Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Intelligent Transport Systems (ITS) are crucial for safety, efficiency, and reduced congestion in transportation. They require efficient, secure, high-speed communication. Radio Frequency (RF) technologies like Fifth Generation (5G), Beyond 5G (B5G), and Sixth Generation (6G) are promising, but spectrum scarcity mandates coexistence with Optical Wireless Communication (OWC) networks, which offer high data rates and security, forming a strong foundation for hybrid RF/OWC applications in ITS. In this paper, we delve into the application of Machine Learning (ML) to enhance data communications within OWC systems in ITS. We commence by conducting an in-depth examination of the data communication prerequisites and the associated challenges within the ITS domain. Subsequently, we elucidate the compelling rationale behind the convergence of heterogeneous RF technologies with OWC for data communications in ITS scenarios. Our investigation then pivots towards elucidating the indispensable role played by ML in optimizing data communications via OWC within ITS. To provide a comprehensive perspective, we systematically evaluate and compare a spectrum of ML methodologies employed in OWC ITS data communications. As a culmination of our study, we proffer a set of valuable recommendations and illuminate promising avenues for future research endeavors that warrant further exploration within this critical intersection of ML, OWC, and ITS data communications.
K. N. Qureshi and A. H. Abdullah, A survey on intelligent transportation systems, Middle-East J. Sci. Res., vol. 15, no. 5, pp. 629–642, 2013.
T. Yuan, W. Da Rocha Neto, C. E. Rothenberg, K. Obraczka, C. Barakat, and T. Turletti, Machine learning for next-generation intelligent transportation systems: A survey, Trans. Emerg. Telecommun. Technol., vol. 33, no. 4, p. e4427, 2022.
G. L. Huang, A. Zaslavsky, S. W. Loke, A. Abkenar, A. Medvedev, and A. Hassani, Context-aware machine learning for intelligent transportation systems: A survey, IEEE Trans. Intell. Transp. Syst., vol. 24, no. 1, pp. 17–36, 2023.
M. N. Tahir, K. Maenpaa, T. Sukuvaara, and P. Leviakangas, Deployment and analysis of cooperative intelligent transport system pilot service alerts in real environment, IEEE Open J. Intell. Transp. Syst., vol. 2, pp. 140–148, 2021.
K. Weibull, B. Lidestam, and E. Prytz, Potential of cooperative intelligent transport system services to mitigate risk factors associated with emergency vehicle accidents, Transp. Res. Rec.: J. Transp. Res. Board, vol. 2677, no. 3, pp. 999–1015, 2023.
N. E. El Faouzi, H. Leung, and A. Kurian, Data fusion in intelligent transportation systems: Progress and challenges–A survey, Inf. Fusion, vol. 12, no. 1, pp. 4–10, 2011.
S. K. Panigrahy and H. Emany, A survey and tutorial on network optimization for intelligent transport system using the Internet of vehicles, Sensors, vol. 23, no. 1, p. 555, 2023.
A. Arooj, M. S. Farooq, A. Akram, R. Iqbal, A. Sharma, and G. Dhiman, Big data processing and analysis in Internet of vehicles: Architecture, taxonomy, and open research challenges, Arch. Comput. Methods Eng., vol. 29, no. 2, pp. 793–829, 2022.
J. H. Zhang, P. Tang, L. Yu, T. Jiang, and L. Tian, Channel measurements and models for 6G: Current status and future outlook, Front. Inf. Technol. Electron. Eng., vol. 21, no. 1, pp. 39–61, 2020.
X. Cheng, Z. Huang, and S. Chen, Vehicular communication channel measurement, modelling, and application for beyond 5G and 6G, IET Commun., vol. 14, no. 19, pp. 3303–3311, 2020.
W. Hou, Applications of Big Data technology in Intelligent Transportation System, Highlights Sci. Eng. Technol., vol. 37, pp. 64–71, 2023.
I. Laña, J. J. Sanchez-Medina, E. I. Vlahogianni, and J. Del Ser, From data to actions in intelligent transportation systems: A prescription of functional requirements for model actionability, Sensors, vol. 21, no. 4, p. 1121, 2021.
