AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

A review of machine learning techniques for optical wireless communication in intelligent transport systems

School of Electrical and Information Engineering, University of the Witwatersrand, Joahnnesburg 2050, South Africa
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Council for Scientific and Industrial Research, Pretoria 0184, South Africa
Show Author Information

Abstract

Intelligent Transport Systems (ITS) are crucial for safety, efficiency, and reduced congestion in transportation. They require efficient, secure, high-speed communication. Radio Frequency (RF) technologies like Fifth Generation (5G), Beyond 5G (B5G), and Sixth Generation (6G) are promising, but spectrum scarcity mandates coexistence with Optical Wireless Communication (OWC) networks, which offer high data rates and security, forming a strong foundation for hybrid RF/OWC applications in ITS. In this paper, we delve into the application of Machine Learning (ML) to enhance data communications within OWC systems in ITS. We commence by conducting an in-depth examination of the data communication prerequisites and the associated challenges within the ITS domain. Subsequently, we elucidate the compelling rationale behind the convergence of heterogeneous RF technologies with OWC for data communications in ITS scenarios. Our investigation then pivots towards elucidating the indispensable role played by ML in optimizing data communications via OWC within ITS. To provide a comprehensive perspective, we systematically evaluate and compare a spectrum of ML methodologies employed in OWC ITS data communications. As a culmination of our study, we proffer a set of valuable recommendations and illuminate promising avenues for future research endeavors that warrant further exploration within this critical intersection of ML, OWC, and ITS data communications.

References

[1]

K. N. Qureshi and A. H. Abdullah, A survey on intelligent transportation systems, Middle-East J. Sci. Res., vol. 15, no. 5, pp. 629–642, 2013.

[2]

T. Yuan, W. Da Rocha Neto, C. E. Rothenberg, K. Obraczka, C. Barakat, and T. Turletti, Machine learning for next-generation intelligent transportation systems: A survey, Trans. Emerg. Telecommun. Technol., vol. 33, no. 4, p. e4427, 2022.

[3]

G. L. Huang, A. Zaslavsky, S. W. Loke, A. Abkenar, A. Medvedev, and A. Hassani, Context-aware machine learning for intelligent transportation systems: A survey, IEEE Trans. Intell. Transp. Syst., vol. 24, no. 1, pp. 17–36, 2023.

[4]

M. N. Tahir, K. Maenpaa, T. Sukuvaara, and P. Leviakangas, Deployment and analysis of cooperative intelligent transport system pilot service alerts in real environment, IEEE Open J. Intell. Transp. Syst., vol. 2, pp. 140–148, 2021.

[5]

K. Weibull, B. Lidestam, and E. Prytz, Potential of cooperative intelligent transport system services to mitigate risk factors associated with emergency vehicle accidents, Transp. Res. Rec.: J. Transp. Res. Board, vol. 2677, no. 3, pp. 999–1015, 2023.

[6]
Y. N. Doganata and A. N. Tantawi, Analysis of communication requirements for intelligent transportation systems: Methodology and examples, in Proc. IEEE 45th Vehicular Technology Conf. Countdown to the Wireless Twenty-First Century, Chicago, IL, USA, 1995, pp. 971–975.
[7]
M. Ali, Standards of communications in the intelligent transport systems (ITS), in Autonomous Vehicles : Intelligent Transport Systems and Smart Technologies, N. Bizon, L. Dascalescu, and N. M. Tabatabaei, Eds. Hauppauge, NY, USA: Nova Science Publishers, Inc., 2014, pp. 235–246.
[8]

N. E. El Faouzi, H. Leung, and A. Kurian, Data fusion in intelligent transportation systems: Progress and challenges–A survey, Inf. Fusion, vol. 12, no. 1, pp. 4–10, 2011.

[9]
L. Su and D. Chen, The construction of intelligent transport system based on Internet of Things, in Proc. 2016 Joint Int. Information Technology, Mechanical and Electronic Engineering, Xi’an, China, 2016, pp. 250–254.
[10]

S. K. Panigrahy and H. Emany, A survey and tutorial on network optimization for intelligent transport system using the Internet of vehicles, Sensors, vol. 23, no. 1, p. 555, 2023.

[11]
A. Hbaieb, Ayed S., and Chaari L, Internet of vehicles and connected smart vehicles communication system towards autonomous driving, https://www.researchsquare.com/article/rs-493419/v1, 2021.
[12]

A. Arooj, M. S. Farooq, A. Akram, R. Iqbal, A. Sharma, and G. Dhiman, Big data processing and analysis in Internet of vehicles: Architecture, taxonomy, and open research challenges, Arch. Comput. Methods Eng., vol. 29, no. 2, pp. 793–829, 2022.

[13]

J. H. Zhang, P. Tang, L. Yu, T. Jiang, and L. Tian, Channel measurements and models for 6G: Current status and future outlook, Front. Inf. Technol. Electron. Eng., vol. 21, no. 1, pp. 39–61, 2020.

[14]

X. Cheng, Z. Huang, and S. Chen, Vehicular communication channel measurement, modelling, and application for beyond 5G and 6G, IET Commun., vol. 14, no. 19, pp. 3303–3311, 2020.

[15]
6G Flagship, Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence, Oulu, Finland: University of Oulu, 2020.
[16]
H. Elayan, O. Amin, R. M. Shubair, and M. S. Alouini, Terahertz communication: The opportunities of wireless technology beyond 5G, in Proc. 2018 International Conf. Advanced Communication Technologies and Networking (CommNet ), Marrakech, Morocco, 2018, pp. 1–5.
[17]

W. Hou, Applications of Big Data technology in Intelligent Transportation System, Highlights Sci. Eng. Technol., vol. 37, pp. 64–71, 2023.

