Journal Home > Volume 3 , Issue 1

Two key features of human sociality are anatomically complex brains with neuron-dense cerebral cortices, and the propensity to form complex social networks with non-kin. Complex brains and complex social networks facilitate flows of fitness-enhancing energy and information at multiple scales of social organization. Here, we consider how these flows interact to shape the emergence of macroscopic regularities in hunter-gatherer macroecology relative to other mammals and non-human primates. Collective computation is the processing of information by complex adaptive systems to generate inferences in order to solve adaptive problems. In hunter-gatherer societies the adaptive problem is to resolve uncertainty in generative models used to predict complex environments in order to maximize inclusive fitness. The macroecological solution is to link complex brains in social networks to form collective brains that perform collective computations. By developing theory and analyzing data, the author shows hunter-gatherers bands of ~16 people, or ~4 co-residing families, form the largest collective brains of any social mammal. Moreover, because individuals, families, and bands interact at multiple time scales, these fission-fusion dynamics lead to the emergence of the macroscopic regularities in hunter-gatherer macroecology we observe in cross-cultural data. These results show how computation is distributed across spatially-extended social networks forming decentralized knowledge systems characteristic of hunter-gatherer societies. The flow of information at scales far beyond daily interactions leads to the emergence of small-worlds where highly clustered local interactions are embedded within much larger, but sparsely connected multilevel metapopulations.


menu
Abstract
Full text
Outline
About this article

Collective Computation, Information Flow, and the Emergence of Hunter-Gatherer Small-Worlds

Show Author's information Marcus J. Hamilton1( )
Department of Anthropology, University of Texas at San Antonio, San Antonio, TX 78249, USA

Abstract

Two key features of human sociality are anatomically complex brains with neuron-dense cerebral cortices, and the propensity to form complex social networks with non-kin. Complex brains and complex social networks facilitate flows of fitness-enhancing energy and information at multiple scales of social organization. Here, we consider how these flows interact to shape the emergence of macroscopic regularities in hunter-gatherer macroecology relative to other mammals and non-human primates. Collective computation is the processing of information by complex adaptive systems to generate inferences in order to solve adaptive problems. In hunter-gatherer societies the adaptive problem is to resolve uncertainty in generative models used to predict complex environments in order to maximize inclusive fitness. The macroecological solution is to link complex brains in social networks to form collective brains that perform collective computations. By developing theory and analyzing data, the author shows hunter-gatherers bands of ~16 people, or ~4 co-residing families, form the largest collective brains of any social mammal. Moreover, because individuals, families, and bands interact at multiple time scales, these fission-fusion dynamics lead to the emergence of the macroscopic regularities in hunter-gatherer macroecology we observe in cross-cultural data. These results show how computation is distributed across spatially-extended social networks forming decentralized knowledge systems characteristic of hunter-gatherer societies. The flow of information at scales far beyond daily interactions leads to the emergence of small-worlds where highly clustered local interactions are embedded within much larger, but sparsely connected multilevel metapopulations.

Keywords:

complex adaptive systems, hierarchically modular networks, collective brains, macroecology, allometry, mammals, primates
Received: 05 August 2021 Revised: 25 October 2021 Accepted: 04 November 2021 Published: 14 February 2022 Issue date: March 2022
References(114)
1
L. L. Cavalli-Sforza and M. W. Feldman, Cultural Transmission and Evolution: A quantitative Approach. Princeton, NJ, USA: Princeton University Press, 1981.https://doi.org/10.1515/9780691209357
DOI
2
R. Boyd and P. J. Richerson, Culture and the Evolutionary Process. Chicago, IL, USA: University of Chicago Press, 1988.
3

N. Creanza, O. Kolodny, and M. W. Feldman, Cultural evolutionary theory: How culture evolves and why it matters, Proc. Natl. Acad. Sci. USA, vol. 114, no. 30, pp. 7782–7789, 2017.

4
J. Henrich, The Secret of Our Success: How Culture is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter. Princeton, NJ, USA: Princeton University Press, 2015.https://doi.org/10.2307/j.ctvc77f0d
DOI
5
E. A. Smith and B. Winterhalder, Evolutionary Ecology and Human Behavior. New York, NY, USA: Aldine de Gruyter, 1992.
6

K. Hill, Life history theory and evolutionary anthropology, Evol. Anthropol. Issues News Rev., vol. 2, no. 3, pp. 78–88, 1993.

