AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques

Wireless Research Institute, ZTE Corporation, Beijing 100029, China, and also with the State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen 518055, China
Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens 15784, Greece
Communications Research and Innovation Laboratory (CoreLab), Department of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
School of Electronic Engineering and Computer Science, Queen Mary University of London, London, E1 4NS, UK
Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design, Singapore 487372, Singapore
Show Author Information

Abstract

The demanding objectives for the future sixth generation (6G) of wireless communication networks have spurred recent research efforts on novel materials and radio-frequency front-end architectures for wireless connectivity, as well as revolutionary communication and computing paradigms. Among the pioneering candidate technologies for 6G belong the reconfigurable intelligent surfaces (RISs), which are artificial planar structures with integrated electronic circuits that can be programmed to manipulate the incoming electromagnetic field in a wide variety of functionalities. Incorporating RISs in wireless networks have been recently advocated as a revolutionary means to transform any wireless signal propagation environment to a dynamically programmable one, intended for various networking objectives, such as coverage extension and capacity boosting, spatiotemporal focusing with benefits in energy efficiency and secrecy, and low electromagnetic field exposure. Motivated by the recent increasing interests in the field of RISs and the consequent pioneering concept of the RIS-enabled smart wireless environments, in this paper, we overview and taxonomize the latest advances in RIS hardware architectures as well as the most recent developments in the modeling of RIS unit elements and RIS-empowered wireless signal propagation. We also present a thorough overview of the channel estimation approaches for RIS-empowered communications systems, which constitute a prerequisite step for the optimized incorporation of RISs in future wireless networks. Finally, we discuss the relevance of the RIS technology in the latest wireless communication standards, and highlight the current and future standardization activities for the RIS technology and the consequent RIS-empowered wireless networking approaches.

References

2
AI and ML – Enablers for beyond 5G networks, White paper, 5G PPP Technology Board, https://5g-ppp.eu/wp-content/uploads/2021/05/AI-MLforNetworks-v1-0.pdf, 2021.
3
Y. Gao, J. Chen, Z. Liu, B. Zhang, Y. Ke, and R. Liu, Machine learning based energy saving scheme in wireless access networks, in Proc. 2020 IEEE IWCMC, Limassol, Cyprus, 2020, pp. 1573–1578.https://doi.org/10.1109/IWCMC48107.2020.9148536
4
Innovations in 5G backhaul technologies, Tech. Rep., 5G Americas, 2020.
5
L. Chen, X. Diao, J. Chen, and R. Liu, QoS assurance in IAB network, in Proc. 2020 IEEE IWCMC, Limassol, Cyprus, 2020, pp. 1860–1865.https://doi.org/10.1109/IWCMC48107.2020.9148276
6
G. C. Alexandropoulos, Low complexity full duplex MIMO systems: Analog canceler architectures, beamforming design, and future directions, ITU J. Future Evolv. Technol., vol. 2, no. 2, pp. 1–19, 2021.https://doi.org/10.52953/GFFF9448
7
Samsung, Samsung’s 6G white paper lays out the company’s vision for the next generation of communications technology, https://news.samsung.com/global/samsungs-6gwhite-paper-lays-out-the-companys-vision-for-the-next-generationof-communications-Technology, 2012.
8
C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. F. Akyildiz, A new wireless communication paradigm through software-controlled metasurfaces, IEEE Commun. Mag., vol. 56, no. 9, pp. 162–169, 2018.https://doi.org/10.1109/MCOM.2018.1700659
9
C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, Reconfigurable intelligent surfaces for energy efficiency in wireless communication, IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157–4170, 2019.https://doi.org/10.1109/TWC.2019.2922609
10
E. Basar, M. D. Renzo, J. D. Rosny, M. Debbah, M. -S. Alouini, and R. Zhang, Wireless communications through reconfigurable intelligent surfaces, IEEE Access, vol. 7, pp. 116753–116773, 2019.https://doi.org/10.1109/ACCESS.2019.2935192
11
M. D. Renzo, M. Debbah, D. -T. Phan-Huy, A. Zappone, M. -S. Alouini, C. Yuen, V. Sciancalepore, G. C. Alexandropoulos, J. Hoydis, H. Gacaninet, et al., Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come, EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1, pp. 1–20, 2019.https://doi.org/10.1186/s13638-019-1438-9
12
Q. Wu and R. Zhang, Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming, IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5394–5409, 2019.https://doi.org/10.1109/TWC.2019.2936025
13
G. C. Alexandropoulos, G. Lerosey, M. Debbah, and M. Fink, Reconfigurable intelligent surfaces and metamaterials: The potential of wave propagation control for 6G wireless communications, IEEE ComSoc TCCN Newslett., vol. 6, no. 1, pp. 25–37, 2020.
