Journal Home > Volume 1 , Issue 1

The electrical energy that can be harnessed from the salinity difference across the sea water and river water interface can be one of the sustainable and clean energy resources of the future. This energy can be harnessed via the nanofluidic channels that selectively permeate ions. The selective diffusion of cations and anions can produce electricity through reverse electrodialysis. Two-dimensional (2D) materials are a class of nanomaterials that hold great promise in this field. Several breakthrough works have been previously published which demonstrate the high electrical power densities of 2D membranes. The ion transportation can be either through the nano-sized in-plane pores or interlayer spacings of 2D materials. This review article highlights the progress in 2D materials for salinity gradient power generation. Several types of 2D membranes with various nano-architectures are discussed in this review article. These include atom-thick 2D membranes with nanopores, 2D lamellar membranes, 2D lamellar membranes with nanopores, 2D/one-dimensional (1D), and 2D/2D hybrid membranes. The fabrication techniques, physical characteristics, ion transportation properties, and the osmotic power generation of these 2D membranes are elaborated in this review article. Finally, we overview the future research direction in this area. It is envisioned that the research on 2D materials can make practical salinity gradient power generation one step closer to reality.


menu
Abstract
Full text
Outline
About this article

Progress and prospects of two-dimensional materials for membrane-based osmotic power generation

Show Author's information Javad SafaeiGuoxiu Wang( )
Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia

Abstract

The electrical energy that can be harnessed from the salinity difference across the sea water and river water interface can be one of the sustainable and clean energy resources of the future. This energy can be harnessed via the nanofluidic channels that selectively permeate ions. The selective diffusion of cations and anions can produce electricity through reverse electrodialysis. Two-dimensional (2D) materials are a class of nanomaterials that hold great promise in this field. Several breakthrough works have been previously published which demonstrate the high electrical power densities of 2D membranes. The ion transportation can be either through the nano-sized in-plane pores or interlayer spacings of 2D materials. This review article highlights the progress in 2D materials for salinity gradient power generation. Several types of 2D membranes with various nano-architectures are discussed in this review article. These include atom-thick 2D membranes with nanopores, 2D lamellar membranes, 2D lamellar membranes with nanopores, 2D/one-dimensional (1D), and 2D/2D hybrid membranes. The fabrication techniques, physical characteristics, ion transportation properties, and the osmotic power generation of these 2D membranes are elaborated in this review article. Finally, we overview the future research direction in this area. It is envisioned that the research on 2D materials can make practical salinity gradient power generation one step closer to reality.

Keywords: nanofluidics, 2D material, osmotic power generation, reverse electrodialysis, ion transportation

References(94)

[1]

Yip, N. Y.; Brogioli, D.; Hamelers, H. V. M.; Nijmeijer, K. Salinity gradients for sustainable energy: Primer, progress, and prospects. Environ. Sci. Technol. 2016, 50, 12072-12094.

[2]

Wang, X.; McCarty, P. L.; Liu, J. X.; Ren, N. Q.; Lee, D. J.; Yu, H. Q.; Qian, Y.; Qu, J. H. Probabilistic evaluation of integrating resource recovery into wastewater treatment to improve environmental sustainability. Proc. Natl. Acad. Sci. USA 2015, 112, 1630-1635.

[3]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.

[4]

Zhou, Y. H.; Jiang, L. Bioinspired nanoporous membrane for salinity gradient energy harvesting. Joule 2020, 4, 2244-2248.

[5]

Ahmad, T.; Zhang, D. D. A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Rep. 2020, 6, 1973-1991.

[6]

Kim, W. G.; Kim, D. W.; Tcho, I. W.; Kim, J. K.; Kim, M. S.; Choi, Y. K. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano 2021, 15, 258-287.

[7]
Wang, Y. Z.; Guo, T. C.; Tian, Z. N.; Bibi, K.; Zhang, Y. Z.; Alshareef, H. N. MXenes for energy harvesting. Adv. Mater., in press, https://doi.org/10.1002/adma.202108560.
[8]

Chou, S. R.; Wang, R.; Shi, L.; She, Q. H.; Tang, C. Y.; Fane, A. G. Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density. J. Membr. Sci. 2012, 389, 25-33.

[9]

Gonzales, R. R.; Abdel-Wahab, A.; Adham, S.; Han, D. S.; Phuntsho, S.; Suwaileh, W.; Hilal, N.; Shon, H. K. Salinity gradient energy generation by pressure retarded osmosis: A review. Desalination 2021, 500, 114841.