X. Yin, J. Liu, X. Cheng, and X. Xiong, Large-size data distribution in IoV based on 5G/6G compatible heterogeneous network, IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 9840–9852, 2021.
M. Adhikari, A. Hazra, V. G. Menon, B. K. Chaurasia, and S. Mumtaz, A roadmap of next-generation wireless technology for 6G-enabled vehicular networks, IEEE Internet Things Mag., vol. 4, no. 4, pp. 79–85, 2021.
F. Tang, Y. Kawamoto, N. Kato, and J. Liu, Future intelligent and secure vehicular network toward 6G: Machine-learning approaches, Proc. IEEE, vol. 108, no. 2, pp. 292–307, 2020.
M. Noor-A-Rahim, Z. Liu, H. Lee, M. O. Khyam, J. He, D. Pesch, K. Moessner, W. Saad, and H. V. Poor, 6G for vehicle-to-everything (V2X) communications: Enabling technologies, challenges, and opportunities, Proc. IEEE, vol. 110, no. 6, pp. 712–734, 2022.
E. Zavvos, E. H. Gerding, V. Yazdanpanah, C. Maple, S. Stein, and M. C. Schraefel, Privacy and trust in the Internet of vehicles, IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8, pp. 10126–10141, 2022.
M. Hijji, R. Iqbal, A. Kumar Pandey, F. Doctor, C. Karyotis, W. Rajeh, A. Alshehri, and F. Aradah, 6G connected vehicle framework to support intelligent road maintenance using deep learning data fusion, IEEE Trans. Intell. Transp. Syst., vol. 24, no. 7, pp. 7726–7735, 2023.
R. Liu, A. Liu, Z. Qu, and N. N. Xiong, An UAV-enabled intelligent connected transportation system with 6g communications for Internet of vehicles, IEEE Trans. Intell. Transp. Syst., vol. 24, no. 2, pp. 2045–2059, 2023.
B. Ji, Z. Chen, S. Mumtaz, C. Han, C. Li, H. Wen, and D. Wang, A vision of IoV in 5G HetNets: Architecture, key technologies, applications, challenges, and trends, IEEE Netw., vol. 36, no. 2, pp. 153–161, 2022.
C. R. Storck and F. Duarte-Figueiredo, A survey of 5G technology evolution, standards, and infrastructure associated with vehicle-to-everything communications by Internet of vehicles, IEEE Access, vol. 8, pp. 117593–117614, 2020.
L. Guevara and F. Auat Cheein, The role of 5G technologies: Challenges in smart cities and intelligent transportation systems, Sustainability, vol. 12, no. 16, p. 6469, 2020.
E. Benalia, S. Bitam, and A. Mellouk, Data dissemination for Internet of vehicle based on 5G communications: A survey, Trans. Emerg. Telecommun. Technol., vol. 31, no. 5, p. e3881, 2020.
C. Zoghlami, R. Kacimi, and R. Dhaou, 5G-enabled V2X communications for vulnerable road users safety applications: a review, Wirel. Netw., vol. 29, no. 3, pp. 1237–1267, 2023.
M. Banafaa, I. Shayea, J. Din, M. Hadri Azmi, A. Alashbi, Y. Ibrahim Daradkeh, and A. Alhammadi, 6G mobile communication technology: Requirements, targets, applications, challenges, advantages, and opportunities, Alex. Eng. J., vol. 64, pp. 245–274, 2023.
S. A. A. Hakeem, H. H. Hussein, and H. Kim, Vision and research directions of 6G technologies and applications, J. King Saud Univ. – Comput. Inf. Sci., vol. 34, no. 6, pp. 2419–2442, 2022.
L. H. Shen, K. T. Feng, and L. Hanzo, Five facets of 6G: Research challenges and opportunities, ACM Comput. Surv., vol. 55, no. 11, pp. 1–39, 2023.
M. W. Akhtar, S. A. Hassan, R. Ghaffar, H. Jung, S. Garg, and M. S. Hossain, The shift to 6G communications: Vision and requirements, Hum.-centric Comput. Inf. Sci., vol. 10, pp. 1–27, 2020.