14
E. Basar and I. Yildirim, Reconfigurable intelligent surfaces for future wireless networks: A channel modeling perspective, IEEE Wireless Commun., vol. 28, no. 3, pp. 108–114, 2021.https://doi.org/10.1109/MWC.001.2000338
15
G. C. Alexandropoulos, N. Shlezinger, and P. D. Hougne, Reconfigurable intelligent surfaces for rich scattering wireless communications: Recent experiments, challenges, and opportunities, IEEE Commun. Mag., vol. 59, no. 6, pp. 28–34, 2021.https://doi.org/10.1109/MCOM.001.2001117
16
E. Calvanese Strinati, G. C. Alexandropoulos, H. Wymeersch, B. Denis, V. Sciancalepore, R. D’Errico, A. Clemente, D. -T. Phan-Huy, E. D. Carvalho, and P. Popovski, Reconfigurable, intelligent, and sustainable wireless environments for 6G smart connectivity, IEEE Commun. Mag., vol. 59, no. 10, pp. 99–105, 2021.https://doi.org/10.1109/MCOM.001.2100070
17
E. C. Strinati, G. C. Alexandropoulos, V. Sciancalepore, M. D. Renzo, H. Wymeersch, D. -T. Phan-Huy, M. Crozzoli, R. D’Errico, E. D. Carvalho, P. Popovski, et al., Wireless environment as a service enabled by reconfigurable intelligent surfaces: The RISE-6G perspective, in Proc. 2021 Joint EuCNC & 6G Summit, Porto, Portugal, 2021, pp. 562–567.https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482474
18
E. Basar and H. V. Poor, Present and future of reconfigurable intelligent surface-empowered communications, IEEE Signal Process. Mag., vol. 38, no. 6, pp. 146–152, 2021.https://doi.org/10.1109/MSP.2021.3106230
19
E. Basar, M. Wen, R. Mesleh, M. D. Renzo, Y. Xiao, and H. Haas, Index modulation techniques for next-generation wireless networks, IEEE Access, vol. 5, pp. 16693–16746, 2017.https://doi.org/10.1109/ACCESS.2017.2737528
20
C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen, R. Zhang, M. D. Renzo, and M. Debbah, Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends, IEEE Wirel. Commun., vol. 27, no. 5, pp. 118–125, 2020.https://doi.org/10.1109/MWC.001.1900534
21
T. L. Marzetta, E. G. Larsson, H. Yang, and H. Q. Ngo, Fundamentals of Massive MIMO. Cambridge, UK: Cambridge University Press, 2016.https://doi.org/10.1017/CBO9781316799895
22
A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. H. Nguyen, L. Li, and K. Haneda, Hybrid beamforming for massive MIMO: A survey, IEEE Commun. Mag., vol. 55, no. 9, pp. 134–141, 2017.https://doi.org/10.1109/MCOM.2017.1600400
23
M. Dohler and Y. Li, Cooperative Communications: Hardware, Channel and PHY. West Sussex, UK: Wiley, 2010.https://doi.org/10.1002/9780470740071
24
K. Ho-Van, P. C. Sofotasios, G. C. Alexandropoulos, and S. Freear, Bit error rate of underlay decode-and-forward cognitive networks with best relay selection, J. Commun. Netw., vol. 17, no. 2, pp. 162–171, 2015.https://doi.org/10.1109/JCN.2015.000030
25
G. C. Alexandropoulos, A. Papadogiannis, and P. C. Sofotasios, A comparative study of relaying schemes with decode-and-forward over Nakagami-m fading channels, J. Comp. Netw. Commun., vol. 2011, no. 1, p. 560528.1–560528.14, 2011.https://doi.org/10.1155/2011/560528
26
J. -P. Niu and G. Y. Li, An overview on backscatter communications, J. Commun. Inf. Netw., vol. 4, no. 2, pp. 1–14, 2019.
27
N. Kaina, M. Dupré, G. Lerosey, and M. Fink, Shaping complex microwave fields in reverberating media with binary tunable metasurfaces, Scientific Reports, vol. 4, p. 6693, 2014.https://doi.org/10.1038/srep06693
28
B. Di, H. Zhang, L. Song, Y. Li, Z. Han, and H. V. Poor, Hybrid beamforming for reconfigurable intelligent surface based multi-user communications: Achievable rates with limited discrete phase shifts, IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1809–1822, 2020.https://doi.org/10.1109/JSAC.2020.3000813
29
E. Björnson and L. Sanguinetti, Power scaling laws and near-field behaviors of massive MIMO and intelligent reflecting surfaces, IEEE Open J. Commun. Soc., vol. 1, pp. 1306–1324, 2020.https://doi.org/10.1109/OJCOMS.2020.3020925
30
W. Tang, M. Z. Chen, X. Chen, J. Y. Dai, Y. Han, M. D. Renzo, Y. Zeng, S. Jin, Q. Cheng, and T. J. Cui, Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement, IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 421–439, 2021.https://doi.org/10.1109/TWC.2020.3024887
31
E. Basar, I. Yildirim, and F. Kilinc, Indoor and outdoor physical channel modeling and efficient positioning for reconfigurable intelligent surfaces in mmWave bands, IEEE Trans. Commun., vol. 69, no. 12, pp. 8600–8611, 2021.https://doi.org/10.1109/TCOMM.2021.3113954
32
F. H. Danufane, M. D. Renzo, J. D. Rosny, and S. Tretyakov, On the path-loss of reconfigurable intelligent surfaces: An approach based on Green’s theorem applied to vector fields, IEEE Trans. Commun., vol. 69, no. 8, pp. 5573–5592, 2021.https://doi.org/10.1109/TCOMM.2021.3081452
33
R. Faqiri, C. Saigre-Tardif, G. C. Alexandropoulos, N. Shlezinger, M. F. Imani, and P. D. Hougne, PhysFad: Physics-based end-to-end channel modeling of RIS-parametrized environments with adjustable fading, https://arxiv.org/pdf/2202.02673.pdf, 2022.
