Journal Home > Volume 1 , Issue 2

High-specific-energy batteries with long-lifespan are the development aspiration for energy storage applications. Metal electrodes with high specific capacity and low reduction potential are potential candidates for next-generation high-specific-energy batteries. Nevertheless, the stability of the metal electrode batteries is constantly suffered from the unstable interface issue during the plating/stripping process, such as dendrite formation, dynamic evolution of solid electrolyte interphase, and other accompanied side reactions. To solve these challenges, numerous researches have been intensively studied based on the interfacial engineering of metal electrodes, including electrode configuration optimization, interfacial chemistry regulation and solid–solid interface construction, and the recent progress is elaborately introduced in this paper. Nevertheless, the dendrite issues cannot be entirely prohibited in solid metal electrodes, which motivate the search for potential alternatives. Liquid-metal electrodes with completely reversible structural changes and high mass transfer rate are rendered as an effective approach to solve the dendrite problem. Therefore, the development of liquid metal electrode batteries is reviewed in this paper, in which the interfacial issues are explicated and some commendable achievements are summarized. In the end, the implementation of interfacial engineering and the development roadmap of the metal electrode batteries are prospected.


menu
Abstract
Full text
Outline
About this article

The interfacial engineering of metal electrodes for high-specific-energy and long-lifespan batteries

Show Author's information Haomiao Li1,2,TYi Shen1,2,3,TZhuchan Zhang2Anran Cheng2Kangli Wang1,2( )Xianbo Zhou1Peng Cai3Yujie Zhang3Mengjun Li3Min Zhou1,2Wei Wang1,2Ruxing Wang1,2Kai Jiang1,2( )
School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
School of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

High-specific-energy batteries with long-lifespan are the development aspiration for energy storage applications. Metal electrodes with high specific capacity and low reduction potential are potential candidates for next-generation high-specific-energy batteries. Nevertheless, the stability of the metal electrode batteries is constantly suffered from the unstable interface issue during the plating/stripping process, such as dendrite formation, dynamic evolution of solid electrolyte interphase, and other accompanied side reactions. To solve these challenges, numerous researches have been intensively studied based on the interfacial engineering of metal electrodes, including electrode configuration optimization, interfacial chemistry regulation and solid–solid interface construction, and the recent progress is elaborately introduced in this paper. Nevertheless, the dendrite issues cannot be entirely prohibited in solid metal electrodes, which motivate the search for potential alternatives. Liquid-metal electrodes with completely reversible structural changes and high mass transfer rate are rendered as an effective approach to solve the dendrite problem. Therefore, the development of liquid metal electrode batteries is reviewed in this paper, in which the interfacial issues are explicated and some commendable achievements are summarized. In the end, the implementation of interfacial engineering and the development roadmap of the metal electrode batteries are prospected.

Keywords: interfacial engineering, Metal electrodes, metal dendrites, solid state batteries, liquid metal batteries

References(145)

1

Ma, L., Cui, J., Yao, S., Liu, X., Luo, Y., Shen, X., Kim, J. K. (2022). Dendrite-free lithium metal and sodium metal batteries. Energy Storage Materials, 27: 522–554.

2

Laszczynski, S. V., Gorski, S. V. (1897). Leitfähigkeit von Lösungen Eniger Saltze in Pyridin. Z. Elektrochem, 4: 290–293.

3

Li, C. P., Xie, X. S., Liang, S. Q., Zhou, J. (2020). Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy & Environmental Materials, 3: 146–159.

4

Gao, X. W., Zhou, Y. N., Han, D. Z., Zhou, J. Q., Zhou, D. Z., Tang, W., Goodenough, J. B. (2020). Thermodynamic understanding of Li-dendrite formation. Joule, 4: 1864–1879.

5

Gao, M. D., Li, H., Xu, L., Xue, Q., Wang, X. R., Bai, Y., Wu, C. (2021). Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges. Journal of Energy Chemistry, 59: 666–687.

6

Chazalviel, J. (1990). Electrochemical aspects of the generation of ramified metallic electrodeposits. Physical Review A, 42: 7355–7367.

7

Ely, D., García, R. E. (2013). Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. Journal of the Electrochemical Society, 160: A662–A668.

8
Brissot, C., Rosso, M., Chazalviel, J. N., Lascaud, S. (1999). Dendritic growth mechanisms in lithium/polymer cells. Journal of Power Sources, 81–82: 925–929.
DOI
9

Guyer, J. E., Boettinger, W. J., Warren, J. A., McFadden, G. B. (2004). Phase field modeling of electrochemistry. I. Equilibrium. Physical Review E, 69: 021603.

10
Dey, A. N., Sullivan, B. P. (1970). The electrochemical decomposition of propylene carbonate on graphite. Journal of the Electrochemical Society, 117: 222.
DOI
11

Peled, E. (1979). The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model. Journal of the Electrochemical Society, 126: 2047–2051.

12

Cheng, X. B., Zhang, R., Zhao, C. Z., Zhang, Q. (2017). Toward safe lithium metal anode in rechargeable batteries: A review. Chemical Reviews, 117: 10403–10473.

13

Vogt, L. O., El Kazzi, M., Jämstorp Berg, E., Pérez Villar, S., Novák, P., Villevieille, C. (2015). Understanding the interaction of the carbonates and binder in Na-ion batteries: A combined bulk and surface study. Chemistry of Materials, 27: 1210–1216.