X. You, C. X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang, C. Zhang, Y. Jiang, J. Wang, et al., and new paradigm shifts, Sci. China Inf. Sci., vol. 64, no. 1, p. 110301, 2020.
K. Ansari, Joint use of DSRC and C-V2X for V2X communications in the 5.9 GHz ITS band, IET Intell. Transp. Syst., vol. 15, no. 2, pp. 213–224, 2021.
J. Choi, V. Marojevic, C. B. Dietrich, J. H. Reed, and S. Ahn, Survey of spectrum regulation for intelligent transportation systems, IEEE Access, vol. 8, pp. 140145–140160, 2020.
T. R. Raddo, S. Rommel, B. Cimoli, C. Vagionas, D. Perez-Galacho, E. Pikasis, E. Grivas, K. Ntontin, M. Katsikis, D. Kritharidis, et al., Transition technologies towards 6G networks, EURASIP J. Wirel. Commun. Netw., vol. 2021, no. 1, p. 100, 2021.
M. Z. Chowdhury, M. Shahjalal, M. K. Hasan, and Y. M. Jang, The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges, Appl. Sci., vol. 9, no. 20, p. 4367, 2019.
H. Rodrigues Dias Filgueiras, E. Saia Lima, M. S. B. Cunha, C. H. De Souza Lopes, L. C. De Souza, R. M. Borges, L. Augusto Melo Pereira, T. Henrique Brandao, T. P. V. Andrade, L. C. Alexandre, et al., Wireless and optical convergent access technologies toward 6G, IEEE Access, vol. 11, pp. 9232–9259, 2023.
A. B. Raj and A. K. Majumder, Historical perspective of free space optical communications: From the early dates to today’s developments, IET Commun., vol. 13, no. 16, pp. 2405–2419, 2019.
Y. Kaymak, R. Rojas-Cessa, J. Feng, N. Ansari, M. Zhou, and T. Zhang, A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications, IEEE Commun. Surv. Tutor., vol. 20, no. 2, pp. 1104–1123, 2018.
A. Sevincer, M. Bilgi, and M. Yuksel, Automatic realignment with electronic steering of free-space-optical transceivers in MANETs: A proof-of-concept prototype, Ad Hoc Netw., vol. 11, no. 1, pp. 585–595, 2013.
Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, and J. Cheng, Emerging optical wireless communications-advances and challenges, IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1738–1749, 2015.
N. An, F. Yang, L. Cheng, J. Song, and Z. Han, Free space optical communications for intelligent transportation systems: Potentials and challenges, IEEE Veh. Technol. Mag., vol. 18, no. 3, pp. 80–90, 2023.
D. M. S. R, Concept of Li-Fi on smart communication between vehicles and traffic signals, J. Ubiquitous Comput. Commun. Technol., vol. 2, no. 2, pp. 59–69, 2020.
S. R. Swaminathan, Recent trend and effect of free space optical communication: Overview and analysis, Int. J. Res. Circuits, Devices Syst., vol. 3, no. 1, pp. 80–84, 2022.
M. Kamal, J. Khan, Y. Khan, F. Ali, A. Armghan, F. Muhammad, N. Ullah, and S. Alotaibi, Free space optics transmission performance enhancement for sustaining 5G high capacity data services, Micromachines, vol. 13, no. 8, p. 1248, 2022.
O. Aboelala, I. E. Lee, and G. C. Chung, A survey of hybrid free space optics (FSO) communication networks to achieve 5G connectivity for backhauling, Entropy, vol. 24, no. 11, p. 1573, 2022.
N. Aboueleneen, A. Alwarafy, and M. Abdallah, Deep reinforcement learning for Internet of drones networks: Issues and research directions, IEEE Open J. Commun. Soc., vol. 4, pp. 671–683, 2023.
A. Memedi and F. Dressler, Vehicular visible light communications: A survey, IEEE Commun. Surv. Tutor., vol. 23, no. 1, pp. 161–181, 2021.
H. B. Eldeeb, S. M. Sait, and M. Uysal, Visible light communication for connected vehicles: How to achieve the omnidirectional coverage? IEEE Access, vol. 9, pp. 103885–103905, 2021.