34
Q. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, and M. -S. Alouini, Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO systems, IEEE Trans. Wireless Commun., vol. 19, no. 12, pp. 7748–7764, 2020.https://doi.org/10.1109/TWC.2020.2986438
35
D. Selimis, K. P. Peppas, G. C. Alexandropoulos, and F. I. Lazarakis, On the performance analysis of RIS-empowered communications over Nakagami-m fading, IEEE Commun. Let., vol. 25, no. 7, pp. 2191–2195, 2021.https://doi.org/10.1109/LCOMM.2021.3073981
36
A. L. Moustakas, G. C. Alexandropoulos, and M. Debbah, Capacity optimization using reconfigurable intelligent surfaces: A large system approach, in Proc. 2021 IEEE GLOBECOM, Madrid, Spain, 2021, pp. 1–6.https://doi.org/10.1109/GLOBECOM46510.2021.9685375
37
M. Cui, G. Zhang, and R. Zhang, Secure wireless communication via intelligent reflecting surface, IEEE Wireless Commun. Lett., vol. 8, no. 5, pp. 1410–1414, 2019.https://doi.org/10.1109/LWC.2019.2919685
38
J. Chen, Y. -C. Liang, Y. Pei, and H. Guo, Intelligent reflecting surface: A programmable wireless environment for physical layer security, IEEE Access, vol. 7, pp. 82599–82612, 2019.https://doi.org/10.1109/ACCESS.2019.2924034
39
G. C. Alexandropoulos, K. Katsanos, M. Wen, and D. B. D. Costa, Safeguarding MIMO communications with reconfigurable metasurfaces and artificial noise, in Proc. 2021 IEEE ICC, Montreal, Canada, 2021, pp. 1–6.https://doi.org/10.1109/ICC42927.2021.9501003
40
Z. Ding and H. V. Poor, A simple design of IRS-NOMA transmission, IEEE Commun. Lett., vol. 24, no. 5, pp. 1119–1123, 2020.https://doi.org/10.1109/LCOMM.2020.2974196
41
T. Hou, Y. Liu, Z. Song, X. Sun, Y. Chen, and L. Hanzo, Reconfigurable intelligent surface aided NOMA networks, IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2575–2588, 2020.https://doi.org/10.1109/JSAC.2020.3007039
42
I. Al-Nahhal, O. A. Dobre, and E. Basar, Reconfigurable intelligent surface-assisted uplink sparse code multiple access, IEEE Commun. Lett., vol. 25, no. 6, pp. 2058–2062, 2021.https://doi.org/10.1109/LCOMM.2021.3058142
43
K. Chen-Hu, G. C. Alexandropoulos, and A. G. Armada, Non-coherent modulation for RIS-empowered multi-antenna OFDM communications, https://arxiv.org/abs/2103.05547, 2021.
44
K. Chen-Hu, G. C. Alexandropoulos, and A. G. Armada, Non-coherent MIMO-OFDM uplink empowered by the spatial diversity in reflecting surfaces, arXiv preprint arXiv: 2202.02035, 2022.
45
D. Dampahalage, K. B. Shashika Manosha, N. Rajatheva, and M. Latva-aho, Intelligent reflecting surface aided vehicular communications, in Proc. 2020 IEEE Globecom Workshops, Taiwan, Province of China, 2020, pp. 1–6.https://doi.org/10.1109/GCWkshps50303.2020.9367569
46
E. Basar, Reconfigurable intelligent surfaces for Doppler effect and multipath fading mitigation, Frontiers Commun. Netw., doi. 10.3389/frcmn.2021.672857.
47
I. Alamzadeh, G. C. Alexandropoulos, N. Shlezinger, and M. F. Imani, A reconfigurable intelligent surface with integrated sensing capability, Scientific Reports, vol. 11, p. 20737, 2021.https://doi.org/10.1038/s41598-021-99722-x
48
H. Zhang, N. Shlezinger, I. Alamzadeh, G. C. Alexandropoulos, M. F. Imani, and Y. C. Eldar, Channel estimation with simultaneous reflecting and sensing reconfigurable intelligent metasurfaces, in Proc. 2021 IEEE 22ndInternational Workshop on SPAWC, Lucca, Italy, 2021, pp. 536–540.https://doi.org/10.1109/SPAWC51858.2021.9593172
49
G. C. Alexandropoulos, N. Shlezinger, I. Alamzadeh, M. F. Imani, H. Zhang, and Y. C. Eldar, Hybrid reconfigurable intelligent metasurfaces: Enabling simultaneous tunable reflections and sensing for 6G wireless communications, https://arxiv.org/abs/2104.04690, 2021.
50
Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor, Active RIS vs. passive RIS: Which will prevail in 6G? https://arxiv.org/abs/2103.15154v1, 2021.