[18]

I. Laña, J. J. Sanchez-Medina, E. I. Vlahogianni, and J. Del Ser, From data to actions in intelligent transportation systems: A prescription of functional requirements for model actionability, Sensors, vol. 21, no. 4, p. 1121, 2021.

[19]

X. Yin, J. Liu, X. Cheng, and X. Xiong, Large-size data distribution in IoV based on 5G/6G compatible heterogeneous network, IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 9840–9852, 2021.

[20]

M. Adhikari, A. Hazra, V. G. Menon, B. K. Chaurasia, and S. Mumtaz, A roadmap of next-generation wireless technology for 6G-enabled vehicular networks, IEEE Internet Things Mag., vol. 4, no. 4, pp. 79–85, 2021.

[21]

F. Tang, Y. Kawamoto, N. Kato, and J. Liu, Future intelligent and secure vehicular network toward 6G: Machine-learning approaches, Proc. IEEE, vol. 108, no. 2, pp. 292–307, 2020.

[22]

M. Noor-A-Rahim, Z. Liu, H. Lee, M. O. Khyam, J. He, D. Pesch, K. Moessner, W. Saad, and H. V. Poor, 6G for vehicle-to-everything (V2X) communications: Enabling technologies, challenges, and opportunities, Proc. IEEE, vol. 110, no. 6, pp. 712–734, 2022.

[23]

E. Zavvos, E. H. Gerding, V. Yazdanpanah, C. Maple, S. Stein, and M. C. Schraefel, Privacy and trust in the Internet of vehicles, IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8, pp. 10126–10141, 2022.

[24]
T. B. Iliev, E. P. Ivanova, I. S. Stoyanov, G. Y. Mihaylov, and I. H. Beloev, Artificial intelligence in wireless communications - evolution towards 6G mobile networks, in Proc. 2021 44th Int. Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 2021, pp. 432–437.
[25]

M. Hijji, R. Iqbal, A. Kumar Pandey, F. Doctor, C. Karyotis, W. Rajeh, A. Alshehri, and F. Aradah, 6G connected vehicle framework to support intelligent road maintenance using deep learning data fusion, IEEE Trans. Intell. Transp. Syst., vol. 24, no. 7, pp. 7726–7735, 2023.

[26]

R. Liu, A. Liu, Z. Qu, and N. N. Xiong, An UAV-enabled intelligent connected transportation system with 6g communications for Internet of vehicles, IEEE Trans. Intell. Transp. Syst., vol. 24, no. 2, pp. 2045–2059, 2023.

[27]
I. Kilanioti, G. Rizzo, B. M. Masini, A. Bazzi, D. P. Osorio, F. Linsalata, M. Magarini, D. Löschenbrand, T. Zemen, and A. Kliks, Intelligent transportation systems in the context of 5G-beyond and 6G networks, in Proc. 2022 IEEE Conf. Standards for Communications and Networking (CSCN ), Thessaloniki, Greece, 2022, pp. 82–88.
[28]
P. C. Jain, Trends in next generation intelligent transportation systems, in Self-Driving Vehicles and Enabling Technologies, M. Găiceanu and A. Engelbrecht, Eds. London, UK: IntechOpen, 2021.
[29]
D. Jiang and L. Delgrossi, IEEE 802.11p: Towards an international standard for wireless access in vehicular environments, in Proc. 2008 IEEE 67th Vehicular Technology Conf.-Spring, Marina Bay, Singapore, 2008, pp. 2036–2040.
[30]
M. Lauridsen, I. Z. Kovacs, P. Mogensen, M. Sorensen, and S. Holst, Coverage and capacity analysis of LTE-M and NB-IoT in a rural area, in Proc. IEEE 84th Vehicular Technology Conf. (VTC-Fall ), Montreal, Canada, 2016, pp. 1–5.
[31]
D. Cheng, C. Li, and N. Qiu, The application prospects of NB-IoT in intelligent transportation, in Proc. 4th Int. Conf. Advanced Electronic Materials, Computers and Software Engineering (AEMCSE ), Changsha, China, 2021, pp. 1176–1179.
[32]
F. Shen, H. Shi, and Y. Yang, A comprehensive study of 5G and 6G networks, in Proc. Int. Conf. Wireless Communications and Smart Grid (ICWCSG ), Hangzhou, China, 2021 pp. 321–326.
[33]

B. Ji, Z. Chen, S. Mumtaz, C. Han, C. Li, H. Wen, and D. Wang, A vision of IoV in 5G HetNets: Architecture, key technologies, applications, challenges, and trends, IEEE Netw., vol. 36, no. 2, pp. 153–161, 2022.

[34]

C. R. Storck and F. Duarte-Figueiredo, A survey of 5G technology evolution, standards, and infrastructure associated with vehicle-to-everything communications by Internet of vehicles, IEEE Access, vol. 8, pp. 117593–117614, 2020.

[35]

L. Guevara and F. Auat Cheein, The role of 5G technologies: Challenges in smart cities and intelligent transportation systems, Sustainability, vol. 12, no. 16, p. 6469, 2020.

[36]
J. Balen, B. Tomasic, K. Semialjac, and H. Varga, Survey on using 5G technology in VANETs, in Proc. 2022 45th Jubilee Int. Convention on Information, Communication and Electronic Technology (MIPRO ), Opatija, Croatia, 2022 pp. 442–448.
[37]

E. Benalia, S. Bitam, and A. Mellouk, Data dissemination for Internet of vehicle based on 5G communications: A survey, Trans. Emerg. Telecommun. Technol., vol. 31, no. 5, p. e3881, 2020.

[38]

C. Zoghlami, R. Kacimi, and R. Dhaou, 5G-enabled V2X communications for vulnerable road users safety applications: a review, Wirel. Netw., vol. 29, no. 3, pp. 1237–1267, 2023.