G. Singh, A. Srivastava, and V. A. Bohara, Visible light and reconfigurable intelligent surfaces for beyond 5G V2X communication networks at road intersections, IEEE Trans. Veh. Technol., vol. 71, no. 8, pp. 8137–8151, 2022.
K. Shaaban, M. H. M. Shamim, and K. Abdur-Rouf, Visible light communication for intelligent transportation systems: A review of the latest technologies, J. Traffic Transp. Eng. (Engl. Ed.), vol. 8, no. 4, pp. 483–492, 2021.
H. Abuella, M. Elamassie, M. Uysal, Z. Xu, E. Serpedin, K. A. Qaraqe, and S. Ekin, Hybrid RF/VLC systems: A comprehensive survey on network topologies, performance analyses, applications, and future directions, IEEE Access, vol. 9, pp. 160402–160436, 2021.
A. Gupta, N. Sharma, P. Garg, and M. S. Alouini, Cascaded FSO-VLC communication system, IEEE Wirel. Commun. Lett., vol. 6, no. 6, pp. 810–813, 2017.
K. Tan, D. Bremner, J. Le Kernec, L. Zhang, and M. Imran, Machine learning in vehicular networking: An overview, Digit. Commun. Netw., vol. 8, no. 1, pp. 18–24, 2022.
L. Liang, H. Ye, and G. Y. Li, Toward intelligent vehicular networks: A machine learning framework, IEEE Internet Things J., vol. 6, no. 1, pp. 124–135, 2018.
A. M. Cailean and M. Dimian, Current challenges for visible light communications usage in vehicle applications: A survey, IEEE Commun. Surv. Tutor., vol. 19, no. 4, pp. 2681–2703, 2017.
A. M. Cailean, B. Cagneau, L. Chassagne, M. Dimian, and V. Popa, Novel receiver sensor for visible light communications in automotive applications, IEEE Sens. J., vol. 15, no. 8, pp. 4632–4639, 2015.
Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura, A new automotive VLC system using optical communication image sensor, IEEE Photonics J., vol. 8, no. 3, pp. 1–17, 2016.
D. Wang and M. Zhang, Artificial intelligence in optical communications: From machine learning to deep learning, Front. Commun. Netw., vol. 2, p. 656786, 2021.
L. J. S. Kumar, P. Krishnan, B. Shreya, and S. M. S, Performance enhancement of FSO communication system using machine learning for 5G/6G and IoT applications, Optik, vol. 252, p. 168430, 2022.
Y. Xie, Y. Wang, S. Kandeepan, and K. Wang, Machine learning applications for short reach optical communication, Photonics, vol. 9, no. 1, p. 30, 2022.
M. A. Esmail, W. S. Saif, A. M. Ragheb, and S. A. Alshebeili, Free space optic channel monitoring using machine learning, Opt. Express, vol. 29, no. 7, pp. 10967–10981, 2021.
Z. Karami and R. Kashef, Smart transportation planning: Data, models, and algorithms, Transp. Eng., vol. 2, p. 100013, 2020.
D. Nallaperuma, R. Nawaratne, T. Bandaragoda, A. Adikari, S. Nguyen, T. Kempitiya, D. De Silva, D. Alahakoon, and D. Pothuhera, Online incremental machine learning platform for big data-driven smart traffic management, IEEE Trans. Intell. Transp. Syst., vol. 20, no. 12, pp. 4679–4690, 2019.
H. Ke, J. Wang, L. Deng, Y. Ge, and H. Wang, Deep reinforcement learning-based adaptive computation offloading for MEC in heterogeneous vehicular networks, IEEE Trans. Veh. Technol., vol. 69, no. 7, pp. 7916–7929, 2020.
Y. Ding, Y. Huang, L. Tang, X. Qin, and Z. Jia, Resource allocation in V2X communications based on multi-agent reinforcement learning with attention mechanism, Mathematics, vol. 10, no. 19, p. 3415, 2022.
Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo, Traffic and computation co-offloading with reinforcement learning in fog computing for industrial applications, IEEE Trans. Ind. Inf., vol. 15, no. 2, pp. 976–986, 2019.