51
Y. Liu, X. Mu, J. Xu, R. Schober, Y. Hao, H. V. Poor, and L. Hanzo, STAR: Simultaneous transmission and reflection for 360 coverage by intelligent surfaces, https://arxiv.org/abs/2103.09104v2, 2021.https://doi.org/10.1109/MWC.001.2100191
52
C. Huang, G. C. Alexandropoulos, C. Yuen, and M. Debbah, Indoor signal focusing with deep learning designed reconfigurable intelligent surfaces, in Proc. 2019 IEEE 20thInternational Workshop on SPAWC, Cannes, France, 2019, pp. 1–6.https://doi.org/10.1109/SPAWC.2019.8815412
53
G. C. Alexandropoulos, S. Samarakoon, M. Bennis, and M. Debbah, Phase configuration learning in wireless networks with multiple reconfigurable intelligent surfaces, in Proc. 2020 IEEE Globecom Workshops, Taiwan, Province of China, 2020, pp. 1–6.https://doi.org/10.1109/GCWkshps50303.2020.9367575
54
A. Taha, M. Alrabeiah, and A. Alkhateeb, Enabling large intelligent surfaces with compressive sensing and deep learning, IEEE Access, vol. 9, pp. 44304–44321, 2021.https://doi.org/10.1109/ACCESS.2021.3064073
55
L. Wang, N. Shlezinger, G. C. Alexandropoulos, H. Zhang, B. Wang, and Y. C. Eldar, Jointly learned symbol detection and signal reflection in RIS-aided multi-user MIMO systems, in Proc. 2021 55thAsilomar Conf. Signals, Sys., and Comp., Pacific Grove, CA, USA, 2021, pp. 715–721.https://doi.org/10.1109/IEEECONF53345.2021.9723108
56
K. Stylianopoulos, N. Shlezinger, P. D. Hougne, and G. C. Alexandropoulos, Deep-learning-assisted configuration of reconfigurable intelligent surfaces in dynamic rich-scattering environments, arXiv preprint arXiv: 2202.07884, 2022.
57
S. Guo, S. Lv, H. Zhang, J. Ye, and P. Zhang, Reflecting modulation, IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2548–2561, 2020.https://doi.org/10.1109/JSAC.2020.3007060
58
S. Lin, B. Zheng, G. C. Alexandropoulos, M. Wen, M. D. Renzo, and F. Chen, Reconfigurable intelligent surfaces with reflection pattern modulation: Beamforming design and performance analysis, IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 741–754, 2021.https://doi.org/10.1109/TWC.2020.3028198
59
J. Yuan, M. Wen, Q. Li, E. Basar, G. C. Alexandropoulos, and G. Chen, Receive quadrature reflecting modulation for RIS-empowered wireless communications, IEEE Trans. Veh. Technol., vol. 70, no. 5, pp. 5121–5125, 2021.https://doi.org/10.1109/TVT.2021.3073161
60
L. Dai, B. Wang, M. Wang, X. Yang, J. Tan, S. Bi, S. Xu, F. Yang, Z. Chen, M. D. Renzo, et al., Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results, IEEE Access, vol. 8, pp. 45913–45923, 2020.https://doi.org/10.1109/ACCESS.2020.2977772
61
J. Y. Dai, W. Tang, M. Z. Chen, C. H. Chan, Q. Cheng, S. Jin, and T. J. Cui, Wireless communication based on information metasurfaces, IEEE Trans. Microw. Theory Tech., vol. 69, no. 3, pp. 1493–1510, 2021.https://doi.org/10.1109/TMTT.2021.3054662
62
G. C. Alexandropoulos, N. C. Sagias, F. I. Lazarakis, and K. Berberidis, New results for the multivariate Nakagami-m fading model with arbitrary correlation matrix and applications, IEEE Trans. Wireless Commun., vol. 8, no. 1, pp. 245–255, 2009.https://doi.org/10.1109/T-WC.2009.070521
63
G. C. Alexandropoulos and M. Kountouris, Maximal ratio transmission in wireless Poisson networks under spatially correlated fading channels, in Proc. 2015 IEEE GLOBECOM, San Diego, CA, USA, 2015, pp. 1–6.https://doi.org/10.1109/GLOCOM.2015.7417830
64
M. T. Ivrlač and J. A. Nossek, Toward a circuit theory of communication,IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 57, no. 7, pp. 1663–1683, 2010.https://doi.org/10.1109/TCSI.2010.2043994
65
G. C. Alexandropoulos, V. I. Barousis, and C. B. Papadias, Precoding for multiuser MIMO systems with single-fed parasitic antenna arrays, in Proc. 2014 IEEE GLOBECOM, Austin, TX, USA, 2014, pp. 3897–3902.https://doi.org/10.1109/GLOCOM.2014.7037416
66
L. Subrt and P. Pechac, Intelligent walls as autonomous parts of smart indoor environments, IET Commun., vol. 6, no. 8, pp. 1004–1010, 2012.https://doi.org/10.1049/iet-com.2010.0544
67