[39]
Y. Deng, Application of intelligent transportation system based on 5G, in Proc. 2021 Int. Conf. Human-Machine Interaction, Guangzhou, China, 2021, pp. 35–39.
[40]
N. Kononova, D. Vinokursky, M. Kononov, and E. Krahotkina, Problems of implementing 5G networks in transport systems, in Proc. Models and Methods for Researching Information Systems in Transport 2020 (MMRIST 2020 ), St. Petersburg, Russia, 2020, pp. 47–51.
[41]

M. Banafaa, I. Shayea, J. Din, M. Hadri Azmi, A. Alashbi, Y. Ibrahim Daradkeh, and A. Alhammadi, 6G mobile communication technology: Requirements, targets, applications, challenges, advantages, and opportunities, Alex. Eng. J., vol. 64, pp. 245–274, 2023.

[42]
Y. Zhao, W. Zhai, J. Zhao, T. Zhang, S. Sun, D. Niyato, and K. Y. Lam, A comprehensive survey of 6g wireless communications, arXiv preprint arXiv: 2101.03889, 2020.
[43]

S. A. A. Hakeem, H. H. Hussein, and H. Kim, Vision and research directions of 6G technologies and applications, J. King Saud Univ. – Comput. Inf. Sci., vol. 34, no. 6, pp. 2419–2442, 2022.

[44]

L. H. Shen, K. T. Feng, and L. Hanzo, Five facets of 6G: Research challenges and opportunities, ACM Comput. Surv., vol. 55, no. 11, pp. 1–39, 2023.

[45]

M. W. Akhtar, S. A. Hassan, R. Ghaffar, H. Jung, S. Garg, and M. S. Hossain, The shift to 6G communications: Vision and requirements, Hum.-centric Comput. Inf. Sci., vol. 10, pp. 1–27, 2020.

[46]

X. You, C. X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang, C. Zhang, Y. Jiang, J. Wang, et al., and new paradigm shifts, Sci. China Inf. Sci., vol. 64, no. 1, p. 110301, 2020.

[47]

K. Ansari, Joint use of DSRC and C-V2X for V2X communications in the 5.9 GHz ITS band, IET Intell. Transp. Syst., vol. 15, no. 2, pp. 213–224, 2021.

[48]

J. Choi, V. Marojevic, C. B. Dietrich, J. H. Reed, and S. Ahn, Survey of spectrum regulation for intelligent transportation systems, IEEE Access, vol. 8, pp. 140145–140160, 2020.

[49]

T. R. Raddo, S. Rommel, B. Cimoli, C. Vagionas, D. Perez-Galacho, E. Pikasis, E. Grivas, K. Ntontin, M. Katsikis, D. Kritharidis, et al., Transition technologies towards 6G networks, EURASIP J. Wirel. Commun. Netw., vol. 2021, no. 1, p. 100, 2021.

[50]

M. Z. Chowdhury, M. Shahjalal, M. K. Hasan, and Y. M. Jang, The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges, Appl. Sci., vol. 9, no. 20, p. 4367, 2019.

[51]
R. Mahapatra, Convergence of wireless and optical network in future communication network, in Wireless Power Transfer—Recent Development, Applications and New Perspectives, M. Zellagui, Ed. London, UK: IntechOpen, 2021.
[52]

H. Rodrigues Dias Filgueiras, E. Saia Lima, M. S. B. Cunha, C. H. De Souza Lopes, L. C. De Souza, R. M. Borges, L. Augusto Melo Pereira, T. Henrique Brandao, T. P. V. Andrade, L. C. Alexandre, et al., Wireless and optical convergent access technologies toward 6G, IEEE Access, vol. 11, pp. 9232–9259, 2023.

[53]

A. B. Raj and A. K. Majumder, Historical perspective of free space optical communications: From the early dates to today’s developments, IET Commun., vol. 13, no. 16, pp. 2405–2419, 2019.

[54]

Y. Kaymak, R. Rojas-Cessa, J. Feng, N. Ansari, M. Zhou, and T. Zhang, A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications, IEEE Commun. Surv. Tutor., vol. 20, no. 2, pp. 1104–1123, 2018.

[55]

A. Sevincer, M. Bilgi, and M. Yuksel, Automatic realignment with electronic steering of free-space-optical transceivers in MANETs: A proof-of-concept prototype, Ad Hoc Netw., vol. 11, no. 1, pp. 585–595, 2013.

[56]
H. Kaushal and G. Kaddoum, Free space optical communication: challenges and mitigation techniques, arXiv preprint arXiv: 1506.04836, 2015.
[57]
H. Kaushal, V. K. Jain, and S. Kar, FSO system modules and design issues, in Free Space Optical Communication. New Delhi, India: Springer, 2017, pp. 91–118.
[58]

Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, and J. Cheng, Emerging optical wireless communications-advances and challenges, IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1738–1749, 2015.

[59]

N. An, F. Yang, L. Cheng, J. Song, and Z. Han, Free space optical communications for intelligent transportation systems: Potentials and challenges, IEEE Veh. Technol. Mag., vol. 18, no. 3, pp. 80–90, 2023.

[60]

D. M. S. R, Concept of Li-Fi on smart communication between vehicles and traffic signals, J. Ubiquitous Comput. Commun. Technol., vol. 2, no. 2, pp. 59–69, 2020.

[61]

S. R. Swaminathan, Recent trend and effect of free space optical communication: Overview and analysis, Int. J. Res. Circuits, Devices Syst., vol. 3, no. 1, pp. 80–84, 2022.

[62]

M. Kamal, J. Khan, Y. Khan, F. Ali, A. Armghan, F. Muhammad, N. Ullah, and S. Alotaibi, Free space optics transmission performance enhancement for sustaining 5G high capacity data services, Micromachines, vol. 13, no. 8, p. 1248, 2022.

[63]

O. Aboelala, I. E. Lee, and G. C. Chung, A survey of hybrid free space optics (FSO) communication networks to achieve 5G connectivity for backhauling, Entropy, vol. 24, no. 11, p. 1573, 2022.