E. Muscinelli, S. S. Shinde, and D. Tarchi, Overview of distributed machine learning techniques for 6G networks, Algorithms, vol. 15, no. 6, p. 210, 2022.
K. Sheth, K. Patel, H. Shah, S. Tanwar, R. Gupta, and N. Kumar, A taxonomy of AI techniques for 6G communication networks, Comput. Commun., vol. 161, pp. 279–303, 2020.
M. Wang, Y. Lin, Q. Tian, and G. Si, Transfer learning promotes 6G wireless communications: Recent advances and future challenges, IEEE Trans. Rel., vol. 70, no. 2, pp. 790–807, 2021.
C. Ma, J. Li, M. Ding, K. Wei, W. Chen, and H. V. Poor, Federated learning with unreliable clients: Performance analysis and mechanism design, IEEE Internet Things J., vol. 8, no. 24, pp. 17 308–17 319, 2021.
H. Yang, J. Zhao, Z. Xiong, K. Y. Lam, S. Sun, and L. Xiao, Privacy-preserving federated learning for uav-enabled networks: Learning-based joint scheduling and resource management, IEEE J. Sel. Areas Commun., vol. 39, no. 10, pp. 3144–3159, 2021.
Z. Yang, M. Chen, K. K. Wong, H. V. Poor, and S. Cui, Federated learning for 6G: Applications, challenges, and opportunities, Engineering, vol. 8, pp. 33–41, 2022.
S. Niknam, H. S. Dhillon, and J. H. Reed, Federated learning for wireless communications: Motivation, opportunities, and challenges, IEEE Commun. Mag., vol. 58, no. 6, pp. 46–51, 2020.
S. Liu, J. Yu, X. Deng, and S. Wan, FedCPF: An efficient-communication federated learning approach for vehicular edge computing in 6G communication networks, IEEE Trans. Intell. Transp. Syst., vol. 23, no. 2, pp. 1616–1629, 2021.
X. Zhou, W. Liang, J. She, Z. Yan, I. Kevin, and K. Wang, Two-layer federated learning with heterogeneous model aggregation for 6G supported Internet of vehicles, IEEE Trans. Veh. Technol., vol. 70, no. 6, pp. 5308–5317, 2021.
J. Guerrero-Ibañez, J. Contreras- Castillo, and S. Zeadally, Deep learning support for intelligent transportation systems, Trans. Emerg. Telecommun. Technol., vol. 32, no. 3, p. e4169, 2021.
K. M. Abughalieh and S. G. Alawneh, Predicting pedestrian intention to cross the road, IEEE Access, vol. 8, pp. 72558–72569, 2020.
S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, A survey of deep learning applications to autonomous vehicle control, IEEE Trans. Intell. Transp. Syst., vol. 22, no. 2, pp. 712–733, 2020.
A. Haydari and Y. Yilmaz, Deep reinforcement learning for intelligent transportation systems: A survey, IEEE Trans. Intell. Transp. Syst., vol. 23, no. 1, pp. 11–32, 2022.
Y. Wang, M. Chen, Z. Yang, T. Luo, and W. Saad, Deep learning for optimal deployment of uavs with visible light communications, IEEE Trans. Wirel. Commun., vol. 19, no. 11, pp. 7049–7063, 2020.
R. A. Osman, S. N. Saleh, Y. N. M. Saleh, and M. N. Elagamy, Enhancing the reliability of communication between vehicle and everything (V2X) based on deep learning for providing efficient road traffic information, Appl. Sci., vol. 11, no. 23, pp. 11382, 2021.
A. R. Abdellah, A. Muthanna, M. H. Essai, and A. Koucheryavy, Deep learning for predicting traffic in V2X networks, Appl. Sci., vol. 12, no. 19, p. 10030, 2022.
W. Song, S. Rajak, S. Dang, R. Liu, J. Li, and S. Chinnadurai, Deep learning enabled IRS for 6G intelligent transportation systems: A comprehensive study, IEEE Trans. Intell. Transp. Syst., vol. 24, no. 11, pp. 12973–12990, 2023.