V. Jamali, G. C. Alexandropoulos, R. Schober, and H. V. Poor, Lowto-zero-overhead IRS reconfiguration: Decoupling illumination and channel estimation, arXiv preprint arXiv: 2111.0942, 2021.https://doi.org/10.36227/techrxiv.16810420
68
R. A. Tasci, F. Kilinc, E. Basar, and G. C. Alexandropoulos, An amplifying RIS architecture with a single power amplifier: Energy efficiency and error performance analysis, https://arxiv.org/pdf/2111.09855, 2021.https://doi.org/10.1109/ACCESS.2022.3167841
69
O. Yurduseven, D. L. Marks, T. Fromenteze, and D. R. Smith, Dynamically reconfigurable holographic metasurface aperture for a mills-cross monochromatic microwave camera, Opt. Express, vol. 26, no. 5, pp. 5281–5291, 2018.https://doi.org/10.1364/OE.26.005281
70
A. Pizzo, T. L. Marzetta, and L. Sanguinetti, Spatial characterization of holographic MIMO channels, IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 1964–1979, 2020.https://doi.org/10.1109/JSAC.2020.3000877
71
N. Shlezinger, O. Dicker, Y. C. Eldar, I. Yoo, M. F. Imani, and D. R. Smith, Dynamic metasurface antennas for uplink massive MIMO systems, IEEE Trans. Commun., vol. 67, no. 10, pp. 6829–6843, 2019.https://doi.org/10.1109/TCOMM.2019.2927213
72
S. Hu, F. Rusek, and O. Edfors, Beyond massive MIMO: The potential of positioning with large intelligent surfaces, IEEE Trans. Signal Process., vol. 66, no. 7, pp. 1761–1774, 2018.https://doi.org/10.1109/TSP.2018.2795547
73
G. C. Alexandropoulos and E. Vlachos, A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation, in Proc. 2020 IEEE ICASSP, Barcelona, Spain, 2020, pp. 9175–9179.https://doi.org/10.1109/ICASSP40776.2020.9053976
74
L. Dong, H. -M. Wang, and J. Bai, Active reconfigurable intelligent surface aided secure transmission, IEEE Trans. Veh. Technol., vol. 71, no. 2, pp. 2181–2186, 2022.https://doi.org/10.1109/TVT.2021.3135498
75
G. C. Alexandropoulos, I. Vinieratou, and H. Wymeersch, Localization via multiple reconfigurable intelligent surfaces equipped with single receive RF chains, IEEE Wireless Commun. Lett., doi. 10.1109/LWC. 2022.3156427.https://doi.org/10.1109/LWC.2022.3156427
76
E. Vlachos, G. C. Alexandropoulos, and J. Thompson, Wideband MIMO channel estimation for hybrid beamforming millimeter wave systems via random spatial sampling, IEEE J. Sel. Topics Signal Process., vol. 13, no. 5, pp. 1136–1150, 2019.https://doi.org/10.1109/JSTSP.2019.2937633
77
J. Xu, Y. Liu, X. Mu, and O. A. Dobre, STAR-RISs: Simultaneous transmitting and reflecting reconfigurable intelligent surfaces, IEEE Commun. Lett., vol. 25, no. 9, pp. 3134–3138, 2021.https://doi.org/10.1109/LCOMM.2021.3082214
78
S. Zhang, H. Zhang, B. Di, Y. Tan, M. D. Renzo, Z. Han, H. V. Poor, and L. Song, Intelligent omni-surfaces: Ubiquitous wireless transmission by reflective-refractive metasurfaces, IEEE Trans. Wireless Commun., vol. 21, no. 1, pp. 219–233, 2022.https://doi.org/10.1109/TWC.2021.3094869
79
Y. Liu, X. Mu, J. Xu, R. Schober, Y. Hao, H. V. Poor, and L. Hanzo, STAR: Simultaneous transmission and reflection for 360 coverage by intelligent surfaces, arXiv preprint arXiv: 2103.09104, 2021.https://doi.org/10.1109/MWC.001.2100191
80
J. Xu, Y. Liu, X. Mu, J. T. Zhou, L. Song, H. V. Poor, and L. Hanzo, Simultaneously transmitting and reflecting (STAR) intelligent omni-surfaces, their modeling and implementation, arXiv preprint arXiv: 2108.06233, 2021.https://doi.org/10.1109/MVT.2022.3157069
81
NTT DOCOMO, DOCOMO conducts world’s first successful trial of transparent dynamic metasurface, https://www.docomo.ne.jp/english/info/media_center/pr/2020/0117_00.html, 2020.
82
C. Zhang, W. Yi, Y. Liu, Z. Ding, and L. Song, STAR-IOS aided NOMA networks: Channel model approximation and performance analysis, arXiv preprint arXiv: 2107.01543, 2021.
83
H. Zhang, S. Zeng, B. Di, Y. Tan, M. D. Renzo, M. Debbah, L. Song, Z. Han, and H. V. Poor, Intelligent omni-surfaces for full-dimensional wireless communications: Principle, technology, and implementation, arXiv preprint arXiv: 2104.12313, 2021.
84
J. Xu, Y. Liu, X. Mu, R. Schober, and H. V. Poor, STAR-RISs: A correlated T&R phase-shift model and practical phase-shift configuration strategies, arXiv preprint arXiv: 2112.00299, 2021.