[64]

N. Aboueleneen, A. Alwarafy, and M. Abdallah, Deep reinforcement learning for Internet of drones networks: Issues and research directions, IEEE Open J. Commun. Soc., vol. 4, pp. 671–683, 2023.

[65]

A. Memedi and F. Dressler, Vehicular visible light communications: A survey, IEEE Commun. Surv. Tutor., vol. 23, no. 1, pp. 161–181, 2021.

[66]

H. B. Eldeeb, S. M. Sait, and M. Uysal, Visible light communication for connected vehicles: How to achieve the omnidirectional coverage? IEEE Access, vol. 9, pp. 103885–103905, 2021.

[67]

G. Singh, A. Srivastava, and V. A. Bohara, Visible light and reconfigurable intelligent surfaces for beyond 5G V2X communication networks at road intersections, IEEE Trans. Veh. Technol., vol. 71, no. 8, pp. 8137–8151, 2022.

[68]

K. Shaaban, M. H. M. Shamim, and K. Abdur-Rouf, Visible light communication for intelligent transportation systems: A review of the latest technologies, J. Traffic Transp. Eng. (Engl. Ed.), vol. 8, no. 4, pp. 483–492, 2021.

[69]

H. Abuella, M. Elamassie, M. Uysal, Z. Xu, E. Serpedin, K. A. Qaraqe, and S. Ekin, Hybrid RF/VLC systems: A comprehensive survey on network topologies, performance analyses, applications, and future directions, IEEE Access, vol. 9, pp. 160402–160436, 2021.

[70]

A. Gupta, N. Sharma, P. Garg, and M. S. Alouini, Cascaded FSO-VLC communication system, IEEE Wirel. Commun. Lett., vol. 6, no. 6, pp. 810–813, 2017.

[71]

K. Tan, D. Bremner, J. Le Kernec, L. Zhang, and M. Imran, Machine learning in vehicular networking: An overview, Digit. Commun. Netw., vol. 8, no. 1, pp. 18–24, 2022.

[72]
H. Ye, L. Liang, G. Y. Li, J. Kim, L. Lu, and M. Wu, Machine learning for vehicular networks, arXiv preprint arXiv: 1712.07143, 2017.
[73]

L. Liang, H. Ye, and G. Y. Li, Toward intelligent vehicular networks: A machine learning framework, IEEE Internet Things J., vol. 6, no. 1, pp. 124–135, 2018.

[74]

A. M. Cailean and M. Dimian, Current challenges for visible light communications usage in vehicle applications: A survey, IEEE Commun. Surv. Tutor., vol. 19, no. 4, pp. 2681–2703, 2017.

[75]

A. M. Cailean, B. Cagneau, L. Chassagne, M. Dimian, and V. Popa, Novel receiver sensor for visible light communications in automotive applications, IEEE Sens. J., vol. 15, no. 8, pp. 4632–4639, 2015.

[76]
J. Jeong, C. G. Lee, I. Moon, M. Kang, S. Shin, and S. Kim, Receiver angle control in an infrastructure-to-car visible light communication link, in Proc. IEEE Region 10 Conf. (TENCON ), Singapore, 2016, pp. 1957–1960.
[77]
T. H. Do and M. Yoo, Potentialities and challenges of VLC based outdoor positioning, in Proc. Int. Conf. Information Networking (ICOIN ), Siem Reap, Cambodia, 2015, pp. 474–477.
[78]
B. Bechadergue, L. Chassagne, and H. Guan, Visible light phase-shift rangefinder for platooning applications, in Proc. IEEE 19th Int. Conf. Intelligent Transportation Systems (ITSC ), Rio de Janeiro, Brazil, 2016, pp. 2462–2468.
[79]

Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, A new automotive VLC system using optical communication image sensor, IEEE Photonics J., vol. 8, no. 3, pp. 1–17, 2016.

[80]

D. Wang and M. Zhang, Artificial intelligence in optical communications: From machine learning to deep learning, Front. Commun. Netw., vol. 2, p. 656786, 2021.

[81]

L. J. S. Kumar, P. Krishnan, B. Shreya, and S. M. S, Performance enhancement of FSO communication system using machine learning for 5G/6G and IoT applications, Optik, vol. 252, p. 168430, 2022.

[82]
S. Toufga, S. Abdellatif, P. Owezarski, T. Villemur, and D. Relizani, Effective prediction of V2I link lifetime and vehicle’s next cell for software defined vehicular networks: A machine learning approach, in Proc. 2019 IEEE Vehicular Networking Conf. (VNC ), Los Angeles, CA, USA, 2019, pp. 1–8.
[83]

Y. Xie, Y. Wang, S. Kandeepan, and K. Wang, Machine learning applications for short reach optical communication, Photonics, vol. 9, no. 1, p. 30, 2022.

[84]
S. Arya and Y. H. Chung, Supervised learning-based noisy optical signal estimation for underwater optical wireless communications, in Proc. 12th Int. Conf. Ubiquitous and Future Networks (ICUFN ), Jeju Island, Republic of Korea, 2021, pp. 155–158.
[85]

M. A. Esmail, W. S. Saif, A. M. Ragheb, and S. A. Alshebeili, Free space optic channel monitoring using machine learning, Opt. Express, vol. 29, no. 7, pp. 10967–10981, 2021.

[86]

Z. Karami and R. Kashef, Smart transportation planning: Data, models, and algorithms, Transp. Eng., vol. 2, p. 100013, 2020.

[87]

D. Nallaperuma, R. Nawaratne, T. Bandaragoda, A. Adikari, S. Nguyen, T. Kempitiya, D. De Silva, D. Alahakoon, and D. Pothuhera, Online incremental machine learning platform for big data-driven smart traffic management, IEEE Trans. Intell. Transp. Syst., vol. 20, no. 12, pp. 4679–4690, 2019.

