AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Reconfigurable intelligent surface-aided wireless communications: An overview

Muhammad Zain Siddiqi1( )Talha Mir2
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Department of Electronic Engineering, Faculty of ICT, BUITEMS, Quetta 87300, Pakistan
Show Author Information

Abstract

The reconfigurable intelligent surface (RIS) is an emerging technology, which will hopefully bring a new revolution in wireless communications. The RIS technology can be deployed in an indoor/outdoor environment to dynamically manipulate the propagation environment. The RIS consists of a large number of independently controllable passive elements, and these elements are involved in realizing high passive beamforming gain. Different from the conventional active phased antenna array, there is no dedicated radio-frequency (RF) chain installed at the RIS to perform complex signal processing operations. Therefore, it does not incur additional noise while retransmitting the incident wave, which is substantially a unique feature from the conventional wireless communication systems. Taking advantage of its working principle, RIS has been deployed in various practical scenarios. In this tutorial, at first we will review the latest advances in RIS, including the application scenarios such as the system and channel model, the information theoretic analysis, the physical realization and design, key signal processing techniques such as precoding and channel estimation, and prototyping. Finally, we discuss interesting future research problems for the RIS-aided communications.

References

1
M. D. Renzo, A. Zappone, M. Debbah, M. -S. Alouini, C. Yuen, J. D. Rosny, and S. Tretyakov, Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead, IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450–2525, 2020.https://doi.org/10.1109/JSAC.2020.3007211
2
Q. Wu and R. Zhang, Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network, IEEE Commun. Mag., vol. 58, no. 1, pp. 106–112, 2020.https://doi.org/10.1109/MCOM.001.1900107
3
N. Engheta and R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations. Piscataway, NJ, USA: Wiley-IEEE Press, 2006.https://doi.org/10.1002/0471784192
4
T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications. New York, NY, USA: Springer Science & Business Media, 2009.
5
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett., vol. 84, no. 18, pp. 4184–4187, 2000.https://doi.org/10.1103/PhysRevLett.84.4184
6
D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Metamaterials and negative refractive index, Science, vol. 305, no. 5685, pp. 788–792, 2004.https://doi.org/10.1126/science.1096796
7
L. Subrt and P. Pechac, Controlling propagation environments using intelligent walls, in Proc. 2012 6thEuropean Conf. Antennas Propag. (EUCAP), Prague, Czech Republic, 2012, pp. 1–5.https://doi.org/10.1109/EuCAP.2012.6206517
8
N. Kaina, M. Dupré, G. Lerosey, and M. Fink, Shaping complex microwave fields in reverberating media with binary tunable metasurfaces, Scientific Reports, vol. 4, no. 1, p. 6693, 2014.https://doi.org/10.1038/srep06693
9
T. J. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials, Light: Science & Applications, vol. 3, p. e218, 2014.https://doi.org/10.1038/lsa.2014.99
10
Z. Zhang and L. Dai, Continuous-aperture MIMO for electromagnetic information theory, arXiv preprint arXiv: 2111.08630, 2021.
11
H. Guo, Y. -C. Liang, J. Chen, and E. G. Larsson, Weighted sum-rate optimization for intelligent reflecting surface enhanced wireless networks, arXiv preprint arXiv: 1905.07920, 2019.https://doi.org/10.1109/GLOBECOM38437.2019.9013288
12
S. Abeywickrama, R. Zhang, Q. Wu, and C. Yuen, Intelligent reflecting surface: Practical phase shift model and beamforming optimization, IEEE Trans. Commun., vol. 68, no. 9, pp. 5849–5863, 2020.https://doi.org/10.1109/TCOMM.2020.3001125
13
Q. Wu and R. Zhang, Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming, IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5394–5409, 2019.https://doi.org/10.1109/TWC.2019.2936025
14
