AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iEnergy Article
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

The development of solid oxide co-electrolysis of H2O and CO2 on large-size cells and stacks

Jingjing Liang1Jianzhong Zhu1Minfang Han1( )Xiufu Hua2Duruo Li2Meng Ni3
Fuel Cell and Energy Storage Center, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China
Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong 999077, China
Show Author Information

Abstract

In the context of carbon neutrality, conversion of CO2 into CO is an effective way for negative carbon emission. Electrochemical reduction is a novel developed pathway, among which, solid oxide co-electrolysis technology is promising for its high efficiency and low electricity demand. Researches concerning the large-size cell and stack of application level are important. This review, targeting at the not yet fully understood reaction mechanism and the most concerning issue of durability, details the reported factors playing important roles in the reaction mechanism and durability of co-electrolysis. It is found that the operating conditions such as inlet mixtures and applied current significantly affect the reaction mechanism of co-electrolysis and the experiments on button cells can not reflect the real reaction mechanism on industrial-size cells. Besides, the durability test of large-size single cells and stacks at high current with high conversion rate and the potential of solid oxide co-electrolysis combing with intermittent renewable energy are also reviewed and demonstrated. Finally, an outlook for future exploration is also offered.

References

[1]

Kamkeng, A. D. N., Wang, M., Hu, J., Du, W., Qian, F. (2021). Transformation technologies for CO2 utilisation: Current status, challenges and future prospects. Chemical Engineering Journal, 409: 128138.

[2]

Graves, C., Ebbesen, S. D., Mogensen, M., Lackner, K. S. (2011). Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renewable and Sustainable Energy Reviews, 15: 1–23.

[3]

Yaashikaa, P. R., Senthil Kumar, P., Varjani, S. J., Saravanan, A. (2019). A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. Journal of CO2 Utilization, 33: 131–147.

[4]

Lu, Q., Jiao, F. (2016). Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering. Nano Energy, 29: 439–456.

[5]

Jia, S., Ma, X., Sun, X., Han, B. (2022). Electrochemical transformation of CO2 to value-added chemicals and fuels. CCS Chemistry, 4: 3213–3229.

[6]

Zhu, Q. (2019). Developments on CO2-utilization technologies. Clean Energy, 3: 85–100.

[7]

Küngas, R. (2020). Review-electrochemical CO2 reduction for CO production: Comparison of low-and high-temperature electrolysis technologies. Journal of The Electrochemical Society, 167: 044508.

[8]

Sapountzi, F., Gracia, J., Weststrate, C. J., Fredriksson, H., Niemantsverdriet, J. (2017). Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Progress in Energy and Combustion Science, 58: 1–35.

[9]

Wei, B., Hao, J., Ge, B., Luo, W., Chen, Y., Xiong, Y., Li, L., Shi, W. (2022). Highly efficient electrochemical carbon dioxide reduction to syngas with tunable ratios over pyridinic- nitrogen rich ultrathin carbon nanosheets. Journal of Colloid and Interface Science, 608: 2650–2659.

[10]

Kim, S. W., Kim, H., Yoon, K. J., Lee, J. H., Kim, B. K., Choi, W., Lee, J. H., Hong, J. (2015). Reactions and mass transport in high temperature co-electrolysis of steam/CO2 mixtures for syngas production. Journal of Power Sources, 280: 630–639.

[11]

Stoots Carl, M., O’Brien James, E., Stephen, H. J., Hartvigsen Joseph, J. (2009). Syngas production via high-temperature coelectrolysis of steam and carbon dioxide. Journal of Fuel Cell Science and Technology, 6: 011014.

[12]

Ebbesen, S. D., Knibbe, R., Mogensen, M. (2012). Co-electrolysis of steam and carbon dioxide in solid oxide cells. Journal of The Electrochemical Society, 159: F482–F489.

[13]
Dittrich, L. (2021). Tailoring of the synthesis gas Composition during high-temperature co-electrolysis. PhD Thesis. RWTH Aachen University, Germany.
[14]

Hua, Y., Wang, J., Min, T., Gao, Z. (2022). Electrochemical CO2 conversion towards syngas: Recent catalysts and improving strategies for ratio-tunable syngas. Journal of Power Sources, 535: 231453.

[15]

Foit, S. R., Dittrich, L., Vibhu, V., Vinke, I. C., Eichel, R. A., de Haart, L. G. J. (2017). Co-electrolysis, Quo Vadis. ECS Transactions, 78: 3139.

[16]

Sun, X., Chen, M., Liu, Y.L., Hjalmarsson, P., Ebbesen, S., Jensen, S., Mogensen, M., Hendriksen, P. (2012). Performance and durability of solid oxide electrolysis cells for syngas production. Journal of The Electrochemical Society, 160: F1074–F1080.

[17]

Chen, M., Høgh, J., Nielsen, J., Bentzen, J., Ebbesen, S., Hendriksen, P. (2013). High temperature co‐electrolysis of steam and CO2 in an SOC stack: Performance and durability. Fuel Cells, 13: 638–645.