14

Men, S., Zheng, H., Ma, D. J., Huang, X. L., Kang, X. W. (2021). Unraveling the stabilization mechanism of solid electrolyte interface on ZnSe by rGO in sodium ion battery. Journal of Energy Chemistry, 54: 124–130.

15

Huang, J., Guo, X., Du, X., Lin, X., Huang, J. Q., Tan, H. Zhu, Y., Zhang, B. (2019). Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy & Environmental Science, 12: 1550–1557.

16

Wang, Z. H., Yang, H. Y., Liu, Y. R., Bai, Y., Chen, G. H., Li, Y., Wang, X. R., Xu, H. J., Wu, C., Lu, J. (2020). Analysis of the stable interphase responsible for the excellent electrochemical performance of graphite electrodes in sodium-ion batteries. Small, 16: 2003268.

17

Shi, S. Q., Lu, P., Liu, Z. Y., Qi, Y., Hector, L. G. Jr, Li, H., Harris, S. J. (2012). Direct calculation of Li-ion transport in the solid electrolyte interphase. Journal of the American Chemical Society, 134: 15476–15487.

18

Kim, S. P., van Duin, A. C. T., Shenoy, V. B. (2011). Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study. Journal of Power Sources, 196: 8590–8597.

19

Shi, Y., Liu, G. X., Wan, J., Wen, R., Wan, L. J. (2021). In-situ nanoscale insights into the evolution of solid electrolyte interphase shells: Revealing interfacial degradation in lithium metal batteries. Science China Chemistry, 64: 734–738.

20

Kinzer, B., Davis, A. L., Krauskopf, T., Hartmann, H., LePage, W. S., Kazyak, E., Janek, J., Dasgupta, N. P., Sakamoto, J. (2021). Operando analysis of the molten Li|LLZO interface: Understanding how the physical properties of Li affect the critical current density. Matter, 4: 1947–1961.

21

Tantratian, K., Yan, H. H., Ellwood, K., Harrison, E. T., Chen, L. (2021). Unraveling the Li penetration mechanism in polycrystalline solid electrolytes. Advanced Energy Materials, 11: 2003417.

22

Kim, S., Kim, J. S., Miara, L., Wang, Y., Jung, S. K., Park, S. Y., Song, Z., Kim, H., Badding, M., Chang, J., et al. (2022). High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility. Nature Communications, 13: 1883.

23

Beverskog, B., Puigdomenech, I. (1997). Revised pourbaix diagrams for zinc at 25–300 °C. Corrosion Science, 39: 107–114.

24

Lukatskaya, M. R., Dunn, B., Gogotsi, Y. (2016). Multidimensional materials and device architectures for future hybrid energy storage. Nature Communications, 7: 12647.

25

Yue, Y., Liang, H. (2018). 3D current collectors for lithium-ion batteries: A topical review. Small Methods, 2: 1800056.

26

Liu, S., Tang, S., Zhang, X. Y., Wang, A. X., Yang, Q. H., Luo, J. Y. (2017). Porous Al current collector for dendrite-free Na metal anodes. Nano Letters, 17: 5862–5868.

27

Sim, W. H., Jeong, H. M. (2021). Efficient lithium growth control from ordered nitrogen-chelated lithium-ion for high performance lithium metal batteries. Advanced Science, 8: 2002144.

28

Zhang, R., Wen, S. W., Wang, N., Qin, K. Q., Liu, E. Z., Shi, C. S., Zhao, N. Q. (2018). N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes. Advanced Energy Materials, 8: 1800914.

29

Sun, J. C., Guo, C. P., Cai, Y. J., Li, J. J., Sun, X. Q., Shi, W. J., Ai, S. Y., Chen, C. C., Jiang, F. Y. (2019). Dendrite-free and long-life Na metal anode achieved by 3D porous Cu. Electrochimica Acta, 309: 18–24.

30

Pan, L. H., Luo, Z. F., Zhang, Y. T., Chen, W. L., Zhao, Z. H., Li, Y. Y., Wan, J., Yu, D. D., He, H. Y., Wang, D. Y. (2019). Seed-free selective deposition of lithium metal into tough graphene framework for stable lithium metal anode. ACS Applied Materials & Interfaces, 11: 44383–44389.

31

Jin, D., Park, J., Ryou, M. H., Lee, Y. M. (2020). Structure-controlled Li metal electrodes for post-Li-ion batteries: Recent progress and perspectives. Advanced Materials Interfaces, 7: 1902113.

32

Chen, K. H., Sanchez, A. J., Kazyak, E., Davis, A. L., Dasgupta, N. P. (2019). Synergistic effect of 3D current collectors and ALD surface modification for high coulombic efficiency lithium metal anodes. Advanced Energy Materials, 9: 1802534.

33

Wu, S. L., Jiao, T. P., Yang, S. R., Liu, B., Zhang, W. J., Zhang, K. L. (2019). Lithiophilicity conversion of the Cu surface through facile thermal oxidation: Boosting a stable Li–Cu composite anode through melt infusion. Journal of Materials Chemistry A, 7: 5726–5732.