85
Y. Liu, X. Mu, R. Schober, and H. V. Poor, Simultaneously transmitting and reflecting (STAR)-RISs: A coupled phase-shift model, arXiv preprint arXiv: 2110.02374, 2021.
86
I. Yildirim, F. Kilinc, E. Basar, and G. C. Alexandropoulos, Hybrid RIS-empowered reflection and decode-and-forward relaying for coverage extension, IEEE Commun. Lett., vol. 25, no. 5, pp. 1692–1696, 2021.https://doi.org/10.1109/LCOMM.2021.3054819
87
I. F. Akyildiz, C. Han, and S. Nie, Combating the distance problem in the millimeter wave and terahertz frequency bands, IEEE Commun. Mag., vol. 56, no. 6, pp. 102–108, 2018.https://doi.org/10.1109/MCOM.2018.1700928
89
ZTE builds efficient way to 5G-Advanced and 6G with RIS solution, https://www.youtube.com/watch?v=ml00XFnIzn8, 2022.
90
91
T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design, IEEE Trans. Commun., vol. 63, no. 9, pp. 3029–3056, 2015.https://doi.org/10.1109/TCOMM.2015.2434384
92
EU METIS, https://metis2020.com/, 2020.
93
R. J. Weiler, M. Peter, W. Keusgen, and M. Wisotzki, Measuring the busy urban 60 GHz outdoor access radio channel, in Proc. 2014 IEEE ICUWB, Paris, France, 2014, pp. 166–170.https://doi.org/10.1109/ICUWB.2014.6958971
94
T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, and G. C. Trichopoulos, Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond, IEEE Access, vol. 7, pp. 78729–78757, 2019.https://doi.org/10.1109/ACCESS.2019.2921522
95
L. Pometcu and R. D’Errico, An indoor channel model for high data-rate communications in D-band, IEEE Access, vol. 8, pp. 9420–9433, 2019.https://doi.org/10.1109/ACCESS.2019.2960614
96
M. Fink, Time reversal of ultrasonic fields—part I: Basic principles, IEEE Trans. Ultrason. Ferroelectron. Frequency Contr., vol. 39, no. 5, pp. 555–566, 1992.https://doi.org/10.1109/58.156174
97
G. C. Alexandropoulos, R. Khayatzadeh, M. Kamoun, Y. Ganghua, and M. Debbah, Indoor time reversal wireless communication: Experimental results for localization and signal coverage, in Proc. 2019 IEEE ICASSP, Brighton, UK, 2014, pp. 7844–7848.https://doi.org/10.1109/ICASSP.2019.8683188
98
A. Mokh, J. D. Rosny, G. C. Alexandropoulos, R. Khayatzadeh, A. Ourir, M. Kamoun, A. Tourin, and M. Fink, Time reversal precoding at subTHz frequencies: Experimental results on spatiotemporal focusing, in Proc. 2021 IEEE CSCN, Thessaloniki, Greece, 2021, pp. 78–82.https://doi.org/10.1109/CSCN53733.2021.9686163
99
A. Mokh, J. D. Rosny, G. C. Alexandropoulos, R. Khayatzadeh, A. Ourir, M. Kamoun, A. Tourin, and M. Fink, Time reversal for multiple access and mobility: Algorithmic design and experimental results, presented at IEEE WCNC, Austin, TX, USA, 2022.
100
P. D. Hougne, F. Lemoult, M. Fink, and G. Lerosey, Spatiotemporal wave front shaping in a microwave cavity, Phys. Rev. Lett., vol. 117, no. 13, p. 134302, 2016.https://doi.org/10.1103/PhysRevLett.117.134302
101
S. Abeywickrama, R. Zhang, Q. Wu, and C. Yue, Intelligent reflecting surface: Practical phase shift model and beamforming optimization, IEEE Trans. Commun., vol. 68, no. 9, pp. 5849–5863, 2020.https://doi.org/10.1109/TCOMM.2020.3001125
102
K. D. Katsanos, N. Shlezinger, M. F. Imani, and G. C. Alexandropoulos, Wideband multi-user MIMO communications with frequency selective RISs: Element response modeling and sum-rate maximization, arXiv preprint arXiv: 2202.02169, 2022.
103
H. Zhang, L. Song, Z. Han, and H. V. Poor, Spatial equalization before reception: Reconfigurable intelligent surfaces for multi-path mitigation, in Proc. 2021 IEEE ICASSP, Toronto, Canada, 2021, pp. 8062–8066.https://doi.org/10.1109/ICASSP39728.2021.9414612
104
R. Zhou, X. Chen, W. Tang, X. Li, S. Jin, E. Basar, Q. Cheng, and T. J. Cui, Modeling and measurements for multi-path mitigation with reconfigurable intelligent surfaces, https://arxiv.org/pdf/2109.11820, 2021.
105
E. Arslan, I. Yildirim, F. Kilinc, and E. Basar, Over-the-air equalization with reconfigurable intelligent surfaces, https://arxiv.org/pdf/2106.07996, 2021.