7

F. J. Odling-Smee, K. N. Laland, and M. W. Feldman, Niche construction, Am. Nat., vol. 147, no. 4, pp. 641–648, 1996.

8

K. N. Laland, F. J. Odling-Smee, and M. W. Feldman, Evolutionary consequences of niche construction and their implications for ecology, Proc. Natl. Acad. Sci. USA, vol. 96, no. 18, pp. 10242–10247, 1999.

9

K. N. Laland, J. Odling-Smee, and M. W. Feldman, Cultural niche construction and human evolution, J. Evol. Biol., vol. 14, no. 1, pp. 22–33, 2001.

10

M. Smolla and E. Akçay, Cultural selection shapes network structure, Sci. Adv., vol. 5, no. 8, p. eaaw0609, 2019.

11

B. Voelkl and R. Noë, The influence of social structure on the propagation of social information in artificial primate groups: A graph-based simulation approach, J. Theor. Biol., vol. 252, no. 1, pp. 77–86, 2008.

12

J. Becker, D. Brackbill, and D. Centola, Network dynamics of social influence in the wisdom of crowds, Proc. Natl. Acad. Sci. USA, vol. 114, no. 26, pp. E5070–E5076, 2017.

13
N. Creanza, O. Kolodny, and M. W. Feldman, Greater than the sum of its parts? Modelling population contact and interaction of cultural repertoires, J. Roy. Soc. Interface, vol. 14, no. 130, pp. 20170171, 2017.https://doi.org/10.1098/rsif.2017.0171
DOI
14

L. M. A. Bettencourt, J. Lobo, D. Helbing, C. Kühnert, and G. B. West, Growth, innovation, scaling, and the pace of life in cities, Proc. Natl. Acad. Sci. USA, vol. 104, no. 17, pp. 7301–7306, 2007.

15
L. M. A. Bettencourt, Introduction to Urban Science: Evidence and Theory of Cities as Complex Systems. Cambridge, MA, USA: The MIT Press, 2021.https://doi.org/10.7551/mitpress/13909.001.0001
DOI
16

S. G. Ortman, J. Lobo, and M. E. Smith, Cities: Complexity, theory and history, PLoS One, vol. 15, no. 12, p. e0243621, 2020.

17
G. West, Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies. London, UK: Weidenfeld & Nicolson, 2017.
18

M. J. Hamilton, B. T. Milne, R. S. Walker, and J. H. Brown, Nonlinear scaling of space use in human hunter-gatherers, Proc. Natl. Acad. Sci. USA, vol. 104, no. 11, pp. 4765–4769, 2007.

19

J. H. Brown, W. R. Burnside, A. D. Davidson, J. P. DeLong, W. C. Dunn, M. J. Hamilton, N. Mercado-Silva, J. C. Nekola, J. G. Okie, W. H. Woodruff, et al., Energetic limits to economic growth, BioScience, vol. 61, no. 1, pp. 19–26, 2011.

20
J. Zhang, C. P. Kempes, M. J. Hamilton, and G. B. West, Scaling laws and a general theory for the growth of companies, arXiv preprint arXiv: 2109.10379, 2021.
21
R. K. Hitchcock, W. A. Lovis, and R. Whallon, Information and Its Role in Hunter-Gatherer Bands. Los Angeles, CA, USA: Cotsen Institute of Archaeology Press, 2011.
22

V. Romano, S. Lozano, and J. F. L. de Pablo, A multilevel analytical framework for studying cultural evolution in prehistoric hunter-gatherer societies, Biol. Rev., vol. 95, no. 4, pp. 1020–1035, 2020.

23

M. J. Hamilton, B. T. Milne, R. S. Walker, O. Burger, and J. H. Brown, The complex structure of hunter-gatherer social networks, Proc. Roy. Soc. B Biol. Sci., vol. 274, no. 1622, pp. 2195–2203, 2007.