[10]

Kurihara, M.; Hanakawa, M. Mega-ton Water System: Japanese national research and development project on seawater desalination and wastewater reclamation. Desalination 2013, 308, 131-137.

[11]

Klaysom, C.; Cath, T. Y.; Depuydt, T.; Vankelecom, I. F. J. Forward and pressure retarded osmosis: Potential solutions for global challenges in energy and water supply. Chem. Soc. Rev. 2013, 42, 6959-6989.

[12]

Kang, B.; Kim, H. J.; Kim, D. K. Membrane electrode assembly for energy harvesting from salinity gradient by reverse electrodialysis. J. Membr. Sci. 2018, 550, 286-295.

[13]

Laucirica, G.; Toimil-Molares, M. E.; Trautmann, C.; Marmisollé, W.; Azzaroni, O. Nanofluidic osmotic power generators-advanced nanoporous membranes and nanochannels for blue energy harvesting. Chem. Sci. 2021, 12, 12874-12910.

[14]

Xiao, K.; Jiang, L.; Antonietti, M. Ion transport in nanofluidic devices for energy harvesting. Joule 2019, 3, 2364-2380.

[15]

Safaei, J.; Xiong, P.; Wang, G. Progress and prospects of two-dimensional materials for membrane-based water desalination. Mater. Today Adv. 2020, 8, 100108.

[16]

Asif, M. B.; Iftekhar, S.; Maqbool, T.; Pramanik, B. K.; Tabraiz, S.; Sillanpää, M.; Zhang, Z. H. Two-dimensional nanoporous and lamellar membranes for water purification: Reality or a myth?. Chem. Eng. J. 2022, 432, 134335.

[17]

Koltonow, A. R.; Huang, J. X. Two-dimensional nanofluidics. Science 2016, 351, 1395-1396.

[18]

Wang, L. D.; Boutilier, M. S. H.; Kidambi, P. R.; Jang, D.; Hadjiconstantinou, N. G.; Karnik, R. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 2017, 12, 509-522.

[19]

Pakulski, D.; Czepa, W.; Del Buffa, S.; Ciesielski, A.; Samorì, P. Atom-thick membranes for water purification and blue energy harvesting. Adv. Funct. Mater. 2020, 30, 1902394.

[20]

Gao, J.; Feng, Y. P.; Guo, W.; Jiang, L. Nanofluidics in two-dimensional layered materials: Inspirations from nature. Chem. Soc. Rev. 2017, 46, 5400-5424.

[21]

Tong, X.; Liu, S.; Crittenden, J.; Chen, Y. S. Nanofluidic membranes to address the challenges of salinity gradient power harvesting. ACS Nano 2021, 15, 5838-5860.

[22]

Zhang, Z.; Wen, L. P.; Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 2021, 6, 622-639.

[23]

Xin, W. W.; Jiang, L.; Wen, L. P. Two-dimensional nanofluidic membranes toward harvesting salinity gradient power. Acc. Chem. Res. 2021, 54, 4154-4165.

[24]

Werber, J. R.; Deshmukh, A.; Elimelech, M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett. 2016, 3, 112-120.

[25]

Xu, P.; Zheng, D. Y.; Xu, H. The feasibility and mechanism of reverse electrodialysis enhanced photocatalytic fuel cell-Fenton system on advanced treatment of coal gasification wastewater. Sep. Purif. Technol. 2019, 220, 183-188.

[26]

Lee, Y.; Kim, H. J.; Kim, D. K. Power generation from concentration gradient by reverse electrodialysis in anisotropic nanoporous anodic aluminum oxide membranes. Energies 2020, 13, 904.

[27]

Ouyang, W.; Wang, W.; Zhang, H. X.; Wu, W. G.; Li, Z. H. Nanofluidic crystal: A facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis. Nanotechnology 2013, 24, 345401.

[28]

Cao, L. X.; Guo, W.; Ma, W.; Wang, L.; Xia, F.; Wang, S. T.; Wang, Y. G.; Jiang, L.; Zhu, D. B. Towards understanding the nanofluidic reverse electrodialysis system: Well matched charge selectivity and ionic composition. Energy Environ. Sci. 2011, 4, 2259-2266.

[29]

Vlassiouk, I.; Smirnov, S.; Siwy, Z. Ionic selectivity of single nanochannels. Nano Lett. 2008, 8, 1978-1985.