106
M. Najafi, V. Jamali, R. Schober, and H. V. Poor, Physics-based modeling of large intelligent reflecting surfaces for scalable optimization, in Proc. 2020 54thAsilomar Conf. Signals, Sys., and Comp., Pacific Grove, CA, USA, 2020, pp. 559–563.https://doi.org/10.1109/IEEECONF51394.2020.9443337
107
O. Özdogan, E. Björnson, and E. G. Larsson, Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling, IEEE Wireless Commun. Lett., vol. 9, no. 5, pp. 581–585, 2020.https://doi.org/10.1109/LWC.2019.2960779
108
H. Ajam, M. Najafi, V. Jamali, B. Schmauss, and R. Schober, Modeling and design of IRS-assisted multi-link FSO systems, arXiv preprint arXiv: 2108.00291, 2021.https://doi.org/10.1109/TCOMM.2022.3163767
109
M. D. Renzo, F. H. Danufane, X. Xi, J. D. Rosny, and S. Tretyakov, Analytical modeling of the path-loss for reconfigurable intelligent surfaces – Anomalous mirror or scatterer? arXiv preprint arXiv: 2001.10862, 2020.https://doi.org/10.1109/SPAWC48557.2020.9154326
110
S. W. Ellingson, Path loss in reconfigurable intelligent surface-enabled channels, arXiv preprint arXiv: 1912.06759, 2019.
111
A. -A. A. Boulogeorgos and A. Alexiou, Pathloss modeling of reconfigurable intelligent surface assisted THz wireless systems, arXiv preprint arXiv: 2102.08757, 2021.https://doi.org/10.1109/ICC42927.2021.9500473
112
K. Dovelos, S. D. Assimonis, H. Q. Ngo, B. Bellalta, and M. Matthaiou, Intelligent reflecting surfaces at terahertz bands: Channel modeling and analysis, arXiv preprint arXiv: 2103.15239, 2021.https://doi.org/10.1109/ICCWorkshops50388.2021.9473890
113
G. Gradoni and M. D. Renzo, End-to-end mutual coupling aware communication model for reconfigurable intelligent surfaces: An electromagnetic-compliant approach based on mutual impedances, arXiv preprint arXiv: 2009.02694, 2020.
114
Study on channel model for frequencies from 0.5 to 100 GHz, 3GPP TR 38.901 V16.1. 0, 2020.
115
E. Björnson and L. Sanguinetti, Rayleigh fading modeling and channel hardening for reconfigurable intelligent surfaces, IEEE Wireless Commun. Lett., vol. 10, no. 4, pp. 830–834, 2021.https://doi.org/10.1109/LWC.2020.3046107
116
G. C. Alexandropoulos, N. C. Sagias, and K. Berberidis, On the multivariate Weibull fading model with arbitrary correlation matrix, IEEE Ant. Wireless Prop. Lett., vol. 6, pp. 93–95, 2007.https://doi.org/10.1109/LAWP.2007.893093
117
G. C. Alexandropoulos, P. T. Mathiopoulos, and N. C. Sagias, Switch-and-examine diversity over arbitrary correlated Nakagami-m fading channels, IEEE Trans. Veh. Technol., vol. 59, no. 4, pp. 2080–2087, 2010.https://doi.org/10.1109/TVT.2010.2041016
118
A. Pizzo, T. L. Marzetta, and L. Sanguinetti, Spatially-stationary model for holographic MIMO small-scale fading, IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 1964–1979, 2020.https://doi.org/10.1109/JSAC.2020.3000877
119
L. Wei, C. Huang, G. C. Alexandropoulos, W. E. I. Sha, Z. Zhang, M. Debbah, and C. Yuen, Multi-user holographic MIMO surface: Channel modeling and spectral efficiency analysis, arXiv preprint arXiv: 2112.02803, 2021.
120
Y. Liu, X. Mu, X. Liu, M. D. Renzo, Z. Ding, and R. Schober, Reconfigurable intelligent surface (RIS) aided multi-user networks: Interplay between NOMA and RIS, https://arxiv.org/abs/2011.13336, 2021.
121
J. Xu and Y. Liu, A novel physics-based channel model for reconfigurable intelligent surface-assisted multi-user communication systems, IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 1183–1196, 2021.https://doi.org/10.1109/TWC.2021.3102887
122
Z. Sun and Y. Jing, On the performance of multi-antenna IRS-assisted NOMA networks with continuous and discrete IRS phase shifting, IEEE Trans. Wireless Commun., doi: 10.1109/TWC.2021.3117494.https://doi.org/10.1109/TWC.2021.3117494
123
Y. Cheng, K. H. Li, Y. Liu, K. C. Teh, and G. K. Karagiannidis, Nonorthogonal multiple access (NOMA) with multiple intelligent reflecting surfaces, IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7184–7195, 2021.https://doi.org/10.1109/TWC.2021.3081423
124
M. Fu, Y. Zhou, Y. Shi, and K. B. Letaief, Reconfigurable intelligent surface empowered downlink non-orthogonal multiple access, IEEE Trans. Commun., vol. 69, no. 6, pp. 3802–3817, 2021.https://doi.org/10.1109/TCOMM.2021.3066587
125
G. Yang, X. Xu, Y. -C. Liang, and M. D. Renzo, Reconfigurable intelligent surface-assisted non-orthogonal multiple access, IEEE Trans. Wireless Commun., vol. 20, no. 5, pp. 3137–3151, 2021.https://doi.org/10.1109/TWC.2020.3047632
126
A. Khaleel and E. Basar, A novel NOMA solution with RIS partitioning, IEEE J. Sel. Top. Signal Process., vol. 16, no. 1, pp. 70–81, 2021.https://doi.org/10.1109/JSTSP.2021.3127725
127
C. Zhang, W. Yi, Y. Liu, K. Yang, and Z. Ding, Reconfigurable intelligent surfaces aided multi-cell NOMA networks: A stochastic geometry model, IEEE Trans. Commun., vol. 70, no. 2, pp. 951–966, 2021.https://doi.org/10.1109/TCOMM.2021.3126598
128
C. Zhang, W. Yi, Y. Liu, and Q. Wang, Multi-cell NOMA: Coherent reconfigurable intelligent surfaces model with stochastic geometry, in Proc. 2021 IEEE ICC, Montreal, Canada, 2021, pp. 1–6.https://doi.org/10.1109/ICC42927.2021.9500800
129
Z. Xie, W. Yi, X. Wu, Y. Liu, and A. Nallanathan, STAR-RIS aided NOMA in multi-cell networks: A general analytical framework with gamma distributed channel modeling, https://arxiv.org/abs/2108.06704, 2021.
