AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (786.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Embedding Social Perception Dimensions in a Semantic Space: Toward a Quantitative Synthesis

Department of Sociology, The Chinese University of Hong Kong, Hong Kong 999077, China
Show Author Information

Abstract

Social perception refers to how individuals interpret and understand the social world. It is a foundational area of theory and measurement within the social sciences, particularly in communication, political science, psychology, and sociology. Classical models include the Stereotype Content Model (SCM), Dual Perspective Model (DPM), and Semantic Differential (SD). Extensive research has been conducted on these models. However, their interrelationships are still difficult to define using conventional comparison methods, which often lack efficiency, validity, and scalability. To tackle this challenge, we employ a text-based computational approach to quantitatively represent each theoretical dimension of the models. Specifically, we map key content dimensions into a shared semantic space using word embeddings and automate the selection of over 500 contrasting word pairs based on semantic differential theory. The results suggest that social perception can be organized around two fundamental components: subjective evaluation (e.g., how good or likable someone is) and objective attributes (e.g., power or competence). Furthermore, we validate this computational approach with the widely used Rosenberg’s 64 personality traits, demonstrating improvements in predictive performance over previous methods, with increases of 19%, 13%, and 4% for the SD, DPM, and SCM dimensions, respectively. By enabling scalable and interpretable comparisons across these models, our findings would facilitate both theoretical integration and practical applications.

References

[1]

E. T. Higgins and J. A. Bargh, Social cognition and social perception, Annu. Rev. Psychol., vol. 38, pp. 369–425, 1987.

[2]

A. E. Abele and B. Wojciszke, Agency and communion from the perspective of self versus others, J. Pers. Soc. Psychol., vol. 93, no. 5, pp. 751–763, 2007.

[3]
A. E. Abele and B. Wojciszke, Communal and agentic content in social cognition: A dual perspective model, in Advances in Experimental Social Psychology, M. P. Zanna, ed. Pittsburgh, PA, USA: Academic Press, 2014, pp. 195–255.
[4]

A. J. C. Cuddy, S. T. Fiske, and P. Glick, The BIAS map: Behaviors from intergroup affect and stereotypes, J. Pers. Soc. Psychol., vol. 92, no. 4, pp. 631–648, 2007.

[5]
A. J. C. Cuddy, S. T. Fiske, and P. Glick, Warmth and competence as universal dimensions of social perception: The stereotype content model and the BIAS map, in Advances in Experimental Social Psychology, M. P. Zanna, ed. Pittsburgh, PA, USA: Academic Press, 2008, pp. 61–149.
[6]

N. Kervyn, S. T. Fiske, and V. Y. Yzerbyt, Integrating the stereotype content model (warmth and competence) and the osgood semantic differential (evaluation, potency, and activity), Eur. J. Soc. Psychol., vol. 43, no. 7, pp. 673–681, 2013.

[7]
A. Koch, V. Yzerbyt, A. Abele, N. Ellemers, and S. T. Fiske, Social evaluation: Comparing models across interpersonal, intragroup, intergroup, several-group, and many-group contexts, in Advances in Experimental Social Psychology, A. M. Ryan, ed. Pittsburgh, PA, USA: Academic Press, 2021, pp. 1–68.
[8]

V. Yzerbyt, Intergroup stereotyping, Curr. Opin. Psychol., vol. 11, pp. 90–95, 2016.

[9]

S. T. Fiske, Stereotype content: Warmth and competence endure, Curr. Dir. Psychol. Sci., vol. 27, no. 2, pp. 67–73, 2018.

[10]

M. Bertrand and S. Mullainathan, Are emily and greg more employable than lakisha and jamal? A field experiment on labor market discrimination, Am. Econ. Rev., vol. 94, no. 4, pp. 991–1013, 2004.

[11]
M. Gilens, “Race coding” and white opposition to welfare, Am. Polit. Sci. Rev., vol. 90, no. 3, pp. 593–604, 1996.
[12]

A. J. Nederhof, Methods of coping with social desirability bias: A review, Eur. J. Soc. Psychol., vol. 15, no. 3, pp. 263–280, 1985.

[13]
G. Nicolas, X. Bai, and S. T. Fiske, A spontaneous stereotype content model: Taxonomy, properties, and prediction, J. Pers. Soc. Psychol., vol. 123, no. 6, pp. 1243–1263, 2022.
[14]
S. T. Fiske, A. J. C. Cuddy, P. Glick, and J. Xu, A model of (often mixed) stereotype content: Competence and warmth respectively follow from perceived status and competition, J. Pers. Soc. Psychol., vol. 82, no. 6, pp. 878–902, 2002.
[15]
C. E. Osgood, G. J. Suci, and P. H. Tannenbaum, The Measurement of Meaning. Urbana, IL, USA: University of Illinois Press, 1957.
[16]

A. E. Abele, N. Ellemers, S. T. Fiske, A. Koch, and V. Yzerbyt, Navigating the social world: Toward an integrated framework for evaluating self, individuals, and groups, Psychol. Rev., vol. 128, no. 2, pp. 290–314, 2021.