[18]

Song, Y., Zhou, Z., Zhang, X., Zhou, Y., Gong, H., Lv, H., Liu, Q., Wang, G., Bao, X. (2018). Pure CO2 electrolysis over an Ni/YSZ cathode in a solid oxide electrolysis cell. Journal of Materials Chemistry A, 6: 13661–13667.

[19]

Wolf Stephanie, E., Lucy, D., Markus, N., Tobias, D., Vinke Izaak, C., Eichel Rüdiger-, A., (Bert) de Haart, L. G. J. (2022). Boundary investigation of high-temperature co-electrolysis towards direct CO2 electrolysis. Journal of the Electrochemical Society, 169: 034531.

[20]

Ioannidou, E., Chavani, M., Neophytides, S. G., Niakolas, D. K. (2021). Effect of the PH2O/PCO2 and PH2 on the intrinsic electro-catalytic interactions and the CO production pathway on Ni/GDC during solid oxide H2O/CO2 co-electrolysis. Journal of Catalysis, 404: 174–186.

[21]

Li, W., Wang, H., Shi, Y., Cai, N. (2013). Performance and methane production characteristics of H2O–CO2 co-electrolysis in solid oxide electrolysis cells. International Journal of Hydrogen Energy, 38: 11104–11109.

[22]

Liang, J., Han, M. (2022). Different performance and mechanisms of CO2 electrolysis with CO and H2 as protective gases in solid oxide electrolysis cell. International Journal of Hydrogen Energy, 47: 18606–18618.

[23]

Liang, J., Wang, Y., Zhu, J., Han, M., Sun, K., Sun, Z. (2023). Investigation on the reaction mechanism of solid oxide co-electrolysis with different inlet mixtures based on the comparison of CO2 electrolysis and H2O electrolysis. Energy Conversion and Management, 277: 116621.

[24]
Stoots, C., Herring, J., Hartvigsen, J. (2008). Recent progress At the Idaho national laboratory in high temperature electrolysis for hydrogen and syngas production. In: Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition, Boston, MA, USA.
[25]

Thaler, F., Fang, Q., de Haart, U., De Haart, L. G. J. B., Peters, R., Blum, L. (2021). Performance and stability of solid oxide cell stacks in CO2-electrolysis mode. ECS Transactions, 103: 363–374.

[26]

Ebbesen, S. D., Graves, C., Mogensen, M. (2009). Production of synthetic fuels by co-electrolysis of steam and carbon dioxide. International Journal of Green Energy, 6: 646–660.

[27]

Li, Q., Zheng, Y., Sun, Y., Li, T., Xu, C., Wang, W., Chan, S. H. (2019). Understanding the occurrence of the individual CO2 electrolysis during H2O-CO2 co-electrolysis in classic planar Ni-YSZ/YSZ/LSM-YSZ solid oxide cells. Electrochimica Acta, 318: 440–448.

[28]
Wu, A., Li, C., Han, B., Liu, W., Zhang, Y., Hanson, S., Guan, W., Singhal, S. (2022). Pulsed electrolysis of carbon dioxide by large-scale solid oxide electrolytic cells for intermittent renewable energy storage. Carbon Energy, https://doi.org/10.1002/cey2.262.
[29]

Schiller, G., Bessler, W. G., Friedrich, K. A., Gewies, S., Willich, C. (2009). Spatially resolved electrochemical performance in a segmented planar SOFC. ECS Transactions, 17: 79–87.

[30]

Ni, M. (2012). D thermal modeling of a solid oxide electrolyzer cell (SOEC) for syngas production by H2O/CO2 co-electrolysis. International Journal of Hydrogen Energy, 37: 6389–6399.

[31]

Rao, M., Sun, X., Hagen, A. (2018). A comparative study of durability of solid oxide electrolysis cells tested for co-electrolysis under galvanostatic and potentiostatic conditions. Journal of the Electrochemical Society, 165: F748–F755.

[32]

Graves, C., Ebbesen, S. D., Mogensen, M. (2011). Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability. Solid State Ionics, 192: 398–403.

[33]

Sun, X., Chen, M., Hjalmarsson, P., Ebbesen, S. D., Jensen, S. H., Mogensen, M., Hendriksen, P. V. (2012). Performance and durability of solid oxide electrolysis cells for syngas production. ECS Transactions, 41: 77–85.

[34]

Jeong, H. Y., Kim, S. W., Bae, Y., Yoon, K. J., Lee, J. H., Hong, J. (2019). Effect of Fe infiltration to Ni/YSZ solid-oxide-cell fuel electrode on steam/CO2 co-electrolysis. International Journal of Energy Research, 43: 4949–4958.

[35]

Xi, C., Sang, J., Wu, A., Yang, J., Qi, X., Guan, W., Wang, J., Singhal, S. C. (2022). Electrochemical performance and durability of flat-tube solid oxide electrolysis cells for H2O/CO2 co-electrolysis. International Journal of Hydrogen Energy, 47: 10166–10174.

[36]

Lu, L., Liu, W., Wang, J., Wang, Y., Xia, C., Zhou, X. D., Chen, M., Guan, W. (2020). Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis cell based on double-sided air electrodes. Applied Energy, 259: 114130.