[30]

Vlassiouk, I.; Smirnov, S.; Siwy, Z. Nanofluidic ionic diodes. Comparison of analytical and numerical solutions. ACS Nano 2008, 2, 1589-1602.

[31]

Macha, M.; Marion, S.; Nandigana, V. V. R.; Radenovic, A. 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 2019, 4, 588-605.

[32]

Tufa, R. A.; Pawlowski, S.; Veerman, J.; Bouzek, K.; Fontananova, E.; di Profio, G.; Velizarov, S.; Crespo, J. G.; Nijmeijer, K.; Curcio, E. Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage. Appl. Energy 2018, 225, 290-331.

[33]
Veerman, J.; Vermaas, D. A. Reverse electrodialysis: Fundamentals. In Sustainable Energy from Salinity Gradients. Cipollina, A.; Micale, G., Eds.; Woodhead Publishing: Boston, 2016; pp 77-133.
[34]

Hsu, J. P.; Lin, S. C.; Lin, C. Y.; Tseng, S. Power generation by a pH-regulated conical nanopore through reverse electrodialysis. J. Power Sources 2017, 366, 169-177.

[35]

Tian, H. L.; Wang, Y.; Pei, Y. S.; Crittenden, J. C. Unique applications and improvements of reverse electrodialysis: A review and outlook. Appl. Energy 2020, 262, 114482.

[36]

Derjaguin, B. V.; Dukhin, S. S.; Koptelova, M. M. Capillary osmosis through porous partitions and properties of boundary layers of solutions. J. Colloid Interface Sci. 1972, 38, 584-595.

[37]

Siria, A.; Poncharal, P.; Biance, A. L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 2013, 494, 455-458.

[38]

Moritz, R.; Zardalidis, G.; Butt, H. J.; Wagner, M.; Müllen, K.; Floudas, G. Ion size approaching the Bjerrum length in solvents of low polarity by dendritic encapsulation. Macromolecules 2014, 47, 191-196.

[39]

Yip, N. Y.; Vermaas, D. A.; Nijmeijer, K.; Elimelech, M. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients. Environ. Sci. Technol. 2014, 48, 4925-4936.

[40]

Siria, A.; Bocquet, M. L.; Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 2017, 1, 0091.

[41]

Sint, K.; Wang, B. Y.; Král, P. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 2008, 130, 16448-16449.

[42]

Yazda, K.; Bleau, K.; Zhang, Y. N.; Capaldi, X.; St-Denis, T.; Grutter, P.; Reisner, W. W. High osmotic power generation via nanopore arrays in hybrid hexagonal boron nitride/silicon nitride membranes. Nano Lett. 2021, 21, 4152-4159.

[43]

Wang, H.; Su, L. M.; Yagmurcukardes, M.; Chen, J. W.; Jiang, Y.; Li, Z.; Quan, A. C.; Peeters, F. M.; Wang, C.; Geim, A. K. et al. Blue energy conversion from holey-graphene-like membranes with a high density of subnanometer pores. Nano Lett. 2020, 20, 8634-8639.

[44]

Surwade, S. P.; Smirnov, S. N.; Vlassiouk, I. V.; Unocic, R. R.; Veith, G. M.; Dai, S.; Mahurin, S. M. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 2015, 10, 459-464.

[45]

Yang, Y. B.; Yang, X. D.; Liang, L.; Gao, Y. Y.; Cheng, H. Y.; Li, X. M.; Zou, M. C.; Ma, R. Z.; Yuan, Q.; Duan, X. F. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 2019, 364, 1057-1062.

[46]

Heiranian, M.; Farimani, A. B.; Aluru, N. R. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 2015, 6, 8616.

[47]

Feng, J. D.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A. Single-layer MoS2 nanopores as nanopower generators. Nature 2016, 536, 197-200.

[48]

Hosseini, M.; Azamat, J.; Erfan-Niya, H. Improving the performance of water desalination through ultra-permeable functionalized nanoporous graphene oxide membrane. Appl. Surf. Sci. 2018, 427, 1000-1008.

[49]

Caglar, M.; Silkina, I.; Brown, B. T.; Thorneywork, A. L.; Burton, O. J.; Babenko, V.; Gilbert, S. M.; Zettl, A.; Hofmann, S.; Keyser, U. F. Tunable anion-selective transport through monolayer graphene and hexagonal boron nitride. ACS Nano 2020, 14, 2729-2738.

