AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (619.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Protective Role of Gold Nanoparticles against Radiation-induced Oxidative Damage in Bovine Serum Albumin

Yogitabali M. NarodeGeeta K. Sharma( )
Department of Chemistry, Savitribai Phule Pune University, Maharashtra 411007, India
Show Author Information

Graphical Abstract

Abstract

Gold nanoparticles (AuNPs) are increasingly recognized as theranostic agents in radiation oncology. Hence, the interaction of these nanoparticles with biomolecules viz DNA, RNA, and proteins needs to be investigated. In this study, the potential radioprotective role of AuNPs in preventing free radical-induced changes in bovine serum albumin (BSA) was investigated using ultraviolet–visible (UV–Vis) spectroscopy, fluorescence, Fourier-transform infrared (FTIR) spectroscopy, circular dichroism (CD), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 5,5'-Dithiobis-(2-nitrobenzoic acid) (DTNB) assay. γ-irradiation of the protein disrupts the ordered structure of the protein. AuNPs reduced the •OH-induced oxidation of tryptophan (Trp) to nearly half of that without the AuNPs. CD studies revealed that the % α helix of BSA post-irradiation in the presence of AuNPs was higher (62%) than that without AuNPs (53%). DTNB assay results showed that, following irradiation of BSA, 25% of the thiol content was retained in the presence of AuNPs, indicating that the thiol group was substantially protected with a retained thiol content of ~ 70%. This suggested that AuNPs protected the protein from degradation by scavenging the free radicals generated during radiation-induced oxidation.

Electronic Supplementary Material

Download File(s)
NBE-2023-0060_ESM.pdf (352.5 KB)

References

[1]

G.Y. Chen, I. Roy, C.H. Yang, et al. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chemical Reviews, 2016, 116(5): 2826−2885. https://doi.org/10.1021/acs.chemrev.5b00148

[2]

C. Burda, X.B. Chen, R. Narayanan, et al. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 2005, 105(4): 1025−1102. https://doi.org/10.1021/cr030063a

[3]
P.N. Prasad. Introduction. In: Nanophotonics. Hoboken: John Wiley & Sons, 2004: 1–8.
[4]

A. Bianco, K. Kostarelos, C.D. Partidos, et al. Biomedical applications of functionalised carbon nanotubes. Chemical Communications, 2005, 5: 571−577. https://doi.org/10.1039/b410943k

[5]

T.S. Lan, D.X. Cui, T.Y. Liu, et al. Gold NanoStars: Synthesis, modification and application. Nano Biomedicine and Engineering, 2023, 15(3): 330−341. https://doi.org/10.26599/nbe.2023.9290025

[6]

P. Kohli, C. Martin. Smart nanotubes for biotechnology. Current Pharmaceutical Biotechnology, 2005, 6(1): 35−47. https://doi.org/10.2174/1389201053167211

[7]

R. Hao, R.J. Xing, Z.C. Xu, et al. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Advanced Materials, 2010, 22(25): 2729−2742. https://doi.org/10.1002/adma.201000260

[8]

M.C. Daniel, D. Astruc. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 2004, 104(1): 293−346. https://doi.org/10.1021/cr030698+

[9]

H. Haick. Chemical sensors based on molecularly modified metallic nanoparticles. Journal of Physics D:Applied Physics, 2007, 40(23): 7173−7186. https://doi.org/10.1088/0022-3727/40/23/s01

[10]

M. Zayats, R. Baron, I. Popov, et al. Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design. Nano Letters, 2005, 5(1): 21−25. https://doi.org/10.1021/nl048547p

[11]

S.H. Radwan, H.M. Azzazy. Gold nanoparticles for molecular diagnostics. Expert Review of Molecular Diagnostics, 2009, 9(5): 511−524. https://doi.org/10.1586/erm.09.33

[12]

M.H. Gaber. Effect of γ-irradiation on the molecular properties of bovine serum albumin. Journal of Bioscience and Bioengineering, 2005, 100(2): 203−206. https://doi.org/10.1263/jbb.100.203

[13]

W.M. Garrison. Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chemical Reviews, 1987, 87(2): 381−398. https://doi.org/10.1021/cr00078a006

[14]
Buxton G. V., Greenstock C.L., Helman W.P., Ross A.B., Tsang W., (1988), Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513–886.
[15]

N. Dyson. The regulation of E2F by pRB-family proteins. Genes &Development, 1998, 12(15): 2245−2262. https://doi.org/10.1101/gad.12.15.2245

[16]

K.J. Davies, M.E. Delsignore, S.W. Lin. Protein damage and degradation by oxygen radicals. II. Modification of amino acids. Journal of Biological Chemistry, 1987, 262(20): 9902−9907. https://doi.org/10.1016/s0021-9258(18)48019-2

[17]

