. B.; Jin, C. H.; Xu, P.; Wang, M. et al. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 2016, 28, 6449–6456.

[75]

Pei, H. Y.; Yang, Q.; Yu, J. K.; Song, H. Q.; Zhao, S. Y.; Waterhouse, G. I. N.; Guo, J. L.; Lu, S. Y. Self-supporting carbon nanofibers with Ni-single-atoms and uniformly dispersed Ni-nanoparticles as scalable multifunctional hosts for high energy density lithium-sulfur batteries. Small 2022, 18, 2202037.

[76]

Fang, X.; Weng, W.; Ren, J.; Peng, H. S. A cable-shaped lithium sulfur battery. Adv. Mater. 2016, 28, 491–496.

[77]

Chong, W. G.; Huang, J. Q.; Xu, Z. L.; Qin, X. Y.; Wang, X. Y.; Kim, J. K. Lithium–sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers. Adv. Funct. Mater. 2017, 27, 1604815.

[78]

Li, H.; Shao, F.; Wen, X. Z.; Ding, Y. S.; Zhou, C.; Zhang, Y. F.; Wei, H.; Hu, N. T. Graphene/MXene fibers-enveloped sulfur cathodes for high-performance Li–S batteries. Electrochim. Acta 2021, 371, 137838.

[79]

Wei, Y. H.; Wang, B. Y.; Zhang, Y.; Zhang, M.; Wang, Q.; Zhang, Y.; Wu, H. Rational design of multifunctional integrated host configuration with lithiophilicity–sulfiphilicity toward high-performance Li–S full batteries. Adv. Funct. Mater. 2021, 31, 2006033.

[80]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[81]

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

[82]

Yan, K.; Fu, L.; Peng, H. L.; Liu, Z. F. Designed CVD growth of graphene via process engineering. Acc. Chem. Res. 2013, 46, 2263–2274.

[83]

Song, Y. Q.; Zou, W. T.; Lu, Q.; Lin, L.; Liu, Z. F. Graphene transfer: Paving the road for applications of chemical vapor deposition graphene. Small 2021, 17, 2007600.

[84]

Du, Z. Z.; Guo, C. K.; Wang, L. J.; Hu, A. J.; Jin, S.; Zhang, T. M.; Jin, H. C.; Qi, Z. K.; Xin, S.; Kong, X. H. et al. Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 43696–43703.

[85]

Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat. Commun. 2014, 5, 3410.

[86]

Ma, Y.; Qi, P. W.; Ma, J.; Wei, L.; Zhao, L.; Cheng, J.; Su, Y. H.; Gu, Y. T.; Lian, Y. B.; Peng, Y. et al. Wax-transferred hydrophobic CVD graphene enables water-resistant and dendrite-free lithium anode toward long cycle Li–air battery. Adv. Sci. 2021, 8, 2100488.

[87]

Ci, H. N.; Sun, J. Y. Chemical vapor deposition design of graphene powders toward energy applications. Chin. Sci. Bull. 2019, 64, 3327–3339.

[88]

Hu, G. J.; Xu, C.; Sun, Z. H.; Wang, S. G.; Cheng, H. M.; Li, F.; Ren, W. C. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater. 2016, 28, 1603–1609.

[89]

Yi, R. W.; Liu, C. G.; Zhao, Y. C.; Hardwick, L. J.; Li, Y. Q.; Geng, X. W.; Zhang, Q.; Yang, L.; Zhao, C. Z. A light-weight free-standing graphene foam-based interlayer towards improved Li–S cells. Electrochim. Acta 2019, 299, 479–488.

[90]

Yu, P.; Feng, L. X.; Ma, D. C.; Sun, X. R.; Pei, J. K.; Zha, X. J.; Bao, R. Y.; Wang, Y.; Yang, M. B.; Guo, Z. P. et al. Template-free self-caging nanochemistry for large-scale synthesis of sulfonated-graphene@sulfur nanocage for long-life lithium–sulfur batteries. Adv. Funct. Mater. 2021, 31, 2008652.

[91]

Tang, C.; Li, B. Q.; Zhang, Q.; Zhu, L.; Wang, H. F.; Shi, J. L.; Wei, F. CaO-templated growth of hierarchical porous graphene for high-power lithium–sulfur battery applications. Adv. Funct. Mater. 2016, 26, 577–585.

[92]

Li, Q. C.; Song, Y. Z.; Xu, R. Z.; Zhang, L.; Gao, J.; Xia, Z.; Tian, Z. N.; Wei, N.; Rümmeli, M. H.; Zou, X. L. et al. Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li–S batteries. ACS Nano 2018, 12, 10240–10250.

[93]

Han, J. W.; Wei, W.; Zhang, C.; Tao, Y.; Lv, W.; Ling, G. W.; Kang, F. Y.; Yang, Q. H. Engineering graphenes from the nano- to the macroscale for electrochemical energy storage. Electrochem. Energy Rev. 2018, 1, 139–168.

[94]

Zheng, J. M.; Tian, J.; Wu, D. X.; Gu, M.; Xu, W.; Wang, C. M.; Gao, F.; Engelhard, M. H.; Zhang, J. G.; Liu, J. et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 2014, 14, 2345–2352.