[50]

Walker, M. I.; Ubych, K.; Saraswat, V.; Chalklen, E. A.; Braeuninger-Weimer, P.; Caneva, S.; Weatherup, R. S.; Hofmann, S.; Keyser, U. F. Extrinsic cation selectivity of 2D membranes. ACS Nano 2017, 11, 1340-1346.

[51]

Liu, X.; He, M.; Calvani, D.; Qi, H. Y.; Gupta, K. B. S. S.; de Groot, H. J. M.; Sevink, G. J. A.; Buda, F.; Kaiser, U.; Schneider, G. F. Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core-rim polycyclic aromatic hydrocarbons. Nat. Nanotechnol. 2020, 15, 307-312.

[52]
Yang, J. L.; Tu, B.; Zhang, G. J.; Liu, P. C.; Hu, K.; Wang, J. R.; Yan, Z.; Huang, Z. W.; Fang, M. N.; Hou, J. J. et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat. Nanotechnol., in press, https://doi.org/10.1038/s41565-022-01110-7.
[53]

Bian, G. S.; Pan, N.; Luan, Z. H.; Sui, X.; Fan, W. X.; Xia, Y. Z.; Sui, K. Y.; Jiang, L. Anti-swelling gradient polyelectrolyte hydrogel membranes as high-performance osmotic energy generators. Angew. Chem., Int. Ed. 2021, 133, 20456-20462.

[54]

Cheng, H. F.; Zhou, Y.; Feng, Y. P.; Geng, W. X.; Liu, Q. F.; Guo, W.; Jiang, L. Electrokinetic energy conversion in self-assembled 2D nanofluidic channels with janus nanobuilding blocks. Adv. Mater. 2017, 29, 1700177.

[55]

Zhou, Y.; Ding, H.; Smith, A. T.; Jia, X. H.; Chen, S.; Liu, L.; Chavez, S. E.; Hou, Z. L.; Liu, J. J.; Cheng, H. F. et al. Nanofluidic energy conversion and molecular separation through highly stable clay-based membranes. J. Mater. Chem. A 2019, 7, 14089-14096.

[56]

Xiao, K.; Giusto, P.; Wen, L. P.; Jiang, L.; Antonietti, M. Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes. Angew. Chem., Int. Ed. 2018, 57, 10123-10126.

[57]

Zhang, Z. K.; Shen, W. H.; Lin, L. X.; Wang, M.; Li, N.; Zheng, Z. F.; Liu, F.; Cao, L. X. Vertically transported graphene oxide for high-performance osmotic energy conversion. Adv. Sci. 2020, 7, 2000286.

[58]

Ji, J. Z.; Kang, Q.; Zhou, Y.; Feng, Y. P.; Chen, X.; Yuan, J. Y.; Guo, W.; Wei, Y.; Jiang, L. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 2017, 27, 1603623.

[59]

Ding, L.; Xiao, D.; Lu, Z.; Deng, J. J.; Wei, Y. Y.; Caro, J.; Wang, H. H. Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew. Chem., Int. Ed. 2020, 59, 8720-8726.

[60]

Hong, S.; Ming, F. W.; Shi, Y.; Li, R. Y.; Kim, I. S.; Tang, C. Y.; Alshareef, H. N.; Wang, P. Two-dimensional Ti3C2Tx MXene membranes as nanofluidic osmotic power generators. ACS Nano 2019, 13, 8917-8925.

[61]

Liu, P.; Sun, Y.; Zhu, C. C.; Niu, B.; Huang, X. D.; Kong, X. Y.; Jiang, L.; Wen, L. P. Neutralization reaction assisted chemical-potential-driven ion transport through layered titanium carbides membrane for energy harvesting. Nano Lett. 2020, 20, 3593-3601.

[62]

Cao, K. T.; Jiang, Z. Y.; Zhang, X. S.; Zhang, Y. M.; Zhao, J.; Xing, R. S.; Yang, S.; Gao, C. Y.; Pan, F. S. Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. J. Membr. Sci. 2015, 490, 72-83.

[63]

Wang, Y. J.; Li, L. B.; Wei, Y. Y.; Xue, J.; Chen, H.; Ding, L.; Caro, J.; Wang, H. H. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angew. Chem., Int. Ed. 2017, 56, 8974-8980.