24

K. R. Hill, B. M. Wood, J. Baggio, A. M. Hurtado, and R. T. Boyd, Hunter-gatherer inter-band interaction rates: Implications for cumulative culture, PLoS One, vol. 9, no. 7, p. e102806, 2014.

25

A. E. Page, N. Chaudhary, S. Viguier, M. Dyble, J. Thompson, D. Smith, G. D. Salali, R. Mace, and A. B. Migliano, Hunter-gatherer social networks and reproductive success, Sci. Rep., vol. 7, no. 1, p. 1153, 2017.

26

C. L. Apicella, F. W. Marlowe, J. H. Fowler, and N. A. Christakis, Social networks and cooperation in hunter-gatherers, Nature, vol. 481, no. 7382, pp. 497–501, 2012.

27

G. D. Salali, N. Chaudhary, J. Thompson, O. M. Grace, X. M. van der Burgt, M. Dyble, A. E. Page, D. Smith, J. Lewis, R. Mace, et al., Knowledge-sharing networks in hunter-gatherers and the evolution of cumulative culture, Curr. Biol., vol. 26, no. 18, pp. 2516–2521, 2016.

28

M. Dyble, J. Thompson, D. Smith, G. D. Salali, N. Chaudhary, A. E. Page, L. Vinicuis, R. Mace, and A. B. Migliano, Networks of food sharing reveal the functional significance of multilevel sociality in two hunter-gatherer groups, Curr. Biol., vol. 26, no. 15, pp. 2017–2021, 2016.

29

P. W. Wiessner, Embers of society: Firelight talk among the Ju/’hoansi bushmen, Proc. Natl. Acad. Sci. USA, vol. 111, no. 39, pp. 14027–14035, 2014.

30

A. B. Migliano, F. Battiston, S. Viguier, A. E. Page, M. Dyble, R. Schlaepfer, D. Smith, L. Astete, M. Ngales, J. Gomez-Gardenes, et al., Hunter-gatherer multilevel sociality accelerates cumulative cultural evolution, Sci. Adv., vol. 6, no. 9, p. eaax5913, 2020.

31

E. R. Brush, D. C. Krakauer, and J. C. Flack, Conflicts of interest improve collective computation of adaptive social structures, Sci. Adv., vol. 4, no. 1, p. e1603311, 2018.

32
J. V. Stone, In the light of evolution, in Principles of Neural Information Theory: Computational Neuroscience and Metabolic Efficiency, J. V. Stone, ed. Sheffield, UK: Sebtel Press, 2018, pp. 1–8.
33

B. C. Daniels, C. J. Ellison, D. C. Krakauer, and J. C. Flack, Quantifying collectivity, Curr. Opin. Neurobiol., vol. 37, pp. 106–113, 2016.

34

K. Friston, The history of the future of the bayesian brain, NeuroImage, vol. 62, no. 2, pp. 1230–1233, 2012.

35

K. Friston, L. Da Costa, D. Hafner, C. Hesp, and T. Parr, Sophisticated inference, Neural Comput., vol. 33, no. 3, pp. 713–763, 2021.

36
A. Clark, Surfing Uncertainty: Prediction, Action, and the Embodied Mind. New York, NY, USA: Oxford University Press, 2015.https://doi.org/10.1093/acprof:oso/9780190217013.001.0001
DOI
37

A. Clark and D. Chalmers, The extended mind, Analysis, vol. 58, no. 1, pp. 7–19, 1998.

38
S. Herculano-Houzel, The Human Advantage: A New Understanding of How Our Brain Became Remarkable. Cambridge, MA, USA: The MIT Press, 2016.https://doi.org/10.7551/mitpress/9780262034258.001.0001
DOI
39

H. Kaplan, K. Hill, J. Lancaster, and A. M. Hurtado, A theory of human life history evolution: Diet, intelligence, and longevity, Evol. Anthropol. Issues News Rev., vol. 9, no. 4, pp. 156–185, 2000.