Q. Wu and R. Zhang, Beamforming optimization for intelligent reflecting surface with discrete phase shifts, in Proc. 2019 IEEE Int. Conf. Acoust. Speech and Signal Process. (ICASSP), Brighton, UK, 2019, pp. 7830–7833.https://doi.org/10.1109/ICASSP.2019.8683145
15
P. Wang, J. Fang, and H. Li, Joint beamforming for intelligent reflecting surface-assisted millimeter wave communications, arXiv preprint arXiv: 1910.08541, 2019.
16
Y. Cao, T. Lv, and W. Ni, Intelligent reflecting surface aided multi-user millimeter-wave communications for coverage enhancement, in Proc. 2020 IEEE 31stInt. Symp. Personal, Indoor and Mobile Radio Commun., London, UK, 2020, pp. 1–6.https://doi.org/10.1109/PIMRC48278.2020.9217160
17
X. Gao, L. Dai, S. Han, C. -L. I, and X. Wang, Reliable beamspace channel estimation for millimeter-wave massive MIMO systems with lens antenna array, IEEE Trans. Wireless Commun., vol. 16, no. 9, pp. 6010–6021, 2017.https://doi.org/10.1109/TWC.2017.2718502
18
S. Han, C. -L. I, Z. Xu, and C. Rowell, Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G, IEEE Commun. Mag., vol. 53, no. 1, pp. 186–194, 2015.https://doi.org/10.1109/MCOM.2015.7010533
19
O. Özdoğan, E. Björnson, and E. G. Larsson, Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling, IEEE Wireless Commun. Lett., vol. 9, no. 5, pp. 581–585, 2019.https://doi.org/10.1109/LWC.2019.2960779
20
M. D. Renzo, F. H. Danufane, X. Xi, J. D. Rosny, and S. Tretyakov, Analytical modeling of the path-loss for reconfigurable intelligent surfaces-anomalous mirror or scatterer? in Proc. 2020 IEEE 21stInt. WkSp. Sig. Process. Advances in Wireless Commun. (SPAWC), Atlanta, GA, USA, 2020, pp. 1–5.https://doi.org/10.1109/SPAWC48557.2020.9154326
21
W. Tang, M. Z. Chen, X. Chen, J. Y. Dai, Y. Han, M. D. Renzo, Y. Zeng, S. Jin, Q. Cheng, and T. J. Cui, Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement, IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 421–439, 2020.https://doi.org/10.1109/TWC.2020.3024887
22
S. W. Ellingson, Path loss in reconfigurable intelligent surface-enabled channels, in Proc. 2021 IEEE 32ndAnnual Int. Sym. on Personal, Indoor and Mobile Radio Commun. (PIMRC), Helsinki, Finland, 2021, pp. 829–835.https://doi.org/10.1109/PIMRC50174.2021.9569465
23
D. Dardari, Communicating with large intelligent surfaces: Fundamental limits and models, IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2526–2537, 2020.https://doi.org/10.1109/JSAC.2020.3007036
24
E. Björnson and L. Sanguinetti, Power scaling laws and near-field behaviors of massive MIMO and intelligent reflecting surfaces,IEEE Open J. Commun. Society, vol. 1, pp. 1306–1324, 2020.https://doi.org/10.1109/OJCOMS.2020.3020925
25
Q. Wu and R. Zhang, Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts, IEEE Trans. Commun., vol. 68, no. 3, pp. 1838–1851, 2020.https://doi.org/10.1109/TCOMM.2019.2958916
26
P. Wang, J. Fang, X. Yuan, Z. Chen, H. Duan, and H. Li, Intelligent reflecting surface-assisted millimeter wave communications: Joint active and passive precoding design, IEEE Trans. Veh. Tech., vol. 69, no. 12, pp. 14960–14973, 2020.https://doi.org/10.1109/TVT.2020.3031657
27
E. Björnson, O. Özdogan, and E. G. Larsson, Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying, IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 244–248, 2020.https://doi.org/10.1109/LWC.2019.2950624
28
J. N. Laneman, D. N. C. Tse, and G. W. Wornell, Cooperative diversity in wireless networks: Efficient protocols and outage behavior, IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–3080, 2004.https://doi.org/10.1109/TIT.2004.838089
29
J. Lyu and R. Zhang, Spatial throughput characterization for intelligent reflecting surface aided multiuser system, IEEE Wireless Commun. Lett., vol. 9, no. 6, pp. 834–838, 2020.https://doi.org/10.1109/LWC.2020.2972527
30
Q. Wu and R. Zhang, Intelligent reflecting surface enhanced wireless network: Joint active and passive beamforming design, in Proc. 2018 IEEE Glob. Commun. Conf. (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018, pp. 1–6.https://doi.org/10.1109/GLOCOM.2018.8647620
31