34

Huang, X., Feng, X. Y., Zhang, B., Zhang, L., Zhang, S. C., Gao, B., Chu, P. K., Huo, K. F. (2019). Lithiated NiCo2O4 nanorods anchored on 3D nickel foam enable homogeneous Li plating/stripping for high-power dendrite-free lithium metal anode. ACS Applied Materials & Interfaces, 11: 31824–31831.

35

Lin, H. N., Zhang, Z. W., Wang, Y. D., Zhang, X. L., Tie, Z. X., Jin, Z. (2021). Template-sacrificed hot fusion construction and nanoseed modification of 3D porous copper nanoscaffold host for stable-cycling lithium metal anodes. Advanced Functional Materials, 31: 2102735.

36

Li, J., Zou, P. C., Chiang, S. W., Yao, W. T., Wang, Y., Liu, P., Liang, C. W., Kang, F. Y., Yang, C. (2020). A conductive-dielectric gradient framework for stable lithium metal anode. Energy Storage Materials, 24: 700–706.

37

Wang, C. L., Wang, H., Matios, E., Hu, X. F., Li, W. Y. (2018). A chemically engineered porous copper matrix with cylindrical core–shell skeleton as a stable host for metallic sodium anodes. Advanced Functional Materials, 28: 1802282.

38

Guo, W. B., Cong, Z. F., Guo, Z. H., Chang, C. Y., Liang, X. Q., Liu, Y. D., Hu, W. G., Pu, X. (2020). Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries. Energy Storage Materials, 30: 104–112.

39

Fan, X. Y., Yang, H., Wang, X. X., Han, J. X., Wu, Y., Gou, L., Li, D. L., Ding, Y. L. (2021). Enabling stable Zn anode via a facile alloying strategy and 3D foam structure. Advanced Materials Interfaces, 8: 2002184.

40

Liu, L, Yin, Y. X., Li, J. Y., Wang, S. H., Guo, Y. G., Wan, L. J. (2018). Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Advanced Materials, 30: 1706216.

41

Wang, T. S., Liu, X. B., Wang, Y., Fan, L. Z. (2021). High areal capacity dendrite-free Li anode enabled by metal–organic framework-derived nanorod array modified carbon cloth for solid state Li metal batteries. Advanced Functional Materials, 31: 2001973.

42

Li, T. J., Sun, J. C., Gao, S. Z., Xiao, B., Cheng, J. B., Zhou, Y. L., Sun, X. Q., Jiang, F. Y., Yan, Z. H., Xiong, S. L. (2021). Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure. Advanced Energy Materials, 11: 2003699.

43

Chi, S. S., Qi, X. G., Hu, Y. S., Fan, L. Z. (2018). 3D flexible carbon felt host for highly stable sodium metal anodes. Advanced Energy Materials, 8: 1702764.

44

Zeng, Y. X., Zhang, X. Y., Qin, R. F., Liu, X. Q., Fang, P. P., Zheng, D. Z., Tong, Y. X., Lu, X. H. (2019). Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Advanced Materials, 31: e1903675.

45

Xue, P., Guo, C., Wang, N., Zhu, K., Jing, S., Kong, S., Zhang, X., Li, L., Li, H., Feng, Y., et al. (2021). Synergistic manipulation of Zn2+ ion flux and nucleation induction effect enabled by 3D hollow SiO2/TiO2/carbon fiber for long-lifespan and dendrite-free Zn-metal composite anodes. Advanced Functional Materials, 31: 2106417.

46

Gu, Y., Xu, H. Y., Zhang, X. G., Wang, W. W., He, J. W., Tang, S., Yan, J. W., Wu, D. Y., Zheng, M. S., Dong, Q. F., et al. (2019). Lithiophilic faceted Cu (100) surfaces: High utilization of host surface and cavities for lithium metal anodes. Angewandte Chemie International Edition, 58: 3092–3096.

47

Zheng, J. X., Zhao, Q., Tang, T., Yin, J. F., Quilty, C. D., Renderos, G. D., Liu, X., Deng, Y., Wang, L., Bock, D. C., et al. (2019). Reversible epitaxial electrodeposition of metals in battery anodes. Science, 366: 645–648.

48

Zhang, Y., Han, X., Liu, R., Yang, Z., Zhang, S., Zhang, Y., Wang, H., Cao, Y., Chen, A., Sun, J. (2022). Manipulating the Zinc deposition behavior in hexagonal patterns at the preferential Zn (100) crystal plane to construct surficial dendrite-free zinc metal anode. Small, 18: 2105978.

49

Liang, X., Pang, Q., Kochetkov, I. R., Sempere, M. S., Huang, H., Sun, X. Q., Nazar, L. F. (2017). A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy, 2: 17119.

50

Baggetto, L., Keum, J. K., Browning, J. F., Veith, G. M. (2013). Germanium as negative electrode material for sodium-ion batteries. Electrochemistry Communications, 34: 41–44.

51

Liu, B. T., Wang, S. J., Wang, Z. L., Lei, H., Chen, Z. T., Mai, W. J. (2020). Novel 3D nanoporous Zn-Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries. Small, 16: e2001323.

52

Ye, H., Zheng, Z. J., Yao, H. R., Liu, S. C., Zuo, T. T., Wu, X. W., Yin, Y. X., Li, N. W., Gu, J. J., Cao, F. F., et al. (2019). Guiding uniform Li plating/stripping through lithium–aluminum alloying medium for long-life Li metal batteries. Angewandte Chemie, 131: 1106–1111.