[88]
C. Markos and J. J. Q. Yu, Unsupervised deep learning for GPS-based transportation mode identification, in Proc. IEEE 23rd Int. Conf. Intelligent Transportation Systems (ITSC ), Rhodes, Greece, 2020, pp. 1–6.
[89]

H. Ke, J. Wang, L. Deng, Y. Ge, and H. Wang, Deep reinforcement learning-based adaptive computation offloading for MEC in heterogeneous vehicular networks, IEEE Trans. Veh. Technol., vol. 69, no. 7, pp. 7916–7929, 2020.

[90]

Y. Ding, Y. Huang, L. Tang, X. Qin, and Z. Jia, Resource allocation in V2X communications based on multi-agent reinforcement learning with attention mechanism, Mathematics, vol. 10, no. 19, p. 3415, 2022.

[91]

Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo, Traffic and computation co-offloading with reinforcement learning in fog computing for industrial applications, IEEE Trans. Ind. Inf., vol. 15, no. 2, pp. 976–986, 2019.

[92]
G. Singh, A. Srivastava, V. A. Bohara, M. N. Rahim, Z. Liu, D. Pesch, and L. Hanzo, Towards 6G-V2X: Hybrid RF-VLC for vehicular networks, arXiv preprint arXiv: 2208.06287, 2022.
[93]

E. Muscinelli, S. S. Shinde, and D. Tarchi, Overview of distributed machine learning techniques for 6G networks, Algorithms, vol. 15, no. 6, p. 210, 2022.

[94]

K. Sheth, K. Patel, H. Shah, S. Tanwar, R. Gupta, and N. Kumar, A taxonomy of AI techniques for 6G communication networks, Comput. Commun., vol. 161, pp. 279–303, 2020.

[95]

M. Wang, Y. Lin, Q. Tian, and G. Si, Transfer learning promotes 6G wireless communications: Recent advances and future challenges, IEEE Trans. Rel., vol. 70, no. 2, pp. 790–807, 2021.

[96]

C. Ma, J. Li, M. Ding, K. Wei, W. Chen, and H. V. Poor, Federated learning with unreliable clients: Performance analysis and mechanism design, IEEE Internet Things J., vol. 8, no. 24, pp. 17 308–17 319, 2021.

[97]

H. Yang, J. Zhao, Z. Xiong, K. Y. Lam, S. Sun, and L. Xiao, Privacy-preserving federated learning for uav-enabled networks: Learning-based joint scheduling and resource management, IEEE J. Sel. Areas Commun., vol. 39, no. 10, pp. 3144–3159, 2021.

[98]

Z. Yang, M. Chen, K. K. Wong, H. V. Poor, and S. Cui, Federated learning for 6G: Applications, challenges, and opportunities, Engineering, vol. 8, pp. 33–41, 2022.

[99]

S. Niknam, H. S. Dhillon, and J. H. Reed, Federated learning for wireless communications: Motivation, opportunities, and challenges, IEEE Commun. Mag., vol. 58, no. 6, pp. 46–51, 2020.

[100]

S. Liu, J. Yu, X. Deng, and S. Wan, FedCPF: An efficient-communication federated learning approach for vehicular edge computing in 6G communication networks, IEEE Trans. Intell. Transp. Syst., vol. 23, no. 2, pp. 1616–1629, 2021.

[101]

X. Zhou, W. Liang, J. She, Z. Yan, I. Kevin, and K. Wang, Two-layer federated learning with heterogeneous model aggregation for 6G supported Internet of vehicles, IEEE Trans. Veh. Technol., vol. 70, no. 6, pp. 5308–5317, 2021.

[102]

J. Guerrero-Ibañez, J. Contreras- Castillo, and S. Zeadally, Deep learning support for intelligent transportation systems, Trans. Emerg. Telecommun. Technol., vol. 32, no. 3, p. e4169, 2021.

[103]
Z. Ahmed, R. Iniyavan, and P. Madhan Mohan, Enhanced Vulnerable Pedestrian Detection using Deep Learning, in Proc. Int. Conf. Communication and Signal Processing (ICCSP ), Chennai, India, 2019, pp. 0971–0974.
[104]

K. M. Abughalieh and S. G. Alawneh, Predicting pedestrian intention to cross the road, IEEE Access, vol. 8, pp. 72558–72569, 2020.

[105]

S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, A survey of deep learning applications to autonomous vehicle control, IEEE Trans. Intell. Transp. Syst., vol. 22, no. 2, pp. 712–733, 2020.

[106]

A. Haydari and Y. Yilmaz, Deep reinforcement learning for intelligent transportation systems: A survey, IEEE Trans. Intell. Transp. Syst., vol. 23, no. 1, pp. 11–32, 2022.

[107]

Y. Wang, M. Chen, Z. Yang, T. Luo, and W. Saad, Deep learning for optimal deployment of uavs with visible light communications, IEEE Trans. Wirel. Commun., vol. 19, no. 11, pp. 7049–7063, 2020.

[108]

R. A. Osman, S. N. Saleh, Y. N. M. Saleh, and M. N. Elagamy, Enhancing the reliability of communication between vehicle and everything (V2X) based on deep learning for providing efficient road traffic information, Appl. Sci., vol. 11, no. 23, pp. 11382, 2021.

[109]

A. R. Abdellah, A. Muthanna, M. H. Essai, and A. Koucheryavy, Deep learning for predicting traffic in V2X networks, Appl. Sci., vol. 12, no. 19, p. 10030, 2022.

[110]

W. Song, S. Rajak, S. Dang, R. Liu, J. Li, and S. Chinnadurai, Deep learning enabled IRS for 6G intelligent transportation systems: A comprehensive study, IEEE Trans. Intell. Transp. Syst., vol. 24, no. 11, pp. 12973–12990, 2023.