M. Ali Amirabadi, M. H. Kahaei, S. A. Nezamalhosseini, and V. T. Vakili, Deep Learning for channel estimation in FSO communication system, Opt. Commun., vol. 459, p. 124989, 2020.
Y. Lv, Y. Chen, L. Li, and F. Y. Wang, Generative adversarial networks for parallel transportation systems, IEEE Intell. Trans. Syst. Mag., vol. 10, no. 3, pp. 4–10, 2018.
Y. Zhang, S. Wang, B. Chen, J. Cao, and Z. Huang, TrafficGAN: Network-scale deep traffic prediction with generative adversarial nets, IEEE Trans. Intell. Transp. Syst., vol. 22, no. 1, pp. 219–230, 2019.
G. Huo, Y. Zhang, B. Wang, Y. Hu, and B. Yin, Text-to-traffic generative adversarial network for traffic situation generation, IEEE Trans. Intell. Transp. Syst., vol. 23, no. 3, pp. 2623–2636, 2022.
S. Ribouh, R. Sadli, Y. Elhillali, A. Rivenq, and A. Hadid, Vehicular environment identification based on channel state information and deep learning, Sensors, vol. 22, no. 22, p. 9018, 2022.
S. Naser, L. Bariah, S. Muhaidat, P. C. Sofotasios, M. Al-Qutayri, E. Damiani, and M. Debbah, Toward federated-learning-enabled visible light communication in 6G systems, IEEE Wirel. Commun., vol. 29, no. 1, pp. 48–56, 2022.
X. Kong, H. Gao, G. Shen, G. Duan, and S. K. Das, FedVCP: A federated-learning-based cooperative positioning scheme for social Internet of vehicles, IEEE Trans. Comput. Soc. Syst., vol. 9, no. 1, pp. 197–206, 2022.
R. Gao, L. Liu, X. Liu, H. Lun, L. Yi, W. Hu, and Q. Zhuge, An overview of ML-based applications for next generation optical networks, Sci. China Inf. Sci., vol. 63, no. 6, p. 160302, 2020.
D. Rafique and L. Velasco, Machine learning for network automation: overview, architecture, Machine learning for network automation: Overview, architecture, and applications [invited tutorial], J. Opt. Commun. Netw., vol. 10, no. 10, pp. D126–D143, 2018.
F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini, and M. Tornatore, An overview on application of machine learning techniques in optical networks, IEEE Commun. Surv. Tutorials, vol. 21, no. 2, pp. 1383–1408, 2019.
J. Mata, I. de Miguel, R. J. Duran, N. Merayo, S. K. Singh, A. Jukan, and M. Chamania, Artificial intelligence (AI) methods in optical networks: A comprehensive survey, Opt. Switch. Netw., vol. 28, pp. 43–57, 2018.
I. Martín, S. Troia, J. A. Hernández, A. Rodríguez, F. Musumeci, G. Maier, R. Alvizu, and Ó. G. de Dios, Machine learning-based routing and wavelength assignment in software-defined optical networks, IEEE Trans. Netw. Serv. Manag., vol. 16, no. 3, pp. 871–883, 2019.
Z. Ghanem, A. Alsaraira, L. Al-Tarawneh, and O. A. Saraereh, Comparative analysis of ML-schemes in OWC systems, Int. J. Electr. Eng. Technol., vol. 12, no. 8, pp. 115–132, 2021.
K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, Nonlinear distortion mitigation in visible light communications, IEEE Wirel. Commun., vol. 22, no. 2, pp. 36–45, 2015.
Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, 8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer, IEEE Photonics J., vol. 7, no. 6, pp. 1–7, 2015.
M. Lapčák, Ľ. Ovseník, J. Oravec, and N. Zdravecký, Investigation of machine learning methods for prediction of measured values of atmospheric channel for hybrid FSO/RF system, Photonics, vol. 9, no. 8, p. 524, 2022.
M. A. Amirabadi, M. H. Kahaei, and S. A. Nezamalhosseni, Low complexity deep learning algorithms for compensating atmospheric turbulence in the free space optical communication system, IET Optoelectron., vol. 16, no. 3, pp. 93–105, 2022.