H. Schüssler, S. Navaratnam, L. Distel. Pulse radiolysis studies on histones and serum albumin under different ionic conditions. Radiation Physics and Chemistry, 2001, 61(2): 123−128. https://doi.org/10.1016/s0969-806x(01)00193-1

[18]

S. Adhikari, C. Gopinathan. Oxidation reactions of a bovine serum albumin-bilirubin complex. A pulse radiolysis study. International Journal of Radiation Biology, 1996, 69(1): 89−98. https://doi.org/10.1080/095530096146219

[19]

T. Cedervall, I. Lynch, S. Lindman, et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(7): 2050−2055. https://doi.org/10.1073/pnas.0608582104

[20]

S.H. De Paoli Lacerda, J.J. Park, C. Meuse, et al. Interaction of gold nanoparticles with common human blood proteins. ACS Nano, 2010, 4(1): 365−379. https://doi.org/10.1021/nn9011187

[21]

S.R. Saptarshi, A. Duschl, A.L. Lopata. Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle. Journal of Nanobiotechnology, 2013, 11: 26. https://doi.org/10.1186/1477-3155-11-26

[22]

Z.Z. Huang, H.N. Wang, W.S. Yang. Gold nanoparticle-based facile detection of human serum albumin and its application as an INHIBIT logic gate. ACS Applied Materials &Interfaces, 2015, 7(17): 8990−8998. https://doi.org/10.1021/acsami.5b01552

[23]

Y.M. Narode, B.G. Singh, S. Naumov, et al. Gold nanoparticle as a Lewis catalyst for water elimination of tyrosine- •OH adducts: A radiation and quantum chemical study. The Journal of Physical Chemistry B, 2020, 124(17): 3591−3601. https://doi.org/10.1021/acs.jpcb.0c01207

[24]

C. Giulivi, N.J. Traaseth, K.J.A. Davies. Tyrosine oxidation products: Analysis and biological relevance. Amino Acids, 2003, 25: 227−232. https://doi.org/10.1007/s00726-003-0013-0

[25]

H. Żegota, K. Kołodziejczyk, M. Król, et al. O-Tyrosine hydroxylation by OH radicals. 2, 3-DOPA and 2, 5-DOPA formation in γ-irradiated aqueous solution. Radiation Physics and Chemistry, 2005, 72(1): 25−33. https://doi.org/10.1016/j.radphyschem.2003.11.008

[26]

S. Das, P. Purkayastha. Gold nanocluster protection of protein from UVC radiation: A model study on bovine serum albumin. ACS Omega, 2017, 2(6): 2451−2458. https://doi.org/10.1021/acsomega.7b00302

[27]

T. Zidki, H. Cohen, D. Meyerstein. Reactions of alkyl-radicals with gold and silver nanoparticles in aqueous solutions. Physical Chemistry Chemical Physics, 2006, 8(30): 3552. https://doi.org/10.1039/b604140j

[28]

N.V. Kalssen, K.R. Shortt, J. Seuntjens, et al. The difference between G(Fe3+) for 60Co γ-rays and high energy X-rays. Physics in Medicine &Biology, 1999, 44(7): 1609−1624. https://doi.org/10.1088/0031-9155/44/7/303

[29]

C.L. Hawkins, P.E. Morgan, M.J. Davies. Quantification of protein modification by oxidants. Free Radical Biology and Medicine, 2009, 46(8): 965−988. https://doi.org/10.1016/j.freeradbiomed.2009.01.007

[30]

B. Ahmad, S. Parveen, R.H. Khan. Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: A novel approach directly assigning binding site. Biomacromolecules, 2006, 7(4): 1350−1356. https://doi.org/10.1021/bm050996b

[31]

D. Stan, I. Matei, C. Mihailescu, et al. Spectroscopic investigations of the binding interaction of a new indanedione derivative with human and bovine serum albumins. Molecules, 2009, 14(4): 1614−1626. https://doi.org/10.3390/molecules14041614

[32]

U.K. Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259): 680−685. https://doi.org/10.1038/227680a0

[33]
D.C. Carter, J.X. Ho. Structure of serum albumin. Advances in Protein Chemistry, 1994, 45: 153–176, 176a, 176b, 176c, 176d, 176e, 176f, 176g, 176h, 176i, 176j, 176k, 176l, 177–203.
[34]

A.C. Ribou, J. Vigo, P. Viallet, et al. Interaction of a protein, BSA, and a fluorescent probe, Mag-Indo-1, influence of EDTA and calcium on the equilibrium. Biophysical Chemistry, 1999, 81(3): 179−189. https://doi.org/10.1016/s0301-4622(99)00089-7

[35]

E. Dulkeith, A.C. Morteani, T. Niedereichholz, et al. Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects. Physical Review Letters, 2002, 89(20): 203002. https://doi.org/10.1103/PhysRevLett.89.203002