[111]
M. P. Bart, N. J. Savino, P. Regmi, L. Cohen, H. Safavi, H. C. Shaw, S. Lohani, T. A. Searles, B. T. Kirby, H. Lee, et al., Deep learning for enhanced free-space optical communications, arXiv preprint arXiv: 2208.07712, 2022.
[112]

M. Ali Amirabadi, M. H. Kahaei, S. A. Nezamalhosseini, and V. T. Vakili, Deep Learning for channel estimation in FSO communication system, Opt. Commun., vol. 459, p. 124989, 2020.

[113]

Y. Lv, Y. Chen, L. Li, and F. Y. Wang, Generative adversarial networks for parallel transportation systems, IEEE Intell. Trans. Syst. Mag., vol. 10, no. 3, pp. 4–10, 2018.

[114]

Y. Zhang, S. Wang, B. Chen, J. Cao, and Z. Huang, TrafficGAN: Network-scale deep traffic prediction with generative adversarial nets, IEEE Trans. Intell. Transp. Syst., vol. 22, no. 1, pp. 219–230, 2019.

[115]

G. Huo, Y. Zhang, B. Wang, Y. Hu, and B. Yin, Text-to-traffic generative adversarial network for traffic situation generation, IEEE Trans. Intell. Transp. Syst., vol. 23, no. 3, pp. 2623–2636, 2022.

[116]
A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer, Imitating driver behavior with generative adversarial networks, in Proc. 2017 IEEE Intelligent Vehicles Symp. (IV ), Redondo Beach, CA, USA, 2017, pp. 204–211.
[117]
J. Ho and S. Ermon, Generative adversarial imitation learning, in Proc. 30th Conf. Neural Information Processing Systems (NIPS 2016 ), Barcelona, Spain, 2016, pp. 4565–4573.
[118]
J. Gao, M. R. A. Khandaker, F. Tariq, K. K. Wong, and R. T. Khan, Deep neural network based resource allocation for V2X communications, in Proc. IEEE 90th Vehicular Technology Conf. (VTC2019-Fall ), Honolulu, HI, USA, 2019, pp. 1–5.
[119]

S. Ribouh, R. Sadli, Y. Elhillali, A. Rivenq, and A. Hadid, Vehicular environment identification based on channel state information and deep learning, Sensors, vol. 22, no. 22, p. 9018, 2022.

[120]
Y. Xiao, G. Shi, and M. Krunz, Towards ubiquitous ai in 6g with federated learning, arXiv preprint arXiv: 2004.13563, 2020.
[121]

S. Naser, L. Bariah, S. Muhaidat, P. C. Sofotasios, M. Al-Qutayri, E. Damiani, and M. Debbah, Toward federated-learning-enabled visible light communication in 6G systems, IEEE Wirel. Commun., vol. 29, no. 1, pp. 48–56, 2022.

[122]

X. Kong, H. Gao, G. Shen, G. Duan, and S. K. Das, FedVCP: A federated-learning-based cooperative positioning scheme for social Internet of vehicles, IEEE Trans. Comput. Soc. Syst., vol. 9, no. 1, pp. 197–206, 2022.

[123]

R. Gao, L. Liu, X. Liu, H. Lun, L. Yi, W. Hu, and Q. Zhuge, An overview of ML-based applications for next generation optical networks, Sci. China Inf. Sci., vol. 63, no. 6, p. 160302, 2020.

[124]

D. Rafique and L. Velasco, Machine learning for network automation: overview, architecture, Machine learning for network automation: Overview, architecture, and applications [invited tutorial], J. Opt. Commun. Netw., vol. 10, no. 10, pp. D126–D143, 2018.

[125]

F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini, and M. Tornatore, An overview on application of machine learning techniques in optical networks, IEEE Commun. Surv. Tutorials, vol. 21, no. 2, pp. 1383–1408, 2019.

[126]

J. Mata, I. de Miguel, R. J. Duran, N. Merayo, S. K. Singh, A. Jukan, and M. Chamania, Artificial intelligence (AI) methods in optical networks: A comprehensive survey, Opt. Switch. Netw., vol. 28, pp. 43–57, 2018.

[127]

I. Martín, S. Troia, J. A. Hernández, A. Rodríguez, F. Musumeci, G. Maier, R. Alvizu, and Ó. G. de Dios, Machine learning-based routing and wavelength assignment in software-defined optical networks, IEEE Trans. Netw. Serv. Manag., vol. 16, no. 3, pp. 871–883, 2019.

[128]

Z. Ghanem, A. Alsaraira, L. Al-Tarawneh, and O. A. Saraereh, Comparative analysis of ML-schemes in OWC systems, Int. J. Electr. Eng. Technol., vol. 12, no. 8, pp. 115–132, 2021.

[129]

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, Nonlinear distortion mitigation in visible light communications, IEEE Wirel. Commun., vol. 22, no. 2, pp. 36–45, 2015.

[130]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, 8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer, IEEE Photonics J., vol. 7, no. 6, pp. 1–7, 2015.

[131]

M. Lapčák, Ľ. Ovseník, J. Oravec, and N. Zdravecký, Investigation of machine learning methods for prediction of measured values of atmospheric channel for hybrid FSO/RF system, Photonics, vol. 9, no. 8, p. 524, 2022.

[132]

M. A. Amirabadi, M. H. Kahaei, and S. A. Nezamalhosseni, Low complexity deep learning algorithms for compensating atmospheric turbulence in the free space optical communication system, IET Optoelectron., vol. 16, no. 3, pp. 93–105, 2022.