A. A. Altalbe, M. N. Khan, and M. Tahir, Error analysis of free space communication system using machine learning, IEEE Access, vol. 11, pp. 7195–7207, 2023.
W. K. Al-Azzawi, R. Khalid, and A. M. K. Al-Dulaimi, Visible light communication design and implementation, IOP Conf. Ser.: Mater. Sci. Eng., vol. 1094, no. 1, p. 012032, 2021.
C. Chen, X. Deng, Y. Yang, P. Du, H. Yang, and L. Zhao, LED nonlinearity estimation and compensation in VLC systems using probabilistic Bayesian learning, Appl. Sci., vol. 9, no. 13, pp. 2711, 2019.
X. Lu, Y. Zhou, L. Qiao, W. Yu, S. Liang, M. Zhao, Y. Zhao, C. Lu, and N. Chi, Amplitude jitter compensation of PAM-8 VLC system employing time-amplitude two-dimensional re-estimation base on density clustering of machine learning, Phys. Scr., vol. 94, no. 5, p. 055506, 2019.
X. Wu and N. Chi, The phase estimation of geometric shaping 8-QAM modulations based on K-means clustering in underwater visible light communication, Opt. s Commun., vol. 444, pp. 147–153, 2019.
J. He and B. Zhou, A deep learning-assisted visible light positioning scheme for vehicles with image sensor, IEEE Photonics J., vol. 14, no. 4, pp. 1–7, 2022.
B. Turan and S. Coleri, Machine learning based channel modeling for vehicular visible light communication, IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 9659–9672, 2021.
Z. Y. Wu, M. Ismail, E. Serpedin, and J. Wang, Efficient prediction of link outage in mobile optical wireless communications, IEEE Trans. Wirel. Commun., vol. 20, no. 2, pp. 882–896, 2021.
H. Farahneh, F. Hussian, and X. Fernando, De-noising scheme for VLC-based V2V systems; A machine learning approach, Procedia Comput. Sci., vol. 171, pp. 2167–2176, 2020.
M. Najla, P. Mach, and Z. Becvar, Deep learning for selection between RF and VLC bands in device-to-device communication, IEEE Wirel. Commun. Lett., vol. 9, no. 10, pp. 1763–1767, 2020.
Z. Li, J. Shi, Y. Zhao, G. Li, J. Chen, J. Zhang, and N. Chi, Deep learning based end-to-end visible light communication with an in-band channel modeling strategy, Opt. Express, vol. 30, no. 16, pp. 28905–28921, 2022.
A. Siddique, T. S. Delwar, and J. Y. Ryu, A novel optimized V-VLC receiver sensor design using μGA in automotive applications, Sensors, vol. 21, no. 23, p. 7861, 2021.
T. L. Pham, M. Shahjalal, V. Bui, and Y. M. Jang, Deep learning for optical vehicular communication, IEEE Access, vol. 8, pp. 102691–102708, 2020.
H. V. Tran, G. Kaddoum, H. Elgala, C. Abou-Rjeily, and H. Kaushal, Lightwave power transfer for federated learning-based wireless networks, IEEE Commun. Lett., vol. 24, no. 7, pp. 1472–1476, 2020.
W. Huang, Y. Yang, M. Chen, C. Liu, C. Feng, and H. V. Poor, Wireless network optimization for federated learning with model compression in hybrid VLC/RF systems, Entropy, vol. 23, no. 11, p. 1413, 2021.
A. H. Sodhro, S. Pirbhulal, G. H. Sodhro, M. Muzammal, L. Zongwei, A. Gurtov, A. R. L. de Macêdo, L. Wang, N. M. Garcia, and V. H. C. de Albuquerque, Towards 5G-enabled self adaptive green and reliable communication in intelligent transportation system, IEEE Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 5223–5231, 2020.
G. K. Varotsos, K. Aidinis, H. E. Nistazakis, and Z. Gajic, Energy-efficient emerging optical wireless links, Energies, vol. 16, no. 18, p. 6485, 2023.