53

Sultana, I., Rahman, M. M., Chen, Y., Glushenkov, A. M. (2018). Potassium-ion battery anode materials operating through the alloying–dealloying reaction mechanism. Advanced Functional Materials, 28: 1703857.

54

von Aspern, N., Röschenthaler, G. V., Winter, M., Cekic–Laskovic, I. (2019). Fluor und lithium: Ideale partner für elektrolyte in wiederaufladbaren hochleistungsbatterien. Angewandte Chemie, 131: 16124–16147.

55

Zhang, X. Q., Cheng, X. B., Chen, X., Yan, C., Zhang, Q. (2017). Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Advanced Functional Materials, 27: 1605989.

56

Yu, Z. A., Wang, H. S., Kong, X., Huang, W., Tsao, Y., Mackanic, D. G., Wang, K. C., Wang, X. C., Huang, W. X., Choudhury, S., et al. (2020). Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nature Energy, 5: 526–533.

57

Wang, H. S., Yu, Z. A., Kong, X., Huang, W., Zhang, Z. W., Mackanic, D. G., Huang, X. Y., Qin, J., Bao, Z. N., Cui, Y. (2021). Dual-solvent Li-ion solvation enables high-performance Li-metal batteries. Advanced Materials, 33: e2008619.

58

Lin, D. C., Liu, Y. Y., Cui, Y. (2017). Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 12: 194–206.

59

Yamada, Y., Furukawa, K., Sodeyama, K., Kikuchi, K., Yaegashi, M., Tateyama, Y., Yamada, A. (2014). Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. Journal of the American Chemical Society, 136: 5039–5046.

60

Lu, H., Zhu, Y., Yuan, Y., He, L., Zheng, B., Zheng, X. Z., Liu, C. C., Du, H. L. (2021). LiFSI as a functional additive of the fluorinated electrolyte for rechargeable Li-S batteries. Journal of Materials Science: Materials in Electronics, 32: 5898–5906.

61

Li, X., Zheng, J. M., Engelhard, M. H., Mei, D. H., Li, Q. Y., Jiao, S. H., Liu, N., Zhao, W. G., Zhang, J. G., Xu, W. (2018). Effects of imide–orthoborate dual-salt mixtures in organic carbonate electrolytes on the stability of lithium metal batteries. ACS Applied Materials & Interfaces, 10: 2469–2479.

62

Xiang, H. F., Shi, P. C., Bhattacharya, P., Chen, X. L., Mei, D. H., Bowden, M. E., Zheng, J. M., Zhang, J. G., Xu, W. (2016). Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes. Journal of Power Sources, 318: 170–177.

63

Brown, Z., Lucht, B. (2018). Synergistic performance of lithium difluoro(oxalato)borate and fluoroethylene carbonate in carbonate electrolytes for lithium metal anodes. Journal of The Electrochemical Society, 166: A5117.

64

Judez, X., Zhang, H., Li, C., González-Marcos, J. A., Zhou, Z., Armand, M., Rodriguez-Martinez, L. M. (2017). Lithium bis (fluorosulfonyl) imide/poly (ethylene oxide) polymer electrolyte for all solid-state Li–S cell. The Journal of Physical Chemistry Letters, 8: 1956–1960.

65

Hilder, M., Howlett, P. C., Saurel, D., Gonzalo, E., Basile, A., Armand, M., Rojo, T., Kar, M., MacFarlane, D. R., Forsyth, M. (2018). The effect of cation chemistry on physicochemical behaviour of superconcentrated NaFSI based ionic liquid electrolytes and the implications for Na battery performance. Electrochimica Acta, 268: 94–100.

66

Kim, H. J., Voronina, N., Yashiro, H., Myung, S. T. (2020). High-voltage stability in KFSI nonaqueous carbonate solutions for potassium-ion batteries: Current collectors and coin-cell components. ACS Applied Materials & Interfaces, 12: 42723–42733.

67

Zheng, Y., Soto, F. A., Ponce, V., Seminario, J. M., Cao, X., Zhang, J. G., Balbuena, P. B. (2019). Localized high concentration electrolyte behavior near a lithium–metal anode surface. Journal of Materials Chemistry A, 7: 25047–25055.

68

Geng, C. X., Buchholz, D., Kim, G. T., Carvalho, D. V., Zhang, H., Chagas, L. G., Passerini, S. (2019). Influence of salt concentration on the properties of sodium-based electrolytes. Small Methods, 3: 1800208.

69

Zhang, Y., Zuo, T. T., Popovic, J., Lim, K., Yin, Y. X., Maier, J., Guo, Y. G. (2020). Towards better Li metal anodes: Challenges and strategies. Materials Today, 33: 56–74.

70

Wang, Y. L., Duan, J. L., Duan, Y. Y., Zhao, Y. Y., Pang, Z. B., He, B. L., Tang, Q. W. (2017). Interfacial engineering of hybridized solar cells for simultaneously harvesting solar and rain energies. Journal of Materials Chemistry A, 5: 18551–18560.

71

Li, J. Q., Yang, Y., Wang, J., Zhang, P., Zhao, J. B. (2017). Electrophoretic deposition of MnOx@Carbon nanotubes film with nest-like structure as high-performance anode for lithium-ion batteries. ChemElectroChem, 4: 679–685.