[133]
A. A. Algedir and T. Y. Elganimi, Machine learning models for predicting the quality factor of FSO systems with multiple transceivers, in Proc. 2nd Global Power, Energy and Communication Conf. (GPECOM ), Izmir, Turkey, 2020, pp. 308–311.
[134]

A. A. Altalbe, M. N. Khan, and M. Tahir, Error analysis of free space communication system using machine learning, IEEE Access, vol. 11, pp. 7195–7207, 2023.

[135]

W. K. Al-Azzawi, R. Khalid, and A. M. K. Al-Dulaimi, Visible light communication design and implementation, IOP Conf. Ser.: Mater. Sci. Eng., vol. 1094, no. 1, p. 012032, 2021.

[136]
X. Li, Q. Gao, C. Gong, and Z. Xu, Nonlinearity mitigation for VLC with an artificial neural network based equalizer, in Proc. IEEE Globecom Workshops (GC Wkshps ), Abu Dhabi, United Arab Emirates, 2018. pp. 1–6.
[137]

C. Chen, X. Deng, Y. Yang, P. Du, H. Yang, and L. Zhao, LED nonlinearity estimation and compensation in VLC systems using probabilistic Bayesian learning, Appl. Sci., vol. 9, no. 13, pp. 2711, 2019.

[138]

X. Lu, Y. Zhou, L. Qiao, W. Yu, S. Liang, M. Zhao, Y. Zhao, C. Lu, and N. Chi, Amplitude jitter compensation of PAM-8 VLC system employing time-amplitude two-dimensional re-estimation base on density clustering of machine learning, Phys. Scr., vol. 94, no. 5, p. 055506, 2019.

[139]
N. Chi, W. Yu, and X. Lu, Signal decision employing density-based spatial clustering of machine learning in PAM-4 VLC system, in Proc. Fiber Optic Sensing and Optical Communication, Beijing, China, 2018, pp. 295–299.
[140]

X. Wu and N. Chi, The phase estimation of geometric shaping 8-QAM modulations based on K-means clustering in underwater visible light communication, Opt. s Commun., vol. 444, pp. 147–153, 2019.

[141]

J. He and B. Zhou, A deep learning-assisted visible light positioning scheme for vehicles with image sensor, IEEE Photonics J., vol. 14, no. 4, pp. 1–7, 2022.

[142]

B. Turan and S. Coleri, Machine learning based channel modeling for vehicular visible light communication, IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 9659–9672, 2021.

[143]

Z. Y. Wu, M. Ismail, E. Serpedin, and J. Wang, Efficient prediction of link outage in mobile optical wireless communications, IEEE Trans. Wirel. Commun., vol. 20, no. 2, pp. 882–896, 2021.

[144]

H. Farahneh, F. Hussian, and X. Fernando, De-noising scheme for VLC-based V2V systems; A machine learning approach, Procedia Comput. Sci., vol. 171, pp. 2167–2176, 2020.

[145]

M. Najla, P. Mach, and Z. Becvar, Deep learning for selection between RF and VLC bands in device-to-device communication, IEEE Wirel. Commun. Lett., vol. 9, no. 10, pp. 1763–1767, 2020.

[146]

Z. Li, J. Shi, Y. Zhao, G. Li, J. Chen, J. Zhang, and N. Chi, Deep learning based end-to-end visible light communication with an in-band channel modeling strategy, Opt. Express, vol. 30, no. 16, pp. 28905–28921, 2022.

[147]

A. Siddique, T. S. Delwar, and J. Y. Ryu, A novel optimized V-VLC receiver sensor design using μGA in automotive applications, Sensors, vol. 21, no. 23, p. 7861, 2021.

[148]

T. L. Pham, M. Shahjalal, V. Bui, and Y. M. Jang, Deep learning for optical vehicular communication, IEEE Access, vol. 8, pp. 102691–102708, 2020.

[149]
W. Niu, Y. Ha, and N. Chi, Novel phase estimation scheme based on support vector machine for multiband-CAP visible light communication system, in Proc. Asia Communications and Photonics Conf. (ACP ), Hangzhou, China, 2018, pp. 1–3.
[150]

H. V. Tran, G. Kaddoum, H. Elgala, C. Abou-Rjeily, and H. Kaushal, Lightwave power transfer for federated learning-based wireless networks, IEEE Commun. Lett., vol. 24, no. 7, pp. 1472–1476, 2020.

[151]

W. Huang, Y. Yang, M. Chen, C. Liu, C. Feng, and H. V. Poor, Wireless network optimization for federated learning with model compression in hybrid VLC/RF systems, Entropy, vol. 23, no. 11, p. 1413, 2021.

[152]

A. H. Sodhro, S. Pirbhulal, G. H. Sodhro, M. Muzammal, L. Zongwei, A. Gurtov, A. R. L. de Macêdo, L. Wang, N. M. Garcia, and V. H. C. de Albuquerque, Towards 5G-enabled self adaptive green and reliable communication in intelligent transportation system, IEEE Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 5223–5231, 2020.

[153]
L. Kong, C. Chen, Y. Wang, and H. Haas, Power consumption evaluation in high speed visible light communication systems, in Proc. IEEE Global Communications Conf. (GLOBECOM ), Abu Dhabi, United Arab Emirates, 2018, pp. 1–6.
[154]

G. K. Varotsos, K. Aidinis, H. E. Nistazakis, and Z. Gajic, Energy-efficient emerging optical wireless links, Energies, vol. 16, no. 18, p. 6485, 2023.

[155]

A. Gohar and G. Nencioni, The role of 5G technologies in a smart city: The case for intelligent transportation system, Sustainability, vol. 13, no. 9, p. 5188, 2021.

[156]
A. Kostic-Ljubisavljevic and B. Mikavica, Challenges and opportunities of VLC application in intelligent transportation systems, in Encyclopedia of Information Science and Technology, Fifth Edition, M. Khosrow-Pour Ed. Hershey, PA, USA: IGI Global, 2021, pp. 1051–1064.
[157]

M. Alzenad, M. Z. Shakir, H. Yanikomeroglu, and M. S. Alouini, FSO-based vertical backhaul/fronthaul framework for 5G+ wireless networks, IEEE Commun. Mag., vol. 56, no. 1, pp. 218–224, 2018.