C. Huang, A. Zappone, M. Debbah, and C. Yuen, Achievable rate maximization by passive intelligent mirrors, in Proc. 2018 IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Calgary, Canada, 2018, pp. 3714–3718.https://doi.org/10.1109/ICASSP.2018.8461496
32
K. Liu, Z. Zhang, L. Dai, and L. Hanzo, Compact user-specific reconfigurable intelligent surfaces for uplink transmission, IEEE Trans. Commun., vol. 70, no. 1, pp. 680–692, 2021.https://doi.org/10.1109/TCOMM.2021.3124953
33
Y. Yang, S. Zhang, and R. Zhang, IRS-enhanced OFDM: Power allocation and passive array optimization, in Proc. 2019 IEEE Global Commun. Conf. (GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1–6.https://doi.org/10.1109/GLOBECOM38437.2019.9014204
34
J. Ye, S. Guo, and M. -S. Alouini, Joint reflecting and precoding designs for SER minimization in reconfigurable intelligent surfaces assisted MIMO systems, IEEE Trans. Wireless Commun., vol. 19, no. 8, pp. 5561–5574, 2020.https://doi.org/10.1109/TWC.2020.2994455
35
M. Z. Siddiqi, T. Mir, M. Hao, and R. MacKenzie, Low-complexity joint active and passive beamforming for ris-aided mimo systems, IET Elect. Lett., vol. 57, no. 9, pp. 384–386, 2021.https://doi.org/10.1049/ell2.12140
36
M. Jung, W. Saad, M. Debbah, and C. S. Hong, On the optimality of reconfigurable intelligent surfaces (RISs): Passive beamforming, modulation, and resource allocation, IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4347–4363, 2021.https://doi.org/10.1109/TWC.2021.3058366
37
Z. Zhou, N. Ge, W. Liu, and Z. Wang, RIS-aided offshore communications with adaptive beamforming and service time allocation, in Proc. 2020 IEEE Int. Conf. Commun. (ICC), Dublin, Ireland, 2020, pp. 1–6.https://doi.org/10.1109/ICC40277.2020.9148833
38
B. Di, H. Zhang, L. Song, Y. Li, Z. Han, and H. V. Poor, Hybrid beamforming for reconfigurable intelligent surface based multi-user communications: Achievable rates with limited discrete phase shifts, IEEE J. S. Areas Commun., vol. 38, no. 8, pp. 1809–1822, 2020.https://doi.org/10.1109/JSAC.2020.3000813
39
H. Li, R. Liu, M. Liy, Q. Liu, and X. Li, IRS-enhanced wideband MU-MISO-OFDM communication systems, in Proc. 2020 IEEE Wireless Commun. Net. Conf. (WCNC), Seoul, Republic of Korea, 2020, pp. 1–6.https://doi.org/10.1109/WCNC45663.2020.9120639
40
M. Z. Siddiqi, R. Mackenzie, M. Hao, and T. Mir, On energy efficiency of wideband RIS-aided cell-free network, IEEE Access, vol. 10, pp. 19742–19752, 2022.https://doi.org/10.1109/ACCESS.2022.3149095
41
Z. Zhang and L. Dai, A joint precoding framework for wideband reconfigurable intelligent surface-aided cell-free network, IEEE Trans. Signal Process., vol. 69, pp. 4085–4101, 2021.https://doi.org/10.1109/TSP.2021.3088755
42
Z. Zhang and L. Dai, Capacity improvement in wideband reconfigurable intelligent surface-aided cell-free network, in Proc. 2020 IEEE 21stInt. WkSp. Signal Process. Adv. Wireless Commun. (SPAWC), Atlanta, GA, USA, 2020, pp. 1–5.https://doi.org/10.1109/SPAWC48557.2020.9154244
43
C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, Reconfigurable intelligent surfaces for energy efficiency in wireless communication, IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157–4170, 2019.https://doi.org/10.1109/TWC.2019.2922609
44
Q. -U. -A. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, and M. -S. Alouini, Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO communication, IEEE Trans. Wireless Commun., vol. 19, no. 12, pp. 7748–7764, 2020.https://doi.org/10.1109/TWC.2020.2986438
45
X. Li, J. Fang, F. Gao, and H. Li, Joint active and passive beamforming for intelligent reflecting surface-assisted massive MIMO systems, arXiv preprint arXiv: 1912.00728, 2019.
46
H. Xie, J. Xu, and Y. -F. Liu, Max-min fairness in IRS-aided multi-cell MISO systems with joint transmit and reflective beamforming, IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 1379–1393, 2020.https://doi.org/10.1109/TWC.2020.3033332
47
H. Shen, W. Xu, S. Gong, Z. He, and C. Zhao, Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications, IEEE Commun. Lett., vol. 23, no. 9, pp. 1488–1492, 2019.https://doi.org/10.1109/LCOMM.2019.2924214
48