DOI
40
R. L. Kelly, The Lifeways of Hunter-Gatherers: The Foraging Spectrum. Cambridge, MA, USA: Cambridge University Press, 2013.https://doi.org/10.1017/CBO9781139176132
DOI
41
S. Thurner, R. Hanel, and P. Klimek, Introduction to the Theory of Complex Systems. Oxford, NY, USA: Oxford University Press, 2018.https://doi.org/10.1093/oso/9780198821939.001.0001
DOI
42

C. C. Grueter, X. G. Qi, D. Zinner, T. Bergman, M. Li, Z. F. Xiang, P. F. Zhu, A. B. Migliano, A. Miller, M. Krützen, et al., Multilevel organisation of animal sociality, Trends Ecol. Evol., vol. 35, no. 9, pp. 834–847, 2020.

43
J. Renn, The Evolution of Knowledge: Rethinking Science for the Anthropocene. Princeton, NJ, USA: Princeton University Press, 2020.https://doi.org/10.1515/9780691185675
DOI
44
K. H. Basso, Wisdom Sits in Places: Landscape and Language Among the Western Apache. 2nd ed. Albuquerque, NM, USA: UNM Press, 1996.
45
R. Whallon, W. A. Lovis, and R. K. Hitchcock, Information and its Role in Hunter-Gatherer Bands, Volume 5, 2nd ed. Los Angeles, CA, USA: Cotsen Institute of Archaeology Press, 2011.https://doi.org/10.2307/j.ctvdmwwz4
DOI
46
H. Brody, Maps and Dreams: Indians and the British Columbia Frontier. Vancouver, WA, USA: Douglas & McIntyre, 1981.
47

M. S. Sugiyama, Oral storytelling as evidence of pedagogy in forager societies, Front. Psychol., vol. 8, p. 471, 2017.

48

D. Smith, P. Schlaepfer, K. Major, M. Dyble, A. E. Page, J. Thompson, N. Chaudhary, G. D. Salali, R. Mace, L. Astete, et al., Cooperation and the evolution of hunter-gatherer storytelling, Nat. Commun., vol. 8, no. 1, p. 1853, 2017.

49
M. Tomasello, A Natural History of Human Thinking. Cambridge, MA, USA: Harvard University Press, 2018.
50
W. E. H. Stanner, The Dreaming and Other Essays. Melbourne, Australia: Black Inc. Agenda, 2011.
51
P. A. Clarke, Where the Ancestors Walked: Australia as An Aboriginal Landscape. Sydney, Australia: Allen & Unwin Sydney, 2003.
52
J. Doring, Gwion: Secret and Sacred Pathways of the Ngarinyin Aboriginal People of Australia. Köln: Könemann, 2000.
53
B. Chatwin, The Songlines. New York, NY, USA: Open Road Media, 2016.
54

D. B. Rose, Dreaming ecology: Beyond the between, Religion&Literature, vol. 40, no. 1, pp. 109–122, 2008.

55

G. Curran, L. Barwick, M. Turpin, F. Walsh, and M. Laughren, Central Australian aboriginal songs and biocultural knowledge: Evidence from women’s ceremonies relating to edible seeds, J. Ethnobiol., vol. 39, no. 3, pp. 354–370, 2019.

56
R. P. Norris and P. M. Norris, Emu Dreaming: An Introduction to Australian Aboriginal Astronomy. Sydney, Australia: Emu Dreaming Press, 2009.
57

R. P. Norris and D. W. Hamacher, The astronomy of aboriginal Australia, Proc. Int. Astron. Union, vol. 5, no. S260, pp. 39–47, 2009.

58
R. S. Fuller, M. Trudgett, R. P. Norris, and M. G. Anderson, Star maps and travelling to ceremonies-the Euahlayi people and their use of the night sky, arXiv preprint arXiv: 1406.7456, 2014.
59

N. Tinbergen, On aims and methods of ethology, Zeitschrift Für Tierpsychologie, vol. 20, no. 4, pp. 410–433, 1963.

60

M. Muthukrishna and J. Henrich, Innovation in the collective brain, Philos. Trans. Roy. Soc. B Biol. Sci., vol. 371, no. 1690, p. 20150192, 2016.