[64]

Safaei, J.; Mohamed, N. A.; Noh, M. F. M.; Soh, M. F.; Ludin, N. A.; Ibrahim, M. A.; Isahak, W. N. R. W.; Teridi, M. A. M. Graphitic carbon nitride (g-C3N4) electrodes for energy conversion and storage: A review on photoelectrochemical water splitting, solar cells and supercapacitors. J. Mater. Chem. A 2018, 6, 22346-22380.

[65]

Hong, S.; El-Demellawi, J. K.; Lei, Y. J.; Liu, Z. X.; Al Marzooqi, F.; Arafat, H. A.; Alshareef, H. N. Porous Ti3C2Tx MXene membranes for highly efficient salinity gradient energy harvesting. ACS Nano 2022, 16, 792-800.

[66]

Wang, H.; Liu, X.; Niu, P.; Wang, S. L.; Shi, J.; Li, L. Porous two-dimensional materials for photocatalytic and electrocatalytic applications. Matter 2020, 2, 1377-1413.

[67]

Wan, J.; Huang, L.; Wu, J. B.; Xiong, L. K.; Hu, Z. M.; Yu, H. M.; Li, T. Q.; Zhou, J. Microwave combustion for rapidly synthesizing pore-size-controllable porous graphene. Adv. Funct. Mater. 2018, 28, 1800382.

[68]

Cao, L.; Wu, H.; Fan, C. Y.; Zhang, Z. M.; Shi, B. B.; Yang, P. F.; Qiu, M.; Khan, N. A.; Jiang, Z. Y. Lamellar porous vermiculite membranes for boosting nanofluidic osmotic energy conversion. J. Mater. Chem. A 2021, 9, 14576-14581.

[69]

Wang, L.; Wang, Z. X.; Patel, S. K.; Lin, S. H.; Elimelech, M. Nanopore-based power generation from salinity gradient: Why it is not viable. ACS Nano 2021, 15, 4093-4107.

[70]

Cao, L. X.; Wen, Q.; Feng, Y. P.; Ji, D. Y.; Li, H.; Li, N.; Jiang, L.; Guo, W. On the origin of ion selectivity in ultrathin nanopores: Insights for membrane-scale osmotic energy conversion. Adv. Funct. Mater. 2018, 28, 1804189.

[71]

Han, X. G.; Funk, M. R.; Shen, F.; Chen, Y. C.; Li, Y. Y.; Campbell, C. J.; Dai, J. Q.; Yang, X. F.; Kim, J. W.; Liao, Y. L. et al. Scalable holey graphene synthesis and dense electrode fabrication toward high-performance ultracapacitors. ACS Nano 2014, 8, 8255-8265.

[72]

Li, T.; Zhang, X.; Lacey, S. D.; Mi, R. Y.; Zhao, X. P.; Jiang, F.; Song, J. W.; Liu, Z. Q.; Chen, G.; Dai, J. Q. et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 2019, 18, 608-613.

[73]

Yang, M.; Cao, K. Q.; Sui, L.; Qi, Y.; Zhu, J.; Waas, A.; Arruda, E. M.; Kieffer, J.; Thouless, M. D.; Kotov, N. A. Dispersions of aramid nanofibers: A new nanoscale building block. ACS Nano 2011, 5, 6945-6954.

[74]

Man, Z. M.; Safaei, J.; Zhang, Z.; Wang, Y. Z.; Zhou, D.; Li, P.; Zhang, X. G.; Jiang, L.; Wang, G. X. Serosa-mimetic nanoarchitecture membranes for highly efficient osmotic energy generation. J. Am. Chem. Soc. 2021, 143, 16206-16216.

[75]

Zhu, C. C.; Liu, P.; Niu, B.; Liu, Y. N.; Xin, W. W.; Chen, W. P.; Kong, X. Y.; Zhang, Z.; Jiang, L.; Wen, L. P. Metallic two-dimensional MoS2 composites as high-performance osmotic energy conversion membranes. J. Am. Chem. Soc. 2021, 143, 1932-1940.

[76]

Zhang, Z.; Yang, S.; Zhang, P. P.; Zhang, J.; Chen, G. B.; Feng, X. L. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 2019, 10, 2920.

[77]

Wu, Y. D.; Xin, W. W.; Kong, X. Y.; Chen, J. J.; Qian, Y. C.; Sun, Y.; Zhao, X. L.; Chen, W. P.; Jiang, L.; Wen, L. P. Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting. Mater. Horiz. 2020, 7, 2702-2709.

