Show {{imgMenuList.length - 9}} more figuresHide {{imgMenuList.length - 9}} figures
Show {{tableMenuList.length - 5}} more tablesHide {{tableMenuList.length - 5}} tables
Outline
Show full outline
Hide outline
Show {{imgMenuList.length - 9}} more figuresHide {{imgMenuList.length - 9}} figures
Show {{tableMenuList.length - 5}} more tablesHide {{tableMenuList.length - 5}} tables
Research Article|Open Access
Cornus officinalis vinegar alters the gut microbiota, regulating lipid droplet changes in nonalcoholic fatty liver disease model mice
Li Cao1,2, Ying Wu1,2,3, Kai-Yu Liu1, Ning-Xian Qi1, Jie Zhang1,2, Shan-Shan Tie1,3, Xuan Li1,3, Ping-Ping Tian1,2, Shao-Bin Gu1,2,3()
College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
Henan Engineering Research Center of Food Microbiology, Luoyang 471023, China
National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
Show Author Information
Hide Author Information
Highlights
(1) Cornus officinalis vinegar improved microbiota composition and enhanced gut microbial diversity that decreased by HFD.
(2) Cornus officinalis vinegar improved liver function in HFD-fed mice.
(3) C.officinalis vinegar improved histological changes and reduced size and number of lipid droplets in HFD-fed mice.
(4) Cornus officinalis vinegar reduced liver steatosis in HFD-fed mice.
Graphical Abstract
Cornus officinalis vinegar reduced body weight, liver weight and liver steatosis area. This article shows that Cornus officinalis vinegar impacts gut microbiota, Specifically, increased the abundance of known beneficial bacteria Bifidobacterium, Lactobacillus, Faecalibaculum at the level of genus in NAFLD model mice. Cornus officinalis vinegar also decreased the number and the size of hepatocyte with fat vacuoles and the volume and number of LD per cell, and changed expression of PLIN2 and ATGL gene to protect against NAFLD.
Abstract
This study investigated the effect of Cornus officinalis vinegar on gut microbiota and hepatic lipid droplet in nonalcoholic fatty liver disease (NAFLD) model mice. The C57BL/6J male mice were divided into three treatment groups: Control group (CON group) fed with a purified diet; high fat diet (HFD) group and C. officinalis vinegar treatment (CVT) group fed with high fat diet. After 10 weeks, the CVT group was orally administered with C. officinalis vinegar once a day for 6 weeks. We found that C.officinalis vinegar improved gut microbiota, significantly reduced body weight and liver injury of HFD-fed mice. Observation of histopathology and ultrastructure showed that C.officinalis vinegar improved histological changes, reduced size and number of lipid droplets. Additionally, C.officinalis vinegar significantly inhibited the expression of perilipin 2 (PLIN-2) and increased the expression of adipose triglyceride lipase (ATGL). In conclusion, C. officinalis vinegar could exert beneficial effects on NAFLD through modulation of gut microbiota and lipid droplets.
No abstract is available for this article. Click the button above to view the PDF directly.
References
[1]
Dhami-Shah, H., Vaidya, R., Udipi, S., et al. Picroside II attenuates fatty acid accumulation in HepG2 cells via modulation of fatty acid uptake and synthesis. Clinical and Molecular Hepatology, 2018, 24: 77–87. https://doi.org/10.3350/cmh.2017.0039
Ni, M. Z., Zhang, B. B., Zhao, J. N., et al. Biological mechanisms and related natural modulators of liver X receptor in nonalcoholic fatty liver disease. Biomedicine & Pharmacotherapy, 2019, 113: 108778. https://doi.org/10.1016/j.biopha.2019.108778
Seto, W. K., Yuen, M. F. Nonalcoholic fatty liver disease in Asia: Emerging perspectives. Journal of Gastroenterology, 2017, 52: 164–174. https://doi.org/10.1007/s00535-016-1264-3
Caussy, C., Hsu, C., Lo, M. T., Liu, et al. Link between gut-microbiome derived metabolite and shared gene-effects with hepatic steatosis and fibrosis in NAFLD. Hepatology, 2018, 68: 918–932. https://doi.org/10.1002/hep.29892