S. Hu, Z. Wei, Y. Cai, C. Liu, D. W. K. Ng, and J. Yuan, Robust and secure sum-rate maximization for multiuser MISO downlink systems with self-sustainable IRS, IEEE Trans. Commun., vol. 69, no. 10, pp. 7032–7049, 2021.https://doi.org/10.1109/TCOMM.2021.3097140
49
Y. Cao, T. Lv, Z. Lin, and W. Ni, Delay-constrained joint power control, user detection and passive beamforming in intelligent reflecting surface-assisted uplink mmWave system, IEEE Trans. Cog. Commun. Net., vol. 7, no. 2, pp. 482–495, 2021.https://doi.org/10.1109/TCCN.2021.3064973
50
C. Hu, X. Wang, L. Dai, and J. Ma, Partially coherent compressive phase retrieval for millimeter-wave massive MIMO channel estimation, IEEE Trans. Signal Process., vol. 68, pp. 1673–1687, 2020.https://doi.org/10.1109/TSP.2020.2975914
51
X. Gao, L. Dai, S. Zhou, A. M. Sayeed, and L. Hanzo, Wideband beamspace channel estimation for millimeter-wave MIMO systems relying on lens antenna arrays, IEEE Trans. Signal Process., vol. 67, no. 18, pp. 4809–4824, 2019.https://doi.org/10.1109/TSP.2019.2931202
52
M. Cui and L. Dai, Channel estimation for extremely large-scale MIMO: Far-field or near-field? arXiv preprint arXiv: 2108.07581, 2022.https://doi.org/10.1109/GLOBECOM46510.2021.9685542
53
Q. -U. -A. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, and M. -S. Alouini, Intelligent reflecting surface assisted wireless communication: Modeling and channel estimation, arXiv preprint arXiv: 1906.02360v2, 2019.
54
T. L. Jensen and E. D. Carvalho, An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator, in Proc. 2020 IEEE Int. Conf. Acous., Sp. Signal Process. (ICASSP), Barcelona, Spain, 2020, pp. 5000–5004.https://doi.org/10.1109/ICASSP40776.2020.9053695
55
Z. Wan, Z. Gao, and M. -S. Alouini, Broadband channel estimation for intelligent reflecting surface aided mmWave massive MIMO systems, in Proc. 2020 IEEE Int. Conf. Commun. (ICC), Dublin, Ireland, 2020, pp. 1–6.https://doi.org/10.1109/ICC40277.2020.9149146
56
A. M. Elbir, A. Papazafeiropoulos, P. Kourtessis, and S. Chatzinotas, Deep channel learning for large intelligent surfaces aided mm-Wave massive MIMO systems, IEEE Wireless Commun. Lett., vol. 9, no. 9, pp. 1447–1451, 2020.https://doi.org/10.1109/LWC.2020.2993699
57
Z. Wang, L. Liu, and S. Cui, Channel estimation for intelligent reflecting surface assisted multiuser communications, in Proc. 2020 IEEE Wireless Commun. Net. Conf. (WCNC), Seoul, Republic of Korea, 2020, pp. 1–6.https://doi.org/10.1109/WCNC45663.2020.9120452
58
J. Lin, G. Wang, R. Fan, T. A. Tsiftsis, and C. Tellambura, Channel estimation for wireless communication systems assisted by large intelligent surfaces, arXiv preprint arXiv: 1911.02158v1, 2019.
59
A. Taha, M. Alrabeiah, and A. Alkhateeb, Enabling large intelligent surfaces with compressive sensing and deep learning, IEEE Access, vol. 9, no. 2, pp. 44304–44321, 2021.https://doi.org/10.1109/ACCESS.2021.3064073
60
L. Wei, C. Huang, G. C. Alexandropoulos, C. Yuen, Z. Zhang, and M. Debbah, Channel estimation for RIS-empowered multi-user MISO wireless communications, IEEE Trans. Commun., vol. 69, no. 6, pp. 4144–4157, 2021.https://doi.org/10.1109/TCOMM.2021.3063236
61
Y. Yang, B. Zheng, S. Zhang, and R. Zhang, Intelligent reflecting surface meets OFDM: Protocol design and rate maximization, IEEE Trans. Commun., vol. 68, no. 7, pp. 4522–4535, 2020.https://doi.org/10.1109/TCOMM.2020.2981458
62
G. Zhou, C. Pan, H. Ren, K. Wang, and A. Nallanathan, A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels, IEEE Trans. Signal Process., vol. 68, pp. 5092–5106, 2020.https://doi.org/10.1109/TSP.2020.3019666
63
Y. Cui and H. Yin, An efficient CSI acquisition method for intelligent reflecting surface-assisted mmWave networks, arXiv preprint arXiv: 1912.12076v1, 2019.
64
B. Zheng and R. Zhang, Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization, IEEE Wireless Commun. Lett., vol. 9, no. 4, pp. 518–522, 2019.https://doi.org/10.1109/LWC.2019.2961357
65
P. Wang, J. Fang, H. Duan, and H. Li, Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems, IEEE Signal Process. Lett., vol. 27, pp. 905–909, 2020.https://doi.org/10.1109/LSP.2020.2998357
66