61
S. Herculano-Houzel, K. Catania, P. R. Manger, and J. H. Kaas, Mammalian brains are made of these: a dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass, Brain Behav. Evol., vol. 86, nos. 3–4, pp. 145–163, 2015.https://doi.org/10.1159/000437413
DOI
62

K. E. Jones, J. Bielby, M. Cardillo, S. A. Fritz, J. O’Dell, C. D. L. Orme, K. Safi, W. Sechrest, E. H. Boakes, C. Carbone, et al., Pantheria: A species-level database of life history, ecology, and geography of extant and recently extinct mammals, Ecology, vol. 90, no. 9, p. 2648, 2009.

63

W. Jetz, C. Carbone, J. Fulford, and J. H. Brown, The scaling of animal space use, Science, vol. 306, no. 5694, pp. 266–268, 2004.

64

D. A. Kelt and D. H. van Vuren, The ecology and macroecology of mammalian home range area, Am. Nat., vol. 157, no. 6, pp. 637–645, 2001.

65

R. I. M. Dunbar, P. M. Carron, and S. Shultz, Primate social group sizes exhibit a regular scaling pattern with natural attractors, Biol. Lett., vol. 14, no. 1, p. 20170490, 2018.

66

N. P. Myhrvold, E. Baldridge, B. Chan, D. Sivam, D. L. Freeman, and S. K. Morgan Ernest, An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles, Ecology, vol. 96, no. 11, p. 3109, 2015.

67

K. Isler and C. P. van Schaik, The expensive brain: A framework for explaining evolutionary changes in brain size, J. Hum. Evol., vol. 57, no. 4, pp. 392–400, 2009.

68

D. Sol, S. Bacher, S. M. Reader, and L. Lefebvre, Brain size predicts the success of mammal species introduced into novel environments, Am. Nat., vol. 172, no. S1, pp. S63–S71, 2008.

69

R. A. Barton and I. Capellini, Maternal investment, life histories, and the costs of brain growth in mammals, Proc. Natl. Acad. Sci. USA, vol. 108, no. 15, pp. 6169–6174, 2011.

70
L. R. Binford, Constructing Frames of Reference: An Analytical Method for Archaeological Theory Building Using Ethnographic and Environmental Data Sets. Berkeley, CA, USA: University of California Press, 2019.
71
J. H. Brown, Macroecology. Chicago, IL, USA: University of Chicago Press, 1995.
72

J. H. Brown, J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West, Toward a metabolic theory of ecology, Ecology, vol. 85, no. 7, pp. 1771–1789, 2004.

73

R. D. Martin, Relative brain size and basal metabolic rate in terrestrial vertebrates, Nature, vol. 293, no. 5827, pp. 57–60, 1981.

74

R. S. Walker and M. J. Hamilton, Life-history consequences of density dependence and the evolution of human body size, Curr. Anthropol., vol. 49, no. 1, pp. 115–122, 2008.

75

O. R. P. Bininda-Emonds, M. Cardillo, K. E. Jones, R. D. E. MacPhee, R. M. D. Beck, R. Grenyer, S. A. Price, R. A. Vos, J. L. Gittleman, and A. Purvis, The delayed rise of present-day mammals, Nature, vol. 446, no. 7135, pp. 507–512, 2007.

76
R. Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, Computer, vol. 14, pp. 12–21, 2009.
77

D. Bates, D. Sarkar, M. D. Bates, and L. Matrix, The lme4 package, R Package Version, vol. 2, no. 1, p. 74, 2007.

78
J. E. Knowles and C. Frederick. MerTools: Tools for analyzing mixed effect regression models, https://rdrr.io/cran/merTools/, 2021.
79

K. Friston, R. A. Adams, L. Perrinet, and M. Breakspear, Perceptions as hypotheses: Saccades as experiments, Front. Psychol., vol. 3, p. 151, 2012.

80

S. Herculano-Houzel, The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost, Proc. Natl. Acad. Sci. USA, vol. 109, no. S1, pp. 10661–10668, 2012.

81

F. A. C. Azevedo, L. R. B. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. L. Ferretti, R. E. P. Leite, W. J. Filho, R. Lent, and S. Herculano-Houzel, Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain, J. Comp. Neurol., vol. 513, no. 5, pp. 532–541, 2009.

82

S. Herculano-Houzel, Numbers of neurons as biological correlates of cognitive capability, Curr. Opin. Behav. Sci., vol. 16, pp. 1–7, 2017.