72

Wang, M. M., Wang, P., Li, C. P., Li, H. J., Jin, Y. D. (2018). Boosting electrocatalytic oxygen evolution performance of ultrathin Co/Ni-MOF nanosheets via plasmon-induced hot carriers. ACS Applied Materials & Interfaces, 10: 37095–37102.

73

Zhao, Y., Goncharova, L. V., Lushington, A., Sun, Q., Yadegari, H., Wang, B., Xiao, W., Li, R., Sun, X. (2017). Superior stable and long life sodium metal anodes achieved by atomic layer deposition. Advanced Materials, 29: 1606663.

74

Zhao, K. N., Wang, C. X., Yu, Y. H., Yan, M. Y., Wei, Q. L., He, P., Dong, Y. F., Zhang, Z. Y., Wang, X. D., Mai, L. Q. (2018). Ultrathin surface coating enables stabilized zinc metal anode. Advanced Materials Interfaces, 5: 1800848.

75

Hu, J. M., Ding, J., Zhong , Q. (2020). In situ fabrication of amorphous TiO2/NH2-MIL-125(Ti) for enhanced photocatalytic CO2 into CH4 with H2O under visible-light irradiation. Journal of Colloid and Interface Science, 560: 857–865.

76

Gao, Y., Yan, Z. F., Gray, J. L., He, X., Wang, D. W., Chen, T. H., Huang, Q. Q., Li, Y. C., Wang, H. Y., Kim, S. H., et al. (2019). Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nature Materials, 18: 384–389.

77

Zhang, H. M., Liao, X. B., Guan, Y. P., Xiang, Y., Li, M., Zhang, W. F., Zhu, X. Y., Ming, H., Lu, L., Qiu, J. Y., et al. (2018). Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nature Communications, 9: 3729.

78

Li, P. L., Dong, X. L., Li, C., Liu, J. Y., Liu, Y., Feng, W. L., Wang, C. X., Wang, Y. G., Xia, Y. Y. (2019). Anchoring an artificial solid–electrolyte interphase layer on a 3D current collector for high-performance lithium anodes. Angewandte Chemie International Edition, 58: 2093–2097.

79

Chi, X. W., Hao, F., Zhang, J. B., Wu, X. W., Zhang, Y., Gheytani, S., Wen, Z. Y., Yao, Y. (2019). A high-energy quinone-based all-solid-state sodium metal battery. Nano Energy, 62: 718–724.

80

Choudhury, S., Wei, S. Y., Ozhabes, Y., Gunceler, D., Zachman, M. J., Tu, Z. Y., Shin, J. H., Nath, P., Agrawal, A., Kourkoutis, L. F., et al. (2017). Designing solid-liquid interphases for sodium batteries. Nature Communications, 8: 898.

81

Tang, X., Zhou, D., Li, P., Guo, X., Sun, B., Liu, H., Yan, K., Gogotsi, Y., Wang, G. X. (2020). MXene-based dendrite-free potassium metal batteries. Advanced Materials, 32: e1906739.

82

Liu, P. C., Wang, Y. X., Gu, Q. L., Nanda, J., Watt, J., Mitlin, D. (2020). Dendrite-free potassium metal anodes in a carbonate electrolyte. Advanced Materials, 32: e1906735.

83

Yang, Q., Ding, Y., He, G. (2020). An amalgam route to stabilize potassium metal anodes over a wide temperature range. Chemical Communications, 56: 3512–3515.

84

Liu, M. K., Cai, J. Y., Ao, H. S., Hou, Z. G., Zhu, Y. C., Qian, Y. T. (2020). NaTi2(PO4)3 solid-state electrolyte protection layer on Zn metal anode for superior long-life aqueous zinc-ion batteries. Advanced Functional Materials, 30: 2004885.

85

Zhao, Y., Goncharova, L. V., Zhang, Q., Kaghazchi, P., Sun, Q., Lushington, A., Wang, B. Q., Li, R. Y., Sun, X. L. (2017). Inorganic–organic coating via molecular layer deposition enables long life sodium metal anode. Nano Letters, 17: 5653–5659.

86

Zou, K. Y., Cai, P., Deng, X. L., Wang, B. W., Liu, C., Luo, Z., Lou, X. M., Hou, H. S., Zou, G. Q., Ji, X. B. (2021). Correction: Highly stable zinc metal anode enabled by oxygen functional groups for advanced Zn-ion supercapacitors. Chemical Communications, 57: 2571–2572.

87

Cai, M. L., Lu, Y., Su, J. M., Ruan, Y. D., Chen, C. H., Chowdari, B. V. R., Wen, Z. Y. (2019). In situ lithiophilic layer from H+/Li+ exchange on garnet surface for the stable lithium-solid electrolyte interface. ACS Applied Materials & Interfaces, 11: 35030–35038.

88

Cai, M. L., Lu, Y., Yao, L., Jin, J., Wen, Z. Y. (2021). Robust conversion-type Li/garnet interphases from metal salt solutions. Chemical Engineering Journal, 417: 129158.

89

Zheng, H. P., Wu, S. P., Tian, R., Xu, Z. M., Zhu, H., Duan, H. N., Liu, H. Z. (2020). Intrinsic lithiophilicity of Li–garnet electrolytes enabling high-rate lithium cycling. Advanced Functional Materials, 30: 1906189.