Y. Guo, P. Sun, Z. Yuan, C. Huang, Q. Guo, Z. Wang, and C. Yuen, Efficient channel estimation for RIS-aided MIMO communications with unitary approximate message passing, arXiv preprint arXiv: 2112.15281, 2021.
67
D. Shen and L. Dai, Dimension reduced channel feedback for reconfigurable intelligent surface aided wireless communications, IEEE Trans. Commun., vol. 69, no. 11, pp. 7748–7760, 2021.https://doi.org/10.1109/TCOMM.2021.3100428
68
Z. He and X. Yuan, Cascaded channel estimation for large intelligent metasurface assisted massive MIMO, IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 210–214, 2019.https://doi.org/10.1109/LWC.2019.2948632
69
J. Mirza and B. Ali, Channel estimation method and phase shift design for reconfigurable intelligent surface assisted MIMO networks, IEEE Trans. Cog. Commun. Netw., vol. 7, no. 2, pp. 441–451, 2021.https://doi.org/10.1109/TCCN.2021.3072895
70
J. He, M. Leinonen, H. Wymeersch, and M. Juntti, Channel estimation for RIS-aided mmWave MIMO channels, arXiv preprint arXiv: 2002.06453, 2020.https://doi.org/10.1109/GLOBECOM42002.2020.9348112
71
G. T. D. Araújo and A. F. D. Almeida, PARAFAC-based channel estimation for intelligent reflective surface assisted MIMO system, in Proc. 2020 IEEE 11thSensor Arr. and Multichannel Signal Process. WkSp. (SAM), Hangzhou, China, 2020, pp. 1–5.https://doi.org/10.1109/SAM48682.2020.9104260
72
B. Ning, Z. Chen, W. Chen, Y. Du, and J. Fang, Channel estimation and hybrid beamforming for reconfigurable intelligent surfaces assisted THz communications, arXiv preprint arXiv: 1912.11662, 2019.
73
H. Liu, X. Yuan, and Y. Zhang, Matrix-calibration-based cascaded channel estimation for reconfigurable intelligent surface assisted multiuser MIMO, IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2621–2636, 2020.https://doi.org/10.1109/JSAC.2020.3007057
74
J. Huang, C. Xing, and C. Wang, Simultaneous wireless information and power transfer: Technologies, applications, and research challenges, IEEE Commun. Mag., vol. 55, no. 11, pp. 26–32, 2017.https://doi.org/10.1109/MCOM.2017.1600806
75
T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.https://doi.org/10.1137/07070111X
76
Q. Wu, G. Y. Li, W. Chen, D. W. K. Ng, and R. Schober, An overview of sustainable green 5G networks, IEEE Wireless Commun. Lett., vol. 24, no. 4, pp. 72–80, 2017.https://doi.org/10.1109/MWC.2017.1600343
77
I. Krikidis, S. Timotheou, S. Nikolaou, G. Zheng, D. W. K. Ng, and R. Schober, Simultaneous wireless information and power transfer in modern communication systems, IEEE Commun. Mag., vol. 52, no. 11, pp. 104–110, 2014.https://doi.org/10.1109/MCOM.2014.6957150
78
C. Pan, H. Ren, M. Elkashlan, A. Nallanathan, J. Wang, and L. Hanzo, Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer, IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1719–1734, 2020.https://doi.org/10.1109/JSAC.2020.3000802
79
Q. Wu and R. Zhang, Weighted sum power maximization for intelligent reflecting surface aided SWIPT, IEEE Wireless Commun. Lett., vol. 9, no. 5, pp. 586–590, 2019.https://doi.org/10.1109/LWC.2019.2961656
80
D. Mishra and H. Johansson, Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer, in Proc. 2019 IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Brighton, UK, 2019, pp. 4659–4663.https://doi.org/10.1109/ICASSP.2019.8683663
81
L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-lin, and Z. Wang, Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends, IEEE Commun. Mag., vol. 53, no. 9, pp. 74–81, 2015.https://doi.org/10.1109/MCOM.2015.7263349
82
Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo, Nonorthogonal multiple access for 5G and beyond, Proc. IEEE, vol. 105, no. 12, pp. 2347–2381, 2017.https://doi.org/10.1109/JPROC.2017.2768666
83
Z. Ding and H. V. Poor, A simple design of IRS-NOMA transmission, IEEE Commun. Lett., vol. 24, no. 5, pp. 1119–1123, 2020.https://doi.org/10.1109/LCOMM.2020.2974196
84
G. Yang, X. Xu, and Y. Liang, Intelligent reflecting surface assisted non-orthogonal multiple access, in Proc. 2020 IEEE Wireless Commun. Net. Conf. (WCNC), Seoul, Republic of Korea, 2020, pp. 1–6.https://doi.org/10.1109/WCNC45663.2020.9120476
85