[78]

Xin, W. W.; Xiao, H. Y.; Kong, X. Y.; Chen, J. J.; Yang, L. S.; Niu, B.; Qian, Y. C.; Teng, Y. F.; Jiang, L.; Wen, L. P. Biomimetic nacre-like silk-crosslinked membranes for osmotic energy harvesting. ACS Nano 2020, 14, 9701-9710.

[79]

Chen, C.; Liu, D.; He, L.; Qin, S.; Wang, J. M.; Razal, J. M.; Kotov, N. A.; Lei, W. W. Bio-inspired nanocomposite membranes for osmotic energy harvesting. Joule 2020, 4, 247-261.

[80]

Wang, S.; Zhang, D.; Li, B.; Zhang, C.; Du, Z. G.; Yin, H. M.; Bi, X. F.; Yang, S. B. Ultrastable in-plane 1T-2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1801345.

[81]

Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313-318.

[82]

Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.

[83]
Mei, L.; Cao, Z. L.; Ying, T.; Yang, R. J.; Peng, H. R.; Wang, G.; Zheng, L.; Chen, Y.; Tang, C. Y.; Voiry, D. et al. Simultaneous electrochemical exfoliation and covalent functionalization of MoS2 membrane for ion sieving. Adv. Mater., in press, https://doi.org/10.1002/adma.202201416.
[84]

Yang, R. J.; Mei, L.; Zhang, Q. Y.; Fan, Y. Y.; Shin, H. S.; Voiry, D.; Zeng, Z. Y. High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 2022, 17, 358-377.

[85]

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.

[86]

Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222-6227.

[87]

Sun, P. Z.; Ma, R. Z.; Ma, W.; Wu, J. H.; Wang, K. L.; Sasaki, T.; Zhu, H. W. Highly selective charge-guided ion transport through a hybrid membrane consisting of anionic graphene oxide and cationic hydroxide nanosheet superlattice units. NPG Asia Mater. 2016, 8, e259.

[88]

Sun, P. Z.; Chen, Q.; Li, X. D.; Liu, H.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Ma, R. Z.; Sasaki, T. et al. Highly efficient quasi-static water desalination using monolayer graphene oxide/ titania hybrid laminates. NPG Asia Mater. 2015, 7, e162.

[89]

Xie, X. Q.; Chen, C.; Zhang, N.; Tang, Z. R.; Jiang, J. J.; Xu, Y. J. Microstructure and surface control of MXene films for water purification. Nat. Sustain. 2019, 2, 856-862.

[90]

Yang, G. L.; Liu, D.; Chen, C.; Qian, Y. J.; Su, Y. Y.; Qin, S.; Zhang, L. Z.; Wang, X. G.; Sun, L.; Lei, W. W. Stable Ti3C2Tx MXene-boron nitride membranes with low internal resistance for enhanced salinity gradient energy harvesting. ACS Nano 2021, 15, 6594-6603.

[91]

Zhang, Z.; Zhang, P. P.; Yang, S.; Zhang, T.; Löffler, M.; Shi, H. H.; Lohe, M. R.; Feng, X. L. Oxidation promoted osmotic energy conversion in black phosphorus membranes. Proc. Natl. Acad. Sci. USA 2020, 117, 13959-13966.

[92]

Qin, S.; Liu, D.; Wang, G.; Portehault, D.; Garvey, C. J.; Gogotsi, Y.; Lei, W. W.; Chen, Y. High and stable ionic conductivity in 2D nanofluidic ion channels between boron nitride layers. J. Am. Chem. Soc. 2017, 139, 6314-6320.

[93]

Qin, S.; Liu, D.; Chen, Y.; Chen, C.; Wang, G.; Wang, J. M.; Razal, J. M.; Lei, W. W. Nanofluidic electric generators constructed from boron nitride nanosheet membranes. Nano Energy 2018, 47, 368-373.

[94]

Zhu, Z. P.; Wang, D. Y.; Tian, Y.; Jiang, L. Ion/molecule transportation in nanopores and nanochannels: From critical principles to diverse functions. J. Am. Chem. Soc. 2019, 141, 8658-8669.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 29 April 2022
Revised: 21 May 2022
Accepted: 23 May 2022
Published: 28 May 2022
Issue date: June 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was financially supported by the Australian Research Council (ARC) through the ARC Discovery Projects (Nos. DP200101249 and DP210101389).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return