[158]

M. Z. Chowdhury, M. T. Hossan, A. Islam, and Y. M. Jang, A comparative survey of optical wireless technologies: Architectures and applications, IEEE Access, vol. 6, pp. 9819–9840, 2018.

[159]

Y. Tao and I. R. T. Chicaiz, Utility evaluation and optimization of machine learning in intelligent transportation systems, Integration, vol. 6, no. 3, pp. 33–39, 2024.

[160]
N. Ekedebe, W. Yu, C. Lu, and P. Moulema, An evaluation into the efficiency and effectiveness of machine learning algorithms in realistic traffic pattern prediction using field data, in Proc. SPIE Sensing Technology + Applications, Baltimore, MD, USA, 2015, p. 94960B.
[161]

I. Moumen, J. Abouchabaka, and N. Rafalia, Adaptive traffic lights based on traffic flow prediction using machine learning models, Int. J. Electr. Comput. Eng., vol. 13, no. 5, p. 5813, 2023.

[162]

D. Perez-Adan, O. Fresnedo, J. P. Gonzalez- Coma, and L. Castedo, Intelligent reflective surfaces for wireless networks: An overview of applications, approached issues, and open problems, Electronics, vol. 10, no. 19, p. 2345, 2021.

[163]

W. Long, R. Chen, M. Moretti, W. Zhang, and J. Li, A promising technology for 6G wireless networks: Intelligent reflecting surface, J. Commun. Inf. Netw., vol. 6, no. 1, pp. 1–16, 2021.

[164]
W. U. Khan, A. Mahmood, A. Bozorgchenani, M. A. Jamshed, A. Ranjha, E. Lagunas, H. Pervaiz, S. Chatzinotas, B. Ottersten, and P. Popovski, Opportunities for intelligent reflecting surfaces in 6g-empowered v2x communications, arXiv preprint arXiv: 2210.00494, 2022.
[165]

Y. Zhu, B. Mao, and N. Kato, Intelligent reflecting surface in 6g vehicular communications: A survey, IEEE Open J. Veh. Technol., vol. 3, pp. 266–277, 2022.

[166]

M. A. S. Sejan, M. H. Rahman, M. A. Aziz, D. S. Kim, Y. H. You, and H. K. Song, A comprehensive survey on MIMO visible light communication: Current research, machine learning and future trends, Sensors, vol. 23, no. 2, p. 739, 2023.

[167]

X. Ma, J. Zhao, J. Liao, and Z. Zhang, Intelligent reflecting surface-assisted federated learning in multi-platoon collaborative networks, Digit. Commun. Netw., vol. 9, no. 3, pp. 628–637, 2023.

[168]

F. C. Okogbaa, Q. Z. Ahmed, F. A. Khan, W. B. Abbas, F. Che, S. A. R. Zaidi, and T. Alade, Design and application of intelligent reflecting surface (IRS) for beyond 5G wireless networks: A review, Sensors, vol. 22, no. 7, p. 2436, 2022.

[169]

U. Demirhan and A. Alkhateeb, Integrated sensing and communication for 6G: Ten key machine learning roles, IEEE Commun. Mag., vol. 61, no. 5, pp. 113–119, 2023.

[170]
S. Wu, C. Chakrabarti, and A. Alkhateeb, Lidar-aided mobile blockage prediction in real-world millimeter wave systems, in Proc. IEEE Wireless Communications and Networking Conf., New Orleans, LA, USA, 2005, pp. 2631–2636.
[171]
A. Alkhateeb, G. Charan, T. Osman, A. Hredzak, J. Morais, U. Demirhan, and N. Srinivas, Deepsense 6G: A largescale real-world multi-modal sensing and communication dataset, arXiv preprint arXiv: 2211.09769, 2022.
[172]

F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, Integrated sensing and communications: Toward dualfunctional wireless networks for 6G and beyond, IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, 2022.

[173]

P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. Nitin Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al., Advances and open problems in federated learning, Found. Trends® Mach. Learn., vol. 14, nos. 1&2, pp. 1–210, 2021.

[174]

A. Tabassum, A. Erbad, W. Lebda, A. Mohamed, and M. Guizani, FEDGAN-IDS: Privacy-preserving IDS using GAN and federated learning, Comput. Commun., vol. 192, pp. 299–310, 2022.

[175]

L. Zhao, H. Xu, Z. Wang, X. Chen, and A. Zhou, Joint Channel Estimation and Feedback for mm-Wave System Using Federated Learning, IEEE Commun. Lett., vol. 26, no. 8, pp. 1819–1823, 2022.

[176]

T. Wei, S. Liu, and X. Du, Visible light integrated positioning and communication: A multi-task federated learning framework, IEEE Trans. Mob. Comput., vol. 22, no. 12, pp. 7086–7103, 2022.

[177]

J. He, K. Tang, J. He, and J. Shi, Effective vehicle-to-vehicle positioning method using monocular camera based on VLC, Opt. Express, vol. 28, no. 4, p. 4433, 2020.

Intelligent and Converged Networks
Pages 284-316
Cite this article:
Sefako T, Yang F, Song J, et al. A review of machine learning techniques for optical wireless communication in intelligent transport systems. Intelligent and Converged Networks, 2024, 5(4): 284-316. https://doi.org/10.23919/ICN.2024.0019

209

Views

25

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 05 January 2024
Accepted: 29 April 2024
Published: 04 November 2024
© All articles included in the journal are copyrighted to the ITU and TUP.

This work is available under the CC BY-NC-ND 3.0 IGO license:https://creativecommons.org/licenses/by-nc-nd/3.0/igo/

Return