83

E. L. Charnov, R. Warne, and M. Moses, Lifetime reproductive effort, Am. Nat., vol. 170, no. 6, pp. E129–E142, 2007.

84

O. Burger, R. Walker, and M. J. Hamilton, Lifetime reproductive effort in humans, Proc. Roy. Soc. B Biol. Sci., vol. 277, no. 1682, pp. 773–777, 2010.

85
T. Clutton-Brock, Mammal Societies. Chichester, UK: John Wiley & Sons, 2016.
86

T. Clutton-Brock, Social evolution in mammals, Science, vol. 373, no. 6561, p. eabc9699, 2021.

87
J. Krause and G. D. Ruxton, Living in Groups. Oxford, NY, USA: Oxford University Press, 2002.
88

J. Damuth, Population density and body size in mammals, Nature, vol. 290, no. 5808, pp. 699–700, 1981.

89

M. Gurven, Reciprocal altruism and food sharing decisions among hiwi and ache hunter-gatherers, Behav. Ecol. Sociobiol., vol. 56, no. 4, pp. 366–380, 2004.

90

M. J. Hamilton, J. Lobo, E. Rupley, H. Youn, and G. B. West, The ecological and evolutionary energetics of hunter-gatherer residential mobility, Evol. Anthropol. Issues News Rev., vol. 25, no. 3, pp. 124–132, 2016.

91

J. D. Kilby, S. P. Farrell, and M. J. Hamilton, New investigations at bonfire shelter, Texas examine controversial bison jumps and bone beds, Plains Anthropol., vol. 66, no. 257, pp. 34–57, 2021.

92
K. Carlson and L. C. Bement, The Archaeology of Large-Scale Manipulation of Prey: The Economic and Social Dynamics of Mass Hunting. Boulder, CO, USA: University Press of Colorado, 2018.https://doi.org/10.2307/j.ctv14h5hs
DOI
93

D. Meunier, R. Lambiotte, and E. T. Bullmore, Modular and hierarchically modular organization of brain networks, Front. Neurosci., vol. 4, p. 200, 2010.

94
J. B. Lancaster and C. S. Lancaster, Parental investment: The hominid adaptation, in How Humans Adapt: A Biocultural Odyssey, D. Ortner, ed. Washington, DC, USA: Smithsonian Institution Press, 1983, pp. 33–56.
95

M. A. M. de Aguiar, E. A. Newman, M. M. Pires, J. D. Yeakel, C. Boettiger, L. A. Burkle, D. Gravel, P. R. Guimarães Jr, J. L. O’Donnell, T. Poisot, et al., Revealing biases in the sampling of ecological interaction networks, PeerJ, vol. 7, p. e7566, 2019.

96

B. F. Codding, R. B. Bird, and D. W. Bird, Provisioning offspring and others: Risk-energy trade-offs and gender differences in hunter-gatherer foraging strategies, Proc. Roy. Soc. B Biol. Sci., vol. 278, no. 1717, pp. 2502–2509, 2011.

97
M. E. Lamb and B. S. Hewlett, Reflections on hunter-gatherer childhoods, in Hunter-Gatherer Childhoods. London, UK: Routledge, 2017, pp. 407–415.https://doi.org/10.4324/9780203789445-28
DOI
98

M. Gurven, To give and to give not: The behavioral ecology of human food transfers, Behav. Brain Sci., vol. 27, no. 4, pp. 543–560, 2004.

99

D. Smith, M. Dyble, J. Thompson, K. Major, A. E. Page, N. Chaudhary, G. D. Salali, L. Vinicius, A. B. Migliano, and R. Mace, Camp stability predicts patterns of hunter-gatherer cooperation, Roy. Soc. Open Sci., vol. 3, no. 7, p. 160131, 2016.

100

K. R. Hill, R. S. Walker, M. Božičević, J. Eder, T. Headland, B. Hewlett, A. M. Hurtado, F. Marlowe, P. Wiessner, and B. Wood, Co-residence patterns in hunter-gatherer societies show unique human social structure, Science, vol. 331, no. 6022, pp. 1286–1289, 2011.