X. Liu, Y. Liu, Y. Chen, and H. V. Poor, RIS enhanced massive non-orthogonal multiple access networks: Deployment and passive beamforming design, IEEE J. Sel. Areas Commun., vol. 39, no. 4, pp. 1057–1071, 2020.https://doi.org/10.1109/JSAC.2020.3018823
86
N. Yang, L. Wang, G. Geraci, M. Elkashlan, J. Yuan, and M. D. Renzo, Safeguarding 5G wireless communication networks using physical layer security, IEEE Commun. Mag., vol. 53, no. 4, pp. 20–27, 2015.https://doi.org/10.1109/MCOM.2015.7081071
87
S. Hong, C. Pan, H. Ren, K. Wang, and A. Nallanathan, Artificial-noise-aided secure MIMO wireless communications via intelligent reflecting surface, IEEE Trans. Commun., vol. 68, no. 12, pp. 7851–7866, 2020.https://doi.org/10.1109/TCOMM.2020.3024621
88
J. Chen, Y. Liang, Y. Pei, and H. Guo, Intelligent reflecting surface: A programmable wireless environment for physical layer security, IEEE Access, vol. 7, pp. 82599–82612, 2019.https://doi.org/10.1109/ACCESS.2019.2924034
89
X. Yu, D. Xu, Y. Sun, D. W. K. Ng, and R. Schober, Robust and secure wireless communications via intelligent reflecting surfaces, IEEE J. Sel. Areas in Commun., vol. 38, no. 11, pp. 2637–2652, 2020.https://doi.org/10.1109/JSAC.2020.3007043
90
X. Guan, Q. Wu, and R. Zhang, Intelligent reflecting surface assisted secrecy communication via joint beamforming and jamming, arXiv preprint arXiv: 1907.12839v1, 2019.
91
X. Yu, D. Xu, and R. Schober, Enabling secure wireless communications via intelligent reflecting surfaces, in Proc. 2019 IEEE Global Commun. Conf. (GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1–6.https://doi.org/10.1109/GLOBECOM38437.2019.9014322
92
M. Cui, G. Zhang, and R. Zhang, Secure wireless communication via intelligent reflecting surface, IEEE Wireless Commun. Lett., vol. 8, no. 5, pp. 1410–1414, 2019.https://doi.org/10.1109/LWC.2019.2919685
93
S. Li, B. Duo, X. Yuan, Y. Liang, and M. D. Renzo, Reconfigurable intelligent surface assisted UAV communication: Joint trajectory design and passive beamforming, IEEE Wireless Commun. Lett., vol. 9, no. 5, pp. 716–720, 2020.https://doi.org/10.1109/LWC.2020.2966705
94
L. Yang, F. Meng, J. Zhang, M. O. Hasna and M. D. Renzo, On the performance of RIS-assisted dual-hop UAV communication systems, IEEE Trans. Veh. Tech., vol. 69, no. 9, pp. 10385–10390, 2020.https://doi.org/10.1109/TVT.2020.3004598
95
W. Zhao, G. Wang, S. Atapattu, T. A. Tsiftsis, and X. Ma, Performance analysis of large intelligent surface aided backscatter communication systems, IEEE Wireless Commun. Lett., vol. 9, no. 7, pp. 962–966, 2020.https://doi.org/10.1109/LWC.2020.2976934
96
S. Basharat, S. A. Hassan, A. Mahmood, Z. Ding, and M. Gidlund, Reconfigurable intelligent surface-assisted backscatter communication: A new frontier for enabling 6G IoT Networks, arXiv preprint arXiv: 2107.07813, 2021.
97
F. Liu, A. Pitilakis, M. S. Mirmoosa, O. Tsilipakos, X. Wang, A. C. Tasolamprou, S. Abadal, A. Cabellos-Aparicio, E. Alarcón, C. Liaskos, et al., Programmable metasurfaces: State of the art and prospects, in Proc. 2018 IEEE Int. Symp. Circuits Syst. (ISCAS), Florence, Italy, 2018, pp. 1–5.https://doi.org/10.1109/ISCAS.2018.8351817
98
H. -T. Chen, A. J. Taylor, and N. Yu, A review of metasurfaces: Physics and applications, Rep. Prog. Phys., vol. 79, no. 7, p. 076401, 2016.https://doi.org/10.1088/0034-4885/79/7/076401
99
S. Foo, Liquid-crystal reconfigurable metasurface reflectors, in Proc. 2017 IEEE Int. Symp. Antennas Propag. & USNC/URSI Nat. Radio Sci. Meeting, San Diego, CA, USA, 2017, pp. 2069–2070.https://doi.org/10.1109/APUSNCURSINRSM.2017.8073077
100
D. Shrekenhamer, W. -C. Chen, and W. J. Padilla, Liquid crystal tunable metamaterial absorber, Phys. Rev. Lett., vol. 110, no. 17, p. 177403, 2013.https://doi.org/10.1103/PhysRevLett.110.177403
101
C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, Reconfigurable metasurface for multifunctional control of electromagnetic waves, Adv. Opt. Mater., vol. 5, no. 22, p. 1700485, 2017.https://doi.org/10.1002/adom.201700485
102
S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, Electronically tunable perfect absorption in graphene, Nano Lett., vol. 18, no. 2, pp. 971–979, 2018.https://doi.org/10.1021/acs.nanolett.7b04393