[17]

G. Nicolas, X. Bai, and S. T. Fiske, Comprehensive stereotype content dictionaries using a semi-automated method, Eur. J. Soc. Psychol., vol. 51, no. 1, pp. 178–196, 2021.

[18]

S. T. Fiske, A. J. C. Cuddy, and P. Glick, Universal dimensions of social cognition: Warmth and competence, Trends Cogn. Sci., vol. 11, no. 2, pp. 77–83, 2007.

[19]

S. Bruckmüller and A. E. Abele, The density of the big two, Soc. Psychol., vol. 44, no. 2, pp. 63–74, 2013.

[20]
Q. Li, C. Wang, and Z. Wang, The dual role of AI: A capable assistant in collaboration and a scapegoat in competition, International Journal of Human–Computer Interaction, doi: 10.1080/10447318.2025.2462755.
[21]

F. Durante, S. T. Fiske, N. Kervyn, A. J. C. Cuddy, A. D. Akande, B. E. Adetoun, M. F. Adewuyi, M. M. Tserere, A. A. Ramiah, K. A. Mastor, et al., Nations’ income inequality predicts ambivalence in stereotype content: How societies mind the gap, British Journal of Social Psychology, vol. 52, no. 4, pp. 726–746, 2013.

[22]

H. R. Markus and S. Kitayama, Culture and the self: Implications for cognition, emotion, and motivation, Psychol. Rev., vol. 98, no. 2, pp. 224–253, 1991.

[23]

K. Phalet and E. Poppe, Competence and morality dimensions of national and ethnic stereotypes: A study in six eastern-European countries, Eur. J. Soc. Psychol., vol. 27, no. 6, pp. 703–723, 1997.

[24]

B. Wojciszke, R. Bazinska, and M. Jaworski, On the dominance of moral categories in impression formation, Personality and Social Psychology Bulletin, vol. 24, no. 12, pp. 1251–1263, 1998.

[25]

A. E. Abele, The dynamics of masculine-agentic and feminine-communal traits: Findings from a prospective study, J. Pers. Soc. Psychol., vol. 85, no. 4, pp. 768–776, 2003.

[26]

J. J. Skowronski and D. E. Carlston, Social judgment and social memory: The role of cue diagnosticity in negativity, positivity, and extremity biases, J. Pers. Soc. Psychol., vol. 52, no. 4, pp. 689–699, 1987.

[27]

A. J. C. Cuddy, S. T. Fiske, and P. Glick, When professionals become mothers, warmth doesn’t cut the ice, J. Soc. Issues, vol. 60, no. 4, pp. 701–718, 2004.

[28]
N. Kervyn, V. Y. Yzerbyt, C. M. Judd, and A. Nunes, A question of compensation: The social life of the fundamental dimensions of social perception, J. Pers. Soc. Psychol., vol. 96, no. 4, pp. 828–842, 2009.
[29]

A. S. Rosette, C. Z. Koval, A. Ma, and R. Livingston, Race matters for women leaders: Intersectional effects on agentic deficiencies and penalties, Leadersh. Q., vol. 27, no. 3, pp. 429–445, 2016.

[30]

A. E. Abele, A. J. C. Cuddy, C. M. Judd, and V. Y. Yzerbyt, Fundamental dimensions of social judgment, Eur. J. Soc. Psychol., vol. 38, no. 7, pp. 1063–1065, 2008.

[31]
A. Alhothali and J. Hoey, Good news or bad news: Using affect control theory to analyze readers’ reaction towards news articles, in Proc. 2015 Conf. North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, CO, USA, 2015, pp. 1548–1558.
[32]
R. Xiang, Y. Long, M. Wan, J. Gu, Q. Lu, and C. R. Huang, Affection-driven neural networks for sentiment analysis, in Proc. 12th Language Resources and Evaluation Conf., Marseille, France, 2020, pp. 112–119.
[33]

S. M. Mohammad and S. Kiritchenko, Using hashtags to capture fine emotion categories from tweets, Comput. Intell., vol. 31, no. 2, pp. 301–326, 2015.