[36]

Y.H. Ding, X.M. Zhang, X.X. Liu, et al. Adsorption characteristics of thionine on gold nanoparticles. Langmuir, 2006, 22(5): 2292−2298. https://doi.org/10.1021/la052897p

[37]

H. Zarei, M. Bahreinipour, K. Eskandari, et al. Spectroscopic study of gamma irradiation effect on the molecular structure of bovine serum albumin. Vacuum, 2017, 136: 91−96. https://doi.org/10.1016/j.vacuum.2016.11.029

[38]
N. Tayeh, , Rungassamy, T., Albani, J. R. Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins. Journal of Pharmaceutical and Biomedical Analysis, 2009, 50(2): 107–116.
[39]

C.X. Sun, J.H. Yang, X. Wu, et al. Unfolding and refolding of bovine serum albumin induced by cetylpyridinium bromide. Biophysical Journal, 2005, 88(5): 3518−3524. https://doi.org/10.1529/biophysj.104.051516

[40]

K.V. Abrosimova, O.V. Shulenina, S.V. Paston. FTIR study of secondary structure of bovine serum albumin and ovalbumin. Journal of Physics:Conference Series, 2016, 769: 012016. https://doi.org/10.1088/1742-6596/769/1/012016

[41]

A. Akhavan, H.R. Kalhor, M.Z. Kassaee, et al. Radiation synthesis and characterization of protein stabilized gold nanoparticles. Chemical Engineering Journal, 2010, 159(1-3): 230−235. https://doi.org/10.1016/j.cej.2010.02.010

[42]

X.J. Shi, D. Li, J. Xie, et al. Spectroscopic investigation of the interactions between gold nanoparticles and bovine serum albumin. Chinese Science Bulletin, 2012, 57(10): 1109−1115. https://doi.org/10.1007/s11434-011-4741-3

[43]

I. Dalle-Donne, R. Rossi, D. Giustarini, et al. Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta, 2003, 329(1-2): 23−38. https://doi.org/10.1016/s0009-8981(03)00003-2

[44]

N. Perricone, K. Nagy, F. Horváth, et al. Alpha lipoic acid (ALA) protects proteins against the hydroxyl free radical-induced alterations: Rationale for its geriatric topical application. Archives of Gerontology and Geriatrics, 1999, 29(1): 45−56. https://doi.org/10.1016/S0167-4943(99)00022-9

[45]
K. Mishra, H. Ojha, S. Kallepalli, et al. Protective effect of ferulic acid on ionizing radiation induced damage in bovine serum albumin. International Journal of Radiation Research, 2014, 12(2): 113–121.
[46]
L. Shang, Y. Wang, J. Jiang, et a. pH-Dependent protein conformational changes in albumin: Gold nanoparticle bioconjugates: A spectroscopic study. Langmuir, 2007, 23(5): 2714–2721.
[47]

M. Lundqvist, I. Sethson, B.-H. Jonsson. Protein adsorption onto silica nanoparticles: conformational changes depend on the particles' curvature and the protein stability. Langmuir, 2004, 20(24): 10639−10647. https://doi.org/10.1021/la0484725

[48]

P. Roach, D. Farrar, C.C. Perry. Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. Journal of the American Chemical Society, 2006, 128(12): 3939−3945. https://doi.org/10.1021/ja056278e

[49]

A.A. Vertegel, R.W. Siegel, J.S. Dordick. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir, 2004, 20(16): 6800−6807. https://doi.org/10.1021/la0497200

[50]

S. Lee, S. Lee, K.B. Song. Effect of gamma-irradiation on the physicochemical properties of porcine and bovine blood plasma proteins. Food Chemistry, 2003, 82(4): 521−526. https://doi.org/10.1016/s0308-8146(02)00592-7

[51]

Y. Cho, J.S. Yang, K.B. Song. Effect of ascorbic acid and protein concentration on the molecular weight profile of bovine serum albumin and β-lactoglobulin by γ-irradiation. Food Research International, 1999, 32(7): 515−519. https://doi.org/10.1016/S0963-9969(99)00127-1

[52]

K.J. Davies, M.E. Delsignore. Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure. Journal of Biological Chemistry, 1987, 262(20): 9908−9913. https://doi.org/10.1016/S0021-9258(18)48020-9

Nano Biomedicine and Engineering
Pages 276-284
Cite this article:
Narode YM, Sharma GK. Protective Role of Gold Nanoparticles against Radiation-induced Oxidative Damage in Bovine Serum Albumin. Nano Biomedicine and Engineering, 2024, 16(2): 276-284. https://doi.org/10.26599/NBE.2024.9290068

875

Views

108

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 11 August 2023
Revised: 25 September 2023
Accepted: 13 November 2023
Published: 04 February 2024
© The Author(s) 2024.

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return