103
N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Knanikaev, B. Fallahazad, et al., Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces, Nano Lett., vol. 16, no. 6, pp. 3607–3615, 2016.https://doi.org/10.1021/acs.nanolett.6b00732
104
Y. -J. Yang, Y. -J. Huang, G. -J. Wen, J. -P. Zhong, H. -B. Sun, and G. Oghenemuero, Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire, Chin. Phys. B, vol. 21, no. 3, p. 038501, 2012.https://doi.org/10.1088/1674-1056/21/3/038501
105
D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. Qiu, and M. Hong, Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface, Sci. Rep., vol. 5, p. 15020, 2015.https://doi.org/10.1038/srep15020
106
B. Zhu, Y. Feng, J. Zhao, and T. Jiang, Switchable metamaterial reflector/absorber for different polarized electromagnetic waves, Appl. Phys. Lett., vol. 97, no. 5, p. 051906, 2010.https://doi.org/10.1063/1.3477960
107
C. Mias and J. H. Yap, A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid, IEEE Trans. Antennas Propag., vol. 55, no. 7, pp. 1955–1962, 2007.https://doi.org/10.1109/TAP.2007.900228
108
S. V. Hum and J. Perruisseau-Carrier, Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review, IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 183–198, 2014.https://doi.org/10.1109/TAP.2013.2287296
109
S. Hu, F. Rusek, and O. Edfors, Beyond massive MIMO: The potential of data transmission with large intelligent surfaces, IEEE Trans. Signal Process., vol. 66, no. 10, pp. 2746–2758, 2018.https://doi.org/10.1109/TSP.2018.2816577
110
H. R. Kunsch, E. Agrell, and F. A. Hamprecht, Optimal lattices for sampling, IEEE Trans. Inf. Theory, vol. 51, no. 2, pp. 634–647, 2005.https://doi.org/10.1109/TIT.2004.840864
111
H. Yang, F. Yang, S. Xu, Y. Mao, M. Li, X. Cao, and J. Gao, A 1-bit 10×10 reconfigurable reflectarray antenna: Design, optimization, and experiment, IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2246–2254, 2016.https://doi.org/10.1109/TAP.2016.2550178
112
C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, Realizing wireless communication through software-defined hypersurface environments, in Proc. 2018 IEEE 19thInt. Symp. World Wireless, Mobile Multimedia Netw. (WoWMoM), Chania, Greece, 2018, pp. 14–15.https://doi.org/10.1109/WoWMoM.2018.8449754
113
W. Tang, X. Li, J. Y. Dai, S. Jin, Y. Zeng, Q. Cheng, and T. J. Cui, Wireless communications with programmable metasurface: Transceiver design and experimental results, China Commun., vol. 16, no. 5, pp. 46–61, 2019.https://doi.org/10.23919/j.cc.2019.05.004
114
V. F. Fusco and Q. Chen, Direct-signal modulation using a silicon microstrip patch antenna, IEEE Trans. Antennas Propag., vol. 47, no. 6, pp. 1025–1028, 1999.https://doi.org/10.1109/8.777127
115
W. Yao and Y. Wang, Direct antenna modulation - A promise for ultra-wideband (UWB) transmitting, in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Fort Worth, TX, USA, 2004, pp. 1273–1276.
116
M. P. Daly, E. L. Daly, and J. T. Bernhard, Demonstration of directional modulation using a phased array, IEEE Trans. Antennas Propag., vol. 58, no. 5, pp. 1545–1550, 2010.https://doi.org/10.1109/TAP.2010.2044357
117
W. Tang, M. Z. Chen, J. Y. Dai, Y. Zeng, X. Zhao, S. Jin, Q. Cheng, and T. J. Cui, Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver design, IEEE Wireless Commun., vol. 27, no. 2, pp. 180–187, 2020.https://doi.org/10.1109/MWC.001.1900308
118
L. Dai, B. Wang, M. Wang, X. Yang, J. Tan, S. Bi, S. Xu, F. Yang, Z. Chen, M. D. Renzo, et al., Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results, IEEE Access, vol. 8, pp. 45913–45923, 2020.https://doi.org/10.1109/ACCESS.2020.2977772
119
DOCOMO conducts worlds first successful trial of transparent dynamic metasurface, https://www.nttdocomo.co.jp/english/info/mediacenter/pr/2020/011700.html, 2020.
120
DOCOMO, AGC and Ericsson achieve worlds first 5G communication using glass antenna for 28 GHz, https://www.nttdocomo.co.jp/english/info/mediacenter/pr/2019/052900.html, 2019.
121