[37]

Anelli, S., Hernández, E., Bernadet, L., Sun, X., Hagen, A., Baiutti, F., Torrell, M., Tarancón, A. (2020). Co-electrolysis of steam and carbon dioxide in large area solid oxide cells based on infiltrated mesoporous oxygen electrodes. Journal of Power Sources, 478: 228774.

[38]

Hjalmarsson, P., Sun, X., Liu, Y.L., Chen, M. (2013). Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells. Journal of Power Sources, 223: 349–357.

[39]

Tao, Y., Ebbesen, S., Mogensen, M. (2013). Degradation of solid oxide cells during co-electrolysis of H2O and CO2: Carbon deposition under high current densities. ECS Transactions, 50: 139.

[40]

Chen, M., Liu, Y. L., Bentzen, J., Zhang, W., Sun, X., Hauch, A., Tao, Y., Bowen, J., Hendriksen, P. (2013). Microstructural degradation of Ni/YSZ electrodes in solid oxide electrolysis cells under high current. Journal of The Electrochemical Society, 160: F883–F891.

[41]

Tao, Y., Ebbesen, S. D., Mogensen, M. B. (2016). Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities. Journal of Power Sources, 328: 452–462.

[42]

Hjalmarsson, P., Sun, X., Liu, Y.L., Chen, M. (2014). Durability of high performance Ni–yttria stabilized zirconia supported solid oxide electrolysis cells at high current density. Journal of Power Sources, 262: 316–322.

[43]

Sun, X., Liu, Y., Hendriksen, P., Chen, M. (2021). An operation strategy for mitigating the degradation of solid oxide electrolysis cells for syngas production. Journal of Power Sources, 506: 230136.

[44]

Fu, Q., Mabilat, C., Zahid, M., Brisse, A., Gautier, L. (2010). Syngas production via high-temperature steam/CO2 co-electrolysis: An economic assessment. Energy and Environmental Science, 3: 1382–1397.

[45]
Ebbesen, S., Graves, C., Hauch, A., Jensen, S., Mogensen, M. (2010). Poisoning of solid oxide electrolysis cells by impurities. Journal of The Electrochemical Society, 157: B1419.
[46]
Ebbesen, S., Høgh, J., Nielsen, K. A., Nielsen, J., Mogensen, M. (2011). Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis. International Journal of Hydrogen Energy, 36: 7363–7373.
[47]
Agersted, K., Chen, M., Blennow, P., Küngas, R., Hendriksen, P. (2016). Long-term operation of a solid oxide cell stack for coelectrolysis of steam and CO2. In: Proceedings of the 12th European SOFC & SOE Forum, Lucerne, Switzerland.
[48]

Schäfer, D., Fang, Q., Blum, L., & Stolten, D. (2019). Syngas production performance and degradation analysis of a solid oxide electrolyzer stack. Journal of Power Sources, 433: 126666.

[49]

Theuer, T., Schäfer, D., Dittrich, L., Nohl, M., Foit, S., Blum, L., Eichel, R. A., de Haart, L. G. J. (2020). Sustainable syngas production by high-temperature co-electrolysis. Chemie-Ingenieur-Technik, 92: 40–44.

[50]

Schäfer, D., Janßen, T., Fang, Q., Merten, F., Blum, L. (2021). System-Supporting Operation of Solid-Oxide Electrolysis Stacks. Energies, 14: 544.

[51]

Posdziech, O., Schwarze, K., Brabandt, J. (2019). Efficient hydrogen production for industry and electricity storage via high-temperature electrolysis. International Journal of Hydrogen Energy, 44: 19089–19101.

[52]

Schefold, J., Brisse, A., Surrey, A., & Walter, C. (2020). 80,000 current on/off cycles in a one year long steam electrolysis test with a solid oxide cell. International Journal of Hydrogen Energy, 45: 5143–5154.

[53]

Mogensen, M. B., Chen, M., Frandsen, H. L., Graves, C., Hansen, J. B., Hansen, K. V., Hauch, A., Jacobsen, T., Jensen, S. H., Skafte, T. L., Sun, X. (2019). Reversible solid-oxide cells for clean and sustainable energy. Clean Energy, 3: 175–201.

[54]

Blum, L., Fang, Q., de Haart, L. D., Malzbender, J., Margaritis, N., Menzler, N., Peters, R. (2019). Forschungszentrum jülich–progress in SOC development. ECS Transactions, 91: 2443–2453.

[55]
Rao, M., Sun, X., Hagen, A. (2020). Durability of solid oxide electrolysis stack under dynamic load cycling for syngas production. Journal of Power Sources, 451: 227781.
iEnergy
Pages 109-118
Cite this article:
Liang J, Zhu J, Han M, et al. The development of solid oxide co-electrolysis of H2O and CO2 on large-size cells and stacks. iEnergy, 2023, 2(2): 109-118. https://doi.org/10.23919/IEN.2023.0007

1204

Views

151

Downloads

4

Crossref

0

Web of Science

4

Scopus

Altmetrics

Received: 16 February 2023
Revised: 14 March 2023
Accepted: 24 March 2023
Published: 01 June 2023
© The author(s) 2023.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return