Miyazaki, T., Honda, A., Ikegami, T., et al. Human-specific dual regulations of FXR-activation for reduction of fatty liver using in vitro cell culture model. Journal of Clinical Biochemistry and Nutrition, 2019, 64: 112–123. https://doi.org/10.3164/jcbn.18-80
Ballestri, S., Zona, S., Targher, G., et al. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. Journal of Gastroenterology and Hepatology, 2016, 31: 936–944. https://doi.org/10.1111/jgh.13264
Cani, P. D., Van Hul, M., Lefort, C., et al. Microbial regulation of organismal energy homeostasis. Nature Metabolism, 2019, 1: 34–46. https://doi.org/10.1038/s42255-018-0017-4
Rinninella, E., Raoul, P., Cintoni, M., et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 2019, 7: 14. https://doi.org/10.3390/microorganisms7010014
Turnbaugh, P. J., Bäckhed, F., Fulton, L., et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host & Microbe, 2008, 3: 213–223. https://doi.org/10.1016/j.chom.2008.02.015
Qin, J. J., Li, Y. R., Cai, Z. M., et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012, 490: 55–60. https://doi.org/10.1038/nature11450
[11]
Mouzaki, M., Comelli, E. M., Arendt, B. M., et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology, 2013, 58: 120–127. https://doi.org/10.1002/hep.26319
Cazzo, E., Pareja, J. C., Chaim, E. A. Nonalcoholic fatty liver disease and bariatric surgery: A comprehensive review. Sao Paulo Medical Journal, 2017, 135: 277–295. https://doi.org/10.1590/1516-3180.2016.0306311216
Martins, A. S., Martins, I. C., Santos, N. C. Methods for lipid droplet biophysical characterization in Flaviviridae infections. Frontiers in Microbiology, 2018, 9: 1951. https://doi.org/10.3389/fmicb.2018.01951
Mokhtari, Z., Gibson, D. L., Hekmatdoost, A. Nonalcoholic fatty liver disease, the gut microbiome, and diet. Advances in Nutrition, 2017, 8: 240–252. https://doi.org/10.3945/an.116.013151
Missaglia, S., Coleman, R. A., Mordente, A., et al. Neutral lipid storage diseases as cellular model to study lipid droplet function. Cells, 2019, 8: 187. https://doi.org/10.3390/cells8020187
Schott, M. B., Weller, S. G., Schulze, R. J., et al. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. J Cell Biol, 2019, 218: 3320–3335. https://doi.org/10.1083/jcb.201803153
Ji, L. L., Wang, X., Li, J. J., et al. New iridoid derivatives from the fruits of Cornus officinalis and their neuroprotective activities. Molecules, 2019, 24: 625. https://doi.org/10.3390/molecules24 030625
Lee, N. H., Seo, C. S., Lee, H. Y., et al. Hepatoprotective and antioxidative activities of Cornus officinalis against acetaminophen-induced hepatotoxicity in mice. Evid Based Complement Alternat Med, 2012, 2012: 804924. https://doi.org/10.1155/2012/804924
Cao, L., Wu, Y., Li, W. W., et al. Cornus officinalis vinegar reduces body weight and attenuates hepatic steatosis in mouse model of nonalcoholic fatty liver disease. Journal of Food Science, 2022, 87: 3248–3259. https://doi.org/10.1111/1750-3841.16178
Head, B., Bionaz, M., Cherian, G. Flaxseed and carbohydrase enzyme supplementation alters hepatic n-3 polyunsaturated fatty acid molecular species and expression of genes associated with lipid metabolism in broiler chickens. Veterinary Sciences, 2019, 6: 25. https://doi.org/10.3390/vetsci6010025
Sakamoto, M., Tsujikawa, H., Effendi, K., et al. Pathological findings of nonalcoholic steatohepatitis and nonalcoholic fatty liver disease. Pathology International, 2017, 67: 1–7. https://doi.org/10.1111/pin.12485
Livak, K. J., Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 2001, 25: 402–408. https://doi.org/10.1006/meth.2001.1262
Suk, K. T., Kim, D. J. Gut microbiota: Novel therapeutic target for nonalcoholic fatty liver disease. Expert Review of Gastroenterology & Hepatology, 2019, 13: 193–204. https://doi.org/10.1080/17474124.2019.1569513