90

Wu, J. F., Pu, B. W., Wang, D., Shi, S. Q., Zhao, N., Guo, X. X., Guo, X. (2019). In situ formed shields enabling Li2CO3-free solid electrolytes: A new route to uncover the intrinsic lithiophilicity of garnet electrolytes for dendrite-free Li-metal batteries. ACS Applied Materials & Interfaces, 11: 898–905.

91

Ruan, Y. D., Lu, Y., Li, Y. P., Zheng, C. J., Su, J. M., Jin, J., Xiu, T. P., Song, Z., Badding, M. E., Wen, Z. Y. (2020). A 3D cross-linking lithiophilic and electronically insulating interfacial engineering for garnet-type solid-state lithium batteries. Advanced Functional Materials, 31: 2007815.

92

Xu, R., Liu, F., Ye, Y. S., Chen, H., Yang, R. R., Ma, Y. X., Huang, W. X., Wan, J. Y., Cui, Y. (2021). A morphologically stable Li/electrolyte interface for all-solid-state batteries enabled by 3D-micropatterned garnet. Advanced Materials, 33: e2104009.

93

Ruan, Y. D., Lu, Y., Li, Y. P., Zheng, C. J., Su, J. M., Jin, J., Xiu, T. P., Song, Z., Badding, M. E., Wen, Z. Y. (2021). A 3D cross-linking lithiophilic and electronically insulating interfacial engineering for garnet-type solid-state lithium batteries. Advanced Functional Materials, 31: 2007815.

94

Ji, X., Hou, S., Wang, P. F., He, X. Z., Piao, N., Chen, J., Fan, X. L., Wang, C. S. (2020). Solid-state electrolyte design for lithium dendrite suppression. Advanced Materials, 32: e2002741.

95
Xu, H. J., Cao, G. Q., Shen, Y. L., Yu, Y. R., Hu, J. H., Wang, Z., Shao, G. S. (2021). Enabling argyrodite sulfides as superb solid-state electrolyte with remarkable interfacial stability against electrodes. Energy & Environmental Materials, https://doi.org/10.1002/eem2.12282.
DOI
96

Zhao, F., Sun, Q., Yu, C., Zhang, S., Adair, K., Wang, S., Liu, Y., Zhao, Y., Liang, J., Wang, C., et al. (2020). Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries. ACS Energy Letters, 5: 1035–1043.

97

Liu, Y., Su, H., Li, M., Xiang, J. Y., Wu, X. Z., Zhong, Y., Wang, X. L., Xia, X. H., Gu, C. D., Tu, J. P. (2021). In situ formation of a Li3N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping. Journal of Materials Chemistry A, 9: 13531–13539.

98

Li, Y. T., Chen, X., Dolocan, A., Cui, Z. M., Xin, S., Xue, L. G., Xu, H. H., Park, K., Goodenough, J. B. (2018). Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. Journal of the American Chemical Society, 140: 6448–6455.

99

Huo, H. Y., Gao, J., Zhao, N., Zhang, D. X., Holmes, N. G., Li, X. N., Sun, Y. P., Fu, J. M., Li, R. Y., Guo, X. X., et al. (2021). A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nature Communications, 12: 176.

100

Cheng, Z. Y., Xie, M. L., Mao, Y. Y., Ou, J. X., Zhang, S. J., Zhao, Z., Li, J. L., Fu, F., Wu, J. H., Shen, Y. B., et al. (2020). Building lithiophilic ion-conduction highways on garnet-type solid-state Li+ conductors. Advanced Energy Materials, 10: 1904230.

101

Hitz, G. T., McOwen, D. W., Zhang, L., Ma, Z. H., Fu, Z. Z., Wen, Y., Gong, Y. H., Dai, J. Q., Hamann, T. R., Hu, L. B., et al. (2019). High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Materials Today, 22: 50–57.

102

Wan, H. L., Liu, S. F., Deng, T., Xu, J. J., Zhang, J. X., He, X. Z., Ji, X., Yao, X. Y., Wang, C. S. (2021). Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium–sulfur battery. ACS Energy Letters, 6: 862–868.

103
Zhang, Z. X., Zhang, L., Yan, X. L., Wang, H. Q., Liu, Y. Y., Yu, C., Cao, X. T., van Eijck, L., Wen, B. (2019). All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune. Journal of Power Sources, 410–411: 162–170.
DOI
104

Li, H. M., Yin, H. Y., Wang, K. L., Cheng, S. J., Jiang, K., Sadoway, D. R. (2016). Liquid metal electrodes for energy storage batteries. Advanced Energy Materials, 6: 1600483.

105

Hueso, K. B., Armand, M., Rojo, T. (2013). High temperature sodium batteries: Status, challenges and future trends. Energy & Environmental Science, 6: 734–749.

106

Lu, X. C., Li, G. S., Kim, J. Y., Mei, D. H., Lemmon, J. P., Sprenkle, V. L., Liu, J. (2014). Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage. Nature Communications, 5: 4578.

107

Gross, M. M., Percival, S. J., Lee, R. Y., Peretti, A. S., Spoerke, E. D., Small, L. J. (2021). A high-voltage, low-temperature molten sodium battery enabled by metal halide catholyte chemistry. Cell Reports Physical Science, 2: 100489.

108

Jin, Y., Liu, K., Lang, J. L., Zhuo, D., Huang, Z. Y., Wang, C. G., Wu, H., Cui, Y. (2018). An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. Nature Energy, 3: 732–738.