101

M. J. Hamilton, B. Buchanan, and R. S. Walker, Scaling the size, structure, and dynamics of residentially mobile hunter-gatherer camps, Am. Antiquity, vol. 83, no. 4, pp. 701–720, 2018.

102
J. L. Boone, Competition, conflict, and the development of social hierarchies, in Evolutionary Ecology and Human Behavior, A. Smith and B. Winterhalder, eds. New York, NY, USA: Aldine de Gruyter, 1992, pp. 301–337.https://doi.org/10.4324/9780203792704-10
DOI
103

L. M. A. Bettencourt, The origins of scaling in cities, Science, vol. 340, no. 6139, pp. 1438–1441, 2013.

104

M. S. Granovetter, The strength of weak ties, Am. J. Sociol., vol. 78, no. 6, pp. 1360–1380, 1973.

105
E. Hutchins, Distributed cognition, in International Encyclopedia of the Social and Behavioral Sciences. Amsterdam, the Netherlands: Elsevier, 2000, pp. 2068–2072.https://doi.org/10.1016/B0-08-043076-7/01636-3
DOI
106
A. Clark, Embodied, situated, and distributed cognition, in A Companion to Cognitive Science, W. Bechtel and G. Graham, eds. Malden, MA, USA: Blackwell, 2017, pp. 506–517.https://doi.org/10.1002/9781405164535.ch39
DOI
107

A. B. Migliano, A. E. Page, J. Gómez-Gardeñes, G. D. Salali, S. Viguier, M. Dyble, J. Thompson, N. Chaudhary, D. Smith, J. Strods, et al., Characterization of hunter-gatherer networks and implications for cumulative culture, Nat. Hum. Behav., vol. 1, no. 2, p. 0043, 2017.

108
B. Chapais, Primeval Kinship: How Pair-Bonding Gave Birth to Human Society. Cambridge, MA, USA: Harvard University Press, 2009.https://doi.org/10.2307/j.ctv1kz4h57
DOI
109

R. K. Pan and S. Sinha, Modularity produces small-world networks with dynamical time-scale separation, Europhysics Letters(EPL), vol. 85, no. 6, p. 68006, 2009.

110
R. Passingham, What is Special About the Human Brain? Oxford, NY, USA: Oxford University Press, 2008.https://doi.org/10.1093/acprof:oso/9780199230136.001.0001
DOI
111

R. N. Carmody and R. W. Wrangham, The energetic significance of cooking, J. Hum. Evol., vol. 57, no. 4, pp. 379–391, 2009.

112

D. W. Bird, R. B. Bird, B. F. Codding, and D. W. Zeanah, Variability in the organization and size of hunter-gatherer groups: Foragers do not live in small-scale societies, J. Hum. Evol., vol. 131, pp. 96–108, 2019.

113

R. Walker, K. Hill, H. Kaplan, and G. McMillan, Age-dependency in hunting ability among the ache of eastern paraguay, J. Hum. Evol., vol. 42, no. 6, pp. 639–657, 2002.

114

J. Koster, R. McElreath, K. Hill, D. Yu, G. Shepard Jr, N. Van Vliet, M. Gurven, B. Trumble, R. B. Bird, D. Bird, et al., The life history of human foraging: Cross-cultural and individual variation, Sci. Adv., vol. 6, no. 26, p. eaax9070, 2020.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 05 August 2021
Revised: 25 October 2021
Accepted: 04 November 2021
Published: 14 February 2022
Issue date: March 2022

Copyright

© The author(s) 2021

Acknowledgements

Acknowledgment

I would like to thank Briggs Buchanan, Hyejin Youn, Chris Kempes, Geoffrey West, Jose Lobo, Eric Rupley, Giovanni Petri, Sam Scarpino, and Rob Walker for invaluable discussions of many of the topics raised in this paper, as well as two anonymous reviewers for their thoughtful comments. I would like to thank the Fondation IMéRA − Institut d'études avancées, Aix Marseille Université for funding a residential workshop over the summer of 2016 where many of these issues were first discussed. I also thank Tim A. Kohler, David H. Wolpert, Darcy Bird, and the Santa Fe Institute for organizing and funding this working group.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return