[34]
J. H. Morgan, J. Zhao, N. Zöller, A. Sedlacek, L. Chen, H. Piper, Y. Beck, K. B. Rogers, J. Hoey, and T. Schröder, Modeling the culture of online collaborative groups with affect control theory, in Advances in Social Simulation, P. Ahrweiler and M. Neumann, eds. Cham, Switzerland: Springer International Publishing, 2021, pp. 147–160.
[35]

D. R. Heise, Affect control theory: Concepts and model, J. Math. Sociol., vol. 13, nos. 1&2, pp. 1–33, 1987.

[36]

A. M. Harris-Watson, L. E. Larson, N. Lauharatanahirun, L. A. DeChurch, and N. S. Contractor, Social perception in human-AI teams: Warmth and competence predict receptivity to AI teammates, Comput. Hum. Behav., vol. 145, p. 107765, 2023.

[37]
T. Aktan, Compensatory nature of mixed stereotypes: An investigation of underlying mechanisms in the framework of stereotype content model, PhD dissertation, Department of Psychology, Middle East Technical University, Türkiye, 2012.
[38]
S. Rosenberg, C. Nelson, and P. S. Vivekananthan, A multidimensional approach to the structure of personality impressions, J. Pers. Soc. Psychol., vol. 9, no. 4, pp. 283–294, 1968.
[39]

A. J. Cuddy, S. T. Fiske, V. S. Kwan, P. Glick, S. Demoulin, J. P. Leyens, M. H. Bond, J. C. Croizet, N. Ellemers, E. Sleebos, et al., Stereotype content model across cultures: Towards universal similarities and some differences, British Journal of Social Psychology, vol. 48, no. 1, pp. 1–33, 2009.

[40]

S. E. Asch, Forming impressions of personality, J. Abnorm. Psychol., vol. 41, pp. 258–290, 1946.

[41]

C. M. Judd, T. Garcia-Marques, and V. Y. Yzerbyt, The complexity of relations between dimensions of social perception: Decomposing bivariate associations with crossed random factors, J. Exp. Soc. Psychol., vol. 82, pp. 200–207, 2019.

[42]
T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, arXiv preprint arXiv: 1301.3781, 2013.
[43]
J. W. Pennebaker, R. L. Boyd, K. Jordan, and K. Blackburn, The development and psychometric properties of LIWC2015, https://repositories.lib.utexas.edu/items/705e81ca-940d-4c46-94ec-a52ffdc3b51f, 2015.
[44]

A. C. Kozlowski, M. Taddy, and J. A. Evans, The geometry of culture: Analyzing the meanings of class through word embeddings, Am. Sociol. Rev., vol. 84, no. 5, pp. 905–949, 2019.

[45]

K. Durrheim, M. Schuld, M. Mafunda, and S. Mazibuko, Using word embeddings to investigate cultural biases, Br. J. Soc. Psychol., vol. 62, no. 1, pp. 617–629, 2023.

[46]
X. Qin and T. Tam, Stereotype content dictionary: A semantic space of 3 million words and phrases using Google News Word2Vec embeddings, in Proc. Social, Cultural, and Behavioral Modeling: 16th International Conference, SBP-BRiMS 2023, Pittsburgh, PA, USA, 2023, pp. 12–22.
[47]

A. J. Cuddy, E. B. Wolf, P. Glick, S. Crotty, J. Chong, and M. I. Norton, Men as cultural ideals: Cultural values moderate gender stereotype content, J. Pers. Soc. Psychol., vol. 109, no. 4, pp. 622–635, 2015.

[48]

T. E. S. Charlesworth, A. Caliskan, and M. R. Banaji, Historical representations of social groups across 200 years of word embeddings from Google Books, Proc. Natl. Acad. Sci. USA, vol. 119, no. 28, p. e2121798119, 2022.

[49]

A. Pietraszkiewicz, M. Formanowicz, M. Gustafsson Sendén, R. L. Boyd, S. Sikström, and S. Sczesny, The big two dictionaries: Capturing agency and communion in natural language, Eur. J. Soc. Psychol., vol. 49, no. 5, pp. 871–887, 2019.

[50]
B. Mathew, S. Sikdar, F. Lemmerich, and M. Strohmaier, The POLAR framework: Polar opposites enable interpretability of pre-trained word embeddings, in Proc. The Web Conf. 2020, Taipei, China, 2020, pp. 1548–1558.
[51]
K. C. Fraser, I. Nejadgholi, and S. Kiritchenko, Understanding and countering stereotypes: A computational approach to the stereotype content model, arXiv preprint arXiv: 2106.02596, 2021.
[52]

K. C. Fraser, S. Kiritchenko, and I. Nejadgholi, Computational modeling of stereotype content in text, Front. Artif. Intell., vol. 5, p. 826207, 2022.