Donaldson, G. P., Lee, S. M., Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nature Reviews Microbiology, 2016, 14: 20–32. https://doi.org/10.1038/nrmicro3552
Yuan, G. F., Tan, M. J., Chen, X. E. Punicic acid ameliorates obesity and liver steatosis by regulating gut microbiota composition in mice. Food & Function, 2021, 12: 7897–7908. https://doi.org/10.1039/d1fo01152a
Mohamad, N. E., Yeap, S. K., Ky, H., et al. Pineapple vinegar regulates obesity-related genes and alters the gut microbiota in high-fat diet (HFD) C57BL/6 obese mice. Evidence-Based Complementary and Alternative Medicine, 2020, 2020: 1257962. https://doi.org/10.1155/2020/1257962
Turnbaugh, P. J., Hamady, M., Yatsunenko, T., et al. A core gut microbiome in obese and lean twins. Nature, 2009, 457: 480–484. https://doi.org/10.1038/nature07540
Dalby, M. J., Ross, A. W., Walker, A. W., et al. Dietary uncoupling of gut microbiota and energy harvesting from obesity and glucose tolerance in mice. Cell Reports, 2017, 21: 1521–1533. https://doi.org/ 10.1016/j.celrep.2017.10.056
Papandreou, D., Karavetian, M., Karabouta, Z., et al. Obese children with metabolic syndrome have 3 times higher risk to have nonalcoholic fatty liver disease compared with those without metabolic syndrome. Int J Endocrinol, 2017, 2017: 2671692. https://doi.org/10.1155/2017/2671692
Younossi, Z. M., Loomba, R., Rinella, M. E., et al. Current and future therapeutic regimens for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology, 2018, 68: 361–371. https://doi.org/10.1002/hep.29724
Cassard, A. M., Ciocan, D. Microbiota, a key player in alcoholic liver disease. Clinical and Molecular Hepatology, 2018, 24: 100–107. https://doi.org/10.3350/cmh.2017.0067
Bakhshimoghaddam, F., Alizadeh, M. Modulation of the gut microbiota represents a new management for non-alcoholic fatty liver disease. Hepatobiliary Surgery and Nutrition, 2020, 9: 223–226. https://doi.org/10.21037/hbsn.2019.10.01
Li, Z. P., Yang, S. Q., Lin, H. Z., et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology, 2003, 37: 343–350. https://doi.org/10.1053/jhep.2003.50048
Muoio, D. M. Revisiting the connection between intramyocellular lipids and insulin resistance: A long and winding road. Diabetologia, 2012, 55: 2551–2554. https://doi.org/10.1007/s00125-012-2597-y
Zhang, L. Y., Ding, L., Shi, H. H., et al. Eicosapentaenoic acid-enriched phospholipids suppressed lipid accumulation by specific inhibition of lipid droplet-associated protein FSP27 in mice. Journal of the Science of Food and Agriculture, 2020, 100: 2244–2251. https://doi.org/10.1002/jsfa.10250
Čopič, A., Antoine-Bally, S., Giménez-Andrés, M., et al. A giant amphipathic helix from a perilipin that is adapted for coating lipid droplets. Nature Communications, 2018, 9: 1332. https://doi.org/10.1038/s41467-018-03717-8
Xu, S. M., Zou, F., Diao, Z. Q., et al. Perilipin 2 and lipid droplets provide reciprocal stabilization. Biophysics Reports, 2019, 5: 145–160. https://doi.org/10.1007/s41048-019-0091-5
Larigauderie, G., Cuaz-Pérolin, C., Younes, A. B., et al. Adipophilin increases triglyceride storage in human macrophages by stimulation of biosynthesis and inhibition of β-oxidation. The FEBS Journal, 2006, 273: 3498–3510. https://doi.org/10.1111/j.1742-4658.2006.05357.x
Huang, Y. F., Chen, H., Yang, P., et al. Hepatic lipid droplet breakdown through lipolysis during hibernation in Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). Aging, 2019, 11: 1990–2002. https://doi.org/10.18632/aging.101887
Cerk, I. K., Wechselberger, L., Oberer, M. Adipose triglyceride lipase regulation: An overview. Current Protein & Peptide Science, 2017, 19: 221–233. https://doi.org/10.2174/13892037186661 70918160110
Cao L, Wu Y, Liu K-Y, et al. Cornus officinalis vinegar alters the gut microbiota, regulating lipid droplet changes in nonalcoholic fatty liver disease model mice. Food & Medicine Homology, 2024, 1(2): 9420002. https://doi.org/10.26599/FMH.2024.9420002
Comments on this article