109

Bradwell, D. J., Kim, H., Sirk, A. H. C., Sadoway, D. R. (2012). Magnesium-antimony liquid metal battery for stationary energy storage. Journal of the American Chemical Society, 134: 1895–1897.

110

Wang, K. L., Jiang, K., Chung, B., Ouchi, T., Burke, P. J., Boysen, D. A., Bradwell, D. J., Kim, H., Muecke, U., Sadoway, D. R. (2014). Lithium–antimony–lead liquid metal battery for grid-level energy storage. Nature, 514: 348–350.

111

Li, H. M., Wang, K. L., Cheng, S. J., Jiang, K. (2016). High performance liquid metal battery with environmentally friendly antimony-tin positive electrode. ACS Applied Materials & Interfaces, 8: 12830–12835.

112

Yan, S., Zhou, X. B., Li, H. M., Shen, Y., He, Y. L., Zhou, H., Wang, K. L., Jiang, K. (2021). Utilizing in situ alloying reaction to achieve the self-healing, high energy density and cost-effective Li||Sb liquid metal battery. Journal of Power Sources, 514: 230578.

113

Ning, X. H., Phadke, S., Chung, B., Yin, H. Y., Burke, P., Sadoway, D. R. (2015). Self-healing Li-Bi liquid metal battery for grid-scale energy storage. Journal of Power Sources, 275: 370–376.

114

Dai, T., Zhao, Y., Ning, X. H., Narayan, R. L., Li, J., Shan, Z. W. (2018). Capacity extended bismuth-antimony cathode for high-performance liquid metal battery. Journal of Power Sources, 381: 38–45.

115

Zhao, W., Li, P., Liu, Z. W., He, D. L., Han, K., Zhao, H. L., Qu, X. H. (2018). High-performance antimony–bismuth–tin positive electrode for liquid metal battery. Chemistry of Materials, 30: 8739–8746.

116

Li, H. M., Wang, K. L., Zhou, H., Guo, X. L., Cheng, S. J., Jiang, K. (2018). Tellurium-tin based electrodes enabling liquid metal batteries for high specific energy storage applications. Energy Storage Materials, 14: 267–271.

117

Ouchi, T., Kim, H., Spatocco, B. L., Sadoway, D. R. (2016). Calcium-based multi-element chemistry for grid-scale electrochemical energy storage. Nature Communications, 7: 10999.

118

Ding, Y., Guo, X. L., Qian, Y. M., Yu, G. H. (2020). Low-temperature multielement fusible alloy-based molten sodium batteries for grid-scale energy storage. ACS Central Science, 6: 2287–2293.

119

Ding, Y., Guo, X. L., Qian, Y. M., Xue, L. G., Dolocan, A., Yu, G. H. (2020). Room-temperature all-liquid-metal batteries based on fusible alloys with regulated interfacial chemistry and wetting. Advanced Materials, 32: e2002577.

120

Ding, Y., Guo, X., Qian, Y., Zhang, L., Xue, L., Goodenough, J. B., Yu, G. (2019). A liquid-metal-enabled versatile organic alkali-ion battery. Advanced Materials, 31: e1806956.

121

Ahlbrecht, K., Bucharsky, C., Holzapfel, M., Tübke, J., Hoffmann, M. J. (2017). Investigation of the wetting behavior of Na and Na alloys on uncoated and coated Na-β”-alumina at temperatures below 150 ºC. Ionics, 23: 1319–1327.

122

Chang, H. J., Lu, X. C., Bonnett, J. F., Canfield, N. L., Han, K., Engelhard, M. H., Jung, K., Sprenkle, V. L., Li, G. S. (2018). Decorating β''-alumina solid-state electrolytes with micron Pb spherical particles for improving Na wettability at lower temperatures. Journal of Materials Chemistry A, 6: 19703–19711.

123

Jin, D. N., Choi, S., Jang, W., Soon, A., Kim, J., Moon, H., Lee, W., Lee, Y., Son, S., Park, Y. C., et al. (2019). Bismuth Islands for low-temperature sodium-beta alumina batteries. ACS Applied Materials & Interfaces, 11: 2917–2924.

124

Li, G. S., Lu, X. C., Kim, J. Y., Lemmon, J. P., Sprenkle, V. L. (2014). Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175 ºC. Journal of Power Sources, 249: 414–417.

125

Hu, Y. Y., Wen, Z. Y., Wu, X. W., Lu, Y. (2013). Nickel nanowire network coating to alleviate interfacial polarization for Na-beta battery applications. Journal of Power Sources, 240: 786–795.

126

Hu, Y. Y., Wen, Z. Y., Wu, X. W. (2014). Porous iron oxide coating on β”-alumina ceramics for Na-based batteries. Solid State Ionics, 262: 133–137.

127

Jin, D. N., Lee, H. G., Choi, S., Kim, S., Lee, Y., Son, S., Park, Y. C., Lee, J. S., Jung, K., Shim, W. (2019). Sparked reduced graphene oxide for low-temperature sodium-beta alumina batteries. Nano Letters, 19: 8811–8820.

128

Li, M. M., Lu, X. C., Zhan, X. W., Engelhard, M. H., Bonnett, J. F., Polikarpov, E., Jung, K., Reed, D. M., Sprenkle, V. L., Li, G. S. (2021). High performance sodium-sulfur batteries at low temperature enabled by superior molten Na wettability. Chemical Communications, 57: 45–48.