Z. Zhang, H. Zhao, J. Wang, and Y. Shen, Signal-multiplexing ranging for network localization, IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 1694–1709, 2021.https://doi.org/10.1109/TWC.2021.3106172
122
T. L. Marzetta, Noncooperative cellular wireless with unlimited numbers of base station antennas, IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590–3600, 2010.https://doi.org/10.1109/TWC.2010.092810.091092
123
X. Gao, L. Dai, S. Han, C. -L. I, and R. W. Heath, Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays, IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 998–1009, 2016.https://doi.org/10.1109/JSAC.2016.2549418
124
J. Tan and L. Dai, Wideband beam tracking in THz massive MIMO systems, IEEE J. Sel. Areas Commun., vol. 39, no. 6, pp. 1693–1710, 2021.https://doi.org/10.1109/JSAC.2021.3071817
125
E. Basar, Transmission through large intelligent surfaces: A new frontier in wireless communications, in Proc. 2019 Eur. Conf. Netw. Commun. (EuCNC), Valencia, Spain, 2019, pp. 112–117.https://doi.org/10.1109/EuCNC.2019.8801961
126
M. D. Renzo, M. Debbah, D. -T. Phan-Huy, A. Zappone, M. -S. Alouini, C. Yuen, V. Sciancalepore, G. C. Alexandropoulos, J. Hoydis, H. Gacanin, et al., Smart radio environments empowered by reconfigurable AI metasurfaces: An idea whose time has come, EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1, p. 129, 2019.https://doi.org/10.1186/s13638-019-1438-9
127
Z. Zhang, H. Zhao, and Y. Shen, High-efficient ranging algorithms for wireless sensor network, in Proc. 2019 11th Int. Conf. Wireless Commun. Signal Process. (WCSP), Xi’an, China, 2019, pp. 1–6.https://doi.org/10.1109/WCSP.2019.8928120
128
X. Gan, C. Zhong, C. Huang, and Z. Zhang, Ris-assisted multi-user MISO communications exploiting statistical CSI, IEEE Trans. Commun., vol. 69, no. 10, pp. 6781–6792, 2021.https://doi.org/10.1109/TCOMM.2021.3100860
129
D. Selimis, K. P. Peppas, G. C. Alexandropoulos, and F. I. Lazarakis, On the performance analysis of RIS-empowered communications over nakagami-m fading, IEEE Commun. Lett., vol. 25, no. 7, pp. 2191–2195, 2021.https://doi.org/10.1109/LCOMM.2021.3073981
130
J. Zhu, Z. Zhang, Z. Wan, and L. Dai, Finite-time capacity: Making exceed-shannon possible? arXiv preprint arXiv: 2111.00444, 2021.
131
Z. Wan, J. Zhu, Z. Zhang, and L. Dai, Capacity for electromagnetic information theory, arXiv preprint arXiv: 2111.00496, 2021.
132
K. Liu, Z. Zhang, L. Dai, S. Xu, and F. Yang, Active reconfigurable intelligent surface: Fully-connected or sub-connected? IEEE Commun. Lett., vol. 26, no. 1, pp. 167–171, 2021.https://doi.org/10.1109/LCOMM.2021.3119696
133
A. M. Salhab and L. Yang, Mixed RF/FSO relay networks: RIS-equipped RF source vs RIS-aided RF source, IEEE Wireless Commun. Lett., vol. 10, no. 8, pp. 1712–1716, 2021.https://doi.org/10.1109/LWC.2021.3077960
134
E. Basar and H. V. Poor, Present and future of reconfigurable intelligent surface-empowered communications [perspectives], IEEE Signal Process. Mag., vol. 38, no. 6, pp. 146–152, 2021.https://doi.org/10.1109/MSP.2021.3106230
135
I. Al-Nahhal, O. A. Dobre, E. Basar, T. M. N. Ngatched, and S. Ikki, Reconfigurable intelligent surface optimization for uplink sparse code multiple access, IEEE Commun. Lett., vol. 26, no. 1, pp. 133–137, 2021.https://doi.org/10.1109/LCOMM.2021.3120560
136
E. Basar, Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G, IEEE Trans. Commun., vol. 68, no. 5, pp. 3187–3196, 2020.https://doi.org/10.1109/TCOMM.2020.2971486
137
K. Liu, Z. Zhang, and L. Dai, User-side RIS: Realizing large-scale array at user side, in Proc. 2021 IEEE Global Commun. Conf. (IEEE GLOBECOM), Madrid, Spain, pp. 1–6, 2021.https://doi.org/10.1109/GLOBECOM46510.2021.9685418
Intelligent and Converged Networks
Pages 33-63
Cite this article:
Zain Siddiqi M, Mir T. Reconfigurable intelligent surface-aided wireless communications: An overview . Intelligent and Converged Networks, 2022, 3(1): 33-63. https://doi.org/10.23919/ICN.2022.0007

2042

Views

752

Downloads

15

Crossref

14

Scopus

Altmetrics

Published: 30 March 2022
© All articles included in the journal are copyrighted to the ITU and TUP.

This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/

Return