[53]

A. van Loon and J. Freese, Word embeddings reveal how fundamental sentiments structure natural language, Am. Behav. Sci., vol. 67, no. 2, pp. 175–200, 2023.

[54]
S. Mohammad, B. Dorr, and G. Hirst, Computing word-pair antonymy, in Proc. Conf. Empirical Methods in Natural Language Processing, Honolulu, HI, USA, 2008, pp. 982–991.
[55]

S. M. Mohammad, B. J. Dorr, G. Hirst, and P. D. Turney, Computing lexical contrast, Comput. Linguist., vol. 39, no. 3, pp. 555–590, 2013.

[56]
Z. Chen, W. Lin, Q. Chen, X. Chen, S. Wei, H. Jiang, and X. Zhu, Revisiting word embedding for contrasting meaning, in Proc. 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Int. Joint Conf. Natural Language Processing (Volume 1: Long Papers), Beijing, China, 2015, pp. 106–115.
[57]

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, Enriching word vectors with subword information, Trans. Assoc. Comput. Linguist., vol. 5, pp. 135–146, 2017.

[58]
J. Pennington, R. Socher, and C. Manning, Glove: Global vectors for word representation, in Proc. 2014 Conf. Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 2014, pp. 1532–1543.
[59]
A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, Bag of tricks for efficient text classification, arXiv preprint arXiv: 1607.01759, 2016.
[60]
T. Kenter and M. de Rijke, Short text similarity with word embeddings, in Proc. 24th ACM Int. on Conf. Information and Knowledge Management, Melbourne, Australia, 2015, pp. 1411–1420.
[61]

G. A. Miller, WordNet, Commun. ACM, vol. 38, no. 11, pp. 39–41, 1995.

[62]
C. E. Osgood, W. H. May, and M. S. Miron, Cross-Cultural Universals of Affective Meaning. Urbana, IL, USA: University of Illinois Press, 1975.
[63]
J. S. Wiggins, A psychological taxonomy of trait-descriptive terms: The interpersonal domain, J. Pers. Soc. Psychol., vol. 37, no. 3, pp. 395–412, 1979.
[64]

M. Formanowicz, A. Goldenberg, T. Saguy, A. Pietraszkiewicz, M. Walker, and J. J. Gross, Understanding dehumanization: The role of agency and communion, J. Exp. Soc. Psychol., vol. 77, pp. 102–116, 2018.

[65]

M. J. Hornsey, Social identity theory and self-categorization theory: A historical review, Soc. Pers. Psychol. Compass, vol. 2, no. 1, pp. 204–222, 2008.

[66]
V. Yzerbyt and O. Corneille, Cognitive process: Reality constraints and integrity concerns in social perception, in On the Nature of Prejudice: Fifty Years after Allport, J. F. Dovidio, P. Glick, and L. A. Rudman, eds. Oxford, UK: Blackwell Publishing, 2005, pp. 175–191.
[67]

V. Yzerbyt and L. Cambon, The dynamics of compensation: When ingroup favoritism paves the way for outgroup praise, Pers. Soc. Psychol. Bull., vol. 43, no. 5, pp. 587–600, 2017.

[68]

D. R. Heise, The semantic differential and attitude research, Attitude Measurement, vol. 4, pp. 235–253, 1970.

[69]
O. Levy, Y. Goldberg, and I. Dagan, Improving distributional similarity with lessons learned from word embeddings, Trans. Assoc. Comput. Linguist., vol. 3, pp. 211–225, 2015.
[70]
S. N. Chakrabartty, Cosine similarity approaches to reliability of Likert scale and items, Romanian Journal of Psychological Studies, vol. 6, no. 1, pp. 3–16, 2018.
[71]
L. T. Hu and P. M. Bentler, Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives, Struct. Equ. Model. A Multidiscip. J., vol. 6, no. 1, pp. 1–55, 1999.
[72]
H. W. Marsh, K. T. Hau, and Z. Wen, In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing hu and bentler’s (1999) findings, Struct. Equ. Model. A Multidiscip. J., vol. 11, no. 3, pp. 320–341, 2004.
Journal of Social Computing
Pages 95-111
Cite this article:
Qin X, Tam T. Embedding Social Perception Dimensions in a Semantic Space: Toward a Quantitative Synthesis. Journal of Social Computing, 2025, 6(2): 95-111. https://doi.org/10.23919/JSC.2025.0010

71

Views

11

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 04 April 2025
Revised: 31 May 2025
Accepted: 01 June 2025
Published: 30 June 2025
© The author(s) 2025.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return