129

Gross, M. M., Small, L. J., Peretti, A. S., Percival, S. J., Rodriguez, M. A., Spoerke, E. D. (2020). Tin-based ionic chaperone phases to improve low temperature molten sodium–NaSICON interfaces. Journal of Materials Chemistry A, 8: 17012–17018.

130

Jin, Y., Liu, K., Lang, J. L., Jiang, X., Zheng, Z. K., Su, Q. H., Huang, Z. Y., Long, Y. Z., Wang, C. G., Wu, H., et al. (2020). High-energy-density solid-electrolyte-based liquid Li-S and Li-Se batteries. Joule, 4: 262–274.

131

Lang, J. L., Liu, K., Jin, Y., Long, Y. Z., Qi, L. H., Wu, H., Cui, Y. (2020). A molten battery consisting of Li metal anode, AlCl3-LiCl cathode and solid electrolyte. Energy Storage Materials, 24: 412–416.

132

Xu, J., Liu, K., Jin, Y., Sun, B., Zhang, Z. L., Chen, Y., Su, D. W., Wang, G. X., Wu, H., Cui, Y. (2020). A garnet-type solid-electrolyte-based molten lithium-molybdenum-iron(II) chloride battery with advanced reaction mechanism. Advanced Materials, 32: e2000960.

133

Liu, K., Lang, J. L., Yang, M. Z., Xu, J., Sun, B., Wu, Y. L., Wang, K. Y., Zheng, Z. K., Huang, Z. Y., Wang, C. G., et al. (2020). Molten lithium-brass/zinc chloride system as high-performance and low-cost battery. Matter, 3: 1714–1724.

134

Kim, H., Boysen, D. A., Newhouse, J. M., Spatocco, B. L., Chung, B., Burke, P. J., Bradwell, D. J., Jiang, K., Tomaszowska, A. A., Wang, K. L., et al. (2013). Liquid metal batteries: Past, present, and future. Chemical Reviews, 113: 2075–2099.

135

Kim, J., Shin, D., Jung, Y., Hwang, S. M., Song, T., Kim, Y., Paik, U. (2018). LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery. Journal of Power Sources, 377: 87–92.

136

Yu, H., Lu, H. M., Hu, X. Q., Liu, J. X., Cao, Y. (2020). LiI-KI and LAGP electrolytes with a bismuth-tin positive electrode for the development of a liquid lithium battery. Materials Chemistry and Physics, 247: 122865.

137

Lalau, C., Dimitrova, A., Himmerlich, M., Ispas, A., Weier, T., Krischok, S., Bund, A. (2016). An electrochemical and photoelectron spectroscopy study of a low temperature liquid metal battery based on an ionic liquid electrolyte. Journal of the Electrochemical Society, 163: A2488–A2493.

138

Meng, X. C., Zuo, G. Z., Xu, W., Sun, Z., Huang, M., Yuan, X. L., Xu, C., Hu, W. Y., Andruczyk, D., Hu, J. S., et al. (2018). Effect of temperature on the corrosion behaviors of 304 stainless steel in static liquid lithium. Fusion Engineering and Design, 128: 75–81.

139
Tsisar, V., Kondo, M., Xu, Q., Muroga, T., Nagasaka, T., Yeliseyeva, O. (2011). Effect of nitrogen on the corrosion behavior of RAFM JLF-1 steel in lithium. Journal of Nuclear Materials, 417(1–3): 1205–1209.
DOI
140

Cui, K. X., An, F. Q., Zhao, W., Li, P., Li, S. W., Liu, C. R., Qu, X. H. (2021). Feasibility research of SS304 serving as the positive current collector of Li||Sb-Sn liquid metal batteries. The Journal of Physical Chemistry C, 125: 237–245.

141

Ouchi, T., Sadoway, D. R. (2017). Positive current collector for Li||Sb-Pb liquid metal battery. Journal of Power Sources, 357: 158–163.

142

Cui, K. X., Zhao, W., Zhou, D. M., Li, S. W., Liu, C. R., Li, P., Qu, X. H. (2021). Stable positive current collectors for Li||Sb–Sn liquid metal batteries. ACS Applied Energy Materials, 4: 9013–9021.

143
Baker, D. J., Bugden, W. G., Smith, P. R. (1991). Joining of ceramic components to metal components. US Patent, US5009357A.
144

Nagura, M., Kondo, M., Suzuki, A., Muroga, T., Terai, T. (2007). Experimental study on corrosion of ceramic materials in natural convection lithium loop. Fusion Science and Technology, 52: 630–634.

145
Terai, T., Suzuki, A., Yoneoka, T., Mitsuyama, T. (2000). Compatibility of AlN with liquid lithium. Journal of Nuclear Materials, 283–287: 1322–1325.
DOI
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 June 2022
Revised: 27 June 2022
Accepted: 17 July 2022
Published: 20 June 2022
Issue date: June 2022

Copyright

© The author(s) 2022

Acknowledgements

Acknowledgements

This work is supported by National Key Research and Development Program of China (2018YFB0905600), and grants from the National Natural Science Foundation of China (Grant Nos. 52177215, 51977097, 51861135315, 51804128).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return