A. Gohar and G. Nencioni, The role of 5G technologies in a smart city: The case for intelligent transportation system, Sustainability, vol. 13, no. 9, p. 5188, 2021.
M. Alzenad, M. Z. Shakir, H. Yanikomeroglu, and M. S. Alouini, FSO-based vertical backhaul/fronthaul framework for 5G+ wireless networks, IEEE Commun. Mag., vol. 56, no. 1, pp. 218–224, 2018.
M. Z. Chowdhury, M. T. Hossan, A. Islam, and Y. M. Jang, A comparative survey of optical wireless technologies: Architectures and applications, IEEE Access, vol. 6, pp. 9819–9840, 2018.
Y. Tao and I. R. T. Chicaiz, Utility evaluation and optimization of machine learning in intelligent transportation systems, Integration, vol. 6, no. 3, pp. 33–39, 2024.
I. Moumen, J. Abouchabaka, and N. Rafalia, Adaptive traffic lights based on traffic flow prediction using machine learning models, Int. J. Electr. Comput. Eng., vol. 13, no. 5, p. 5813, 2023.
D. Perez-Adan, O. Fresnedo, J. P. Gonzalez- Coma, and L. Castedo, Intelligent reflective surfaces for wireless networks: An overview of applications, approached issues, and open problems, Electronics, vol. 10, no. 19, p. 2345, 2021.
W. Long, R. Chen, M. Moretti, W. Zhang, and J. Li, A promising technology for 6G wireless networks: Intelligent reflecting surface, J. Commun. Inf. Netw., vol. 6, no. 1, pp. 1–16, 2021.
Y. Zhu, B. Mao, and N. Kato, Intelligent reflecting surface in 6g vehicular communications: A survey, IEEE Open J. Veh. Technol., vol. 3, pp. 266–277, 2022.
M. A. S. Sejan, M. H. Rahman, M. A. Aziz, D. S. Kim, Y. H. You, and H. K. Song, A comprehensive survey on MIMO visible light communication: Current research, machine learning and future trends, Sensors, vol. 23, no. 2, p. 739, 2023.
X. Ma, J. Zhao, J. Liao, and Z. Zhang, Intelligent reflecting surface-assisted federated learning in multi-platoon collaborative networks, Digit. Commun. Netw., vol. 9, no. 3, pp. 628–637, 2023.
F. C. Okogbaa, Q. Z. Ahmed, F. A. Khan, W. B. Abbas, F. Che, S. A. R. Zaidi, and T. Alade, Design and application of intelligent reflecting surface (IRS) for beyond 5G wireless networks: A review, Sensors, vol. 22, no. 7, p. 2436, 2022.
U. Demirhan and A. Alkhateeb, Integrated sensing and communication for 6G: Ten key machine learning roles, IEEE Commun. Mag., vol. 61, no. 5, pp. 113–119, 2023.
F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, Integrated sensing and communications: Toward dualfunctional wireless networks for 6G and beyond, IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, 2022.
P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. Nitin Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al., Advances and open problems in federated learning, Found. Trends® Mach. Learn., vol. 14, nos. 1&2, pp. 1–210, 2021.
A. Tabassum, A. Erbad, W. Lebda, A. Mohamed, and M. Guizani, FEDGAN-IDS: Privacy-preserving IDS using GAN and federated learning, Comput. Commun., vol. 192, pp. 299–310, 2022.
L. Zhao, H. Xu, Z. Wang, X. Chen, and A. Zhou, Joint Channel Estimation and Feedback for mm-Wave System Using Federated Learning, IEEE Commun. Lett., vol. 26, no. 8, pp. 1819–1823, 2022.
T. Wei, S. Liu, and X. Du, Visible light integrated positioning and communication: A multi-task federated learning framework, IEEE Trans. Mob. Comput., vol. 22, no. 12, pp. 7086–7103, 2022.
J. He, K. Tang, J. He, and J. Shi, Effective vehicle-to-vehicle positioning method using monocular camera based on VLC, Opt. Express, vol. 28, no. 4, p. 4433, 2020.
This work is available under the CC BY-NC-ND 3.0 IGO license:https://creativecommons.org/licenses/by-nc-nd/3.0/igo/