[95]

Liu, X. B.; Shao, X. F.; Li, F.; Zhao, M. W. Anchoring effects of S-terminated Ti2C MXene for lithium–sulfur batteries: A first-principles study. Appl. Surf. Sci. 2018, 455, 522–526.

[96]

Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W. T.; Huang, J. Q.; Zhang, Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 12990–12995.

[97]

Zhou, J. B.; Liu, X. J.; Zhu, L. Q.; Zhou, J.; Guan, Y.; Chen, L.; Niu, S. W.; Cai, J. Y.; Sun, D.; Zhu, Y. C. et al. Deciphering the modulation essence of p bands in Co-based compounds on Li–S chemistry. Joule 2018, 2, 2681–2693.

[98]

Tian, W. Z.; Xi, B. J.; Feng, Z. Y.; Li, H. B.; Feng, J. K.; Xiong, S. L. Sulfiphilic few-layered MoSe2 nanoflakes decorated rGO as a highly efficient sulfur host for lithium–sulfur batteries. Adv. Energy Mater. 2019, 9, 1901896.

[99]

Xia, J. Y.; Hua, W. X.; Wang, L.; Sun, Y. F.; Geng, C. N.; Zhang, C.; Wang, W. C.; Wan, Y.; Yang, Q. H. Boosting catalytic activity by seeding nanocatalysts onto interlayers to inhibit polysulfide shuttling in Li–S batteries. Adv. Funct. Mater. 2021, 31, 2101980.

[100]

Song, Y. Z. ; Zhao, W. ; Wei, N. ; Zhang, L. ; Ding, F. ; Liu, Z. F. ; Sun, J. Y. In situ PECVD-enabled graphene-V2O3 hybrid host for lithium-sulfur batteries. Nano Energy 2018, 53, 432–439.

[101]

Luo, L. ; Li, J. Y. ; Asl, H. Y. ; Manthiram, A. In situ assembled VS4 as a polysulfide mediator for high-loading lithium-sulfur batteries. ACS Energy Lett. 2020, 5, 1177–1185.

[102]

Wang, X.; Wang, D. S.; Ma, C. H.; Yang, Z. Z.; Yue, H. J.; Zhang, D.; Sun, Z. H. Conductive Fe2N/N-rGO composite boosts electrochemical redox reactions in wide temperature accommodating lithium-sulfur batteries. Chem. Eng. J. 2022, 427, 131622.

[103]

Shi, H. F.; Sun, Z. H.; Lv, W.; Xiao, S. J.; Yang, H. C.; Shi, Y.; Chen, K.; Wang, S. G.; Zhang, B. S.; Yang, Q. H. et al. Efficient polysulfide blocker from conductive niobium nitride@graphene for Li-S batteries. J. Energy Chem. 2020, 45, 135–141.

[104]

Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

[105]

Tian, D.; Song, X. Q.; Wang, M. X.; Wu, X.; Qiu, Y.; Guan, B.; Xu, X. Z.; Fan, L. S.; Zhang, N. Q.; Sun, K. N. MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries. Adv. Energy Mater. 2019, 9, 1901940.

[106]

Ci, H. N.; Cai, J. S.; Ma, H.; Shi, Z. X.; Cui, G.; Wang, M. L.; Jin, J.; Wei, N.; Lu, C.; Zhao, W. et al. Defective VSe2-graphene heterostructures enabling in situ electrocatalyst evolution for lithium-sulfur batteries. ACS Nano 2020, 14, 11929–11938.

[107]

Zhou, J. Q.; Wu, T. T.; Pan, Y.; Zhu, J.; Chen, X.; Peng, C. X.; Shu, C. Y.; Kong, L.; Tang, W.; Chou, S. L. Packing sulfur species by phosphorene-derived catalytic interface for electrolyte-lean lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2106966.

[108]

Zhai, P. B.; Wang, T. S.; Jiang, H. N.; Wan, J. Y.; Wei, Y.; Wang, L.; Liu, W.; Chen, Q.; Yang, W. W.; Cui, Y. et al. 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures. Adv. Mater. 2021, 33, 2006247.

[109]

Guo, J. L.; Pei, H. Y.; Dou, Y.; Zhao, S. Y.; Shao, G. S.; Liu, J. P. Rational designs for lithium-sulfur batteries with low electrolyte/sulfur ratio. Adv. Funct. Mater. 2021, 31, 2010499.

[110]

Liu, X. H.; Zhang, L. S.; Yu, H. Q.; Wang, J. N.; Li, J. F.; Yang, K.; Zhao, Y. L.; Wang, H. Z.; Wu, B.; Brandon, N. P. et al. Bridging multiscale characterization technologies and digital modeling to evaluate lithium battery full lifecycle. Adv. Energy Mater. 2022, 12, 2200889.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 13 December 2022
Revised: 04 February 2023
Accepted: 06 February 2023
Published: 21 February 2023
Issue date: June 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52202038), the Shandong Provincial Natural Science Foundation (No. ZR2022QE081), the Taishan Scholar Project of Shandong Province (China) (No. ts20190937), and the National Key Research and Development Program of China (No. 2019YFA0708201).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return