130
Q. -U. -A. Nadeem, H. Alwazani, A. Kammoun, A. Chaaban, M. Debbah, and M. -S. Alouini, Intelligent reflecting surface-assisted multiuser MISO communication: Channel estimation and beamforming design, IEEE Open J. Commun. Soc., vol. 1, pp. 661–680, 2020.https://doi.org/10.1109/OJCOMS.2020.2992791
131
H. Liu, X. Yuan, and Y. J. A. Zhang, Matrix-calibration-based cascaded channel estimation for reconfigurable intelligent surface assisted multiuser MIMO, IEEE J. Sel. Area. Comm., vol. 38, no. 11, pp. 2621–2636, 2020.https://doi.org/10.1109/JSAC.2020.3007057
132
Z. He and X. Yuan, Cascaded channel estimation for large intelligent metasurface assisted massive MIMO, IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 210–214, 2020.https://doi.org/10.1109/LWC.2019.2948632
133
D. Mishra and H. Johansson, Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer, in Proc. 2019 IEEE ICASSP, Brighton, UK, 2019, pp. 4659–4663.https://doi.org/10.1109/ICASSP.2019.8683663
134
C. Hu, L. Dai, S. Han, and X. Wang, Two-timescale channel estimation for reconfigurable intelligent surface aided wireless communications, IEEE Trans. on Commun., vol. 69, no. 11, pp. 7736–7747, 2021.https://doi.org/10.1109/TCOMM.2021.3072729
135
X. Guan, Q. Wu, and R. Zhang, Anchor-assisted channel estimation for intelligent reflecting surface aided multiuser communication, arXiv preprint arXiv: 2102.10886, 2021.https://doi.org/10.1109/TWC.2021.3123674
136
B. Zheng and R. Zhang, Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization, IEEE Wireless Commun. Lett., vol. 9, no. 4, pp. 518–522, 2020.https://doi.org/10.1109/LWC.2019.2961357
137
S. Lin, B. Zheng, G. C. Alexandropoulos, M. Wen, F. -J. Chen, and S. Mumtaz, Adaptive transmission for reconfigurable intelligent surface-assisted OFDM wireless communications, IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2653–2665, 2020.https://doi.org/10.1109/JSAC.2020.3007038
138
Y. Yang, B. Zheng, S. Zhang, and R. Zhang, Intelligent reflecting surface meets OFDM: Protocol design and rate maximization, IEEE Trans. Commun., vol. 68, no. 7, pp. 4522–4535, 2020.https://doi.org/10.1109/TCOMM.2020.2981458
139
C. You, B. Zheng, and R. Zhang, Channel estimation and passive beamforming for intelligent reflecting surface: Discrete phase shift and progressive refinement, IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2604–2620, 2020.https://doi.org/10.1109/JSAC.2020.3007056
140
T. V. Chien, H. Q. Ngo, S. Chatzinotas, M. D. Renzo, and B. Ottersten, Reconfigurable intelligent surface-assisted cell-free massive MIMO systems over spatially-correlated channels, arXiv preprint arXiv: 2104.08648, 2021.https://doi.org/10.1109/TWC.2021.3136925
141
K. Zhi, C. Pan, H. Ren, K. Wang, M. Elkashlan, M. D. Renzo, R. Schober, H. V. Poor, J. Wang, and L. Hanzo, Two-timescale design for reconfigurable intelligent surface-aided massive MIMO systems with imperfect CSI, arXiv preprint arXiv: 2108.07622, 2021.
142
T. L. Jensen and E. D. Carvalho, An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator, in Proc. 2020 IEEE ICASSP, Barcelona, Spain, 2020, pp. 5000–5004.https://doi.org/10.1109/ICASSP40776.2020.9053695
143
J. Kang, Intelligent reflecting surface: Joint optimal training sequence and refection pattern, IEEE Commun. Lett., vol. 24, no. 8, pp. 1784–1788, 2020.https://doi.org/10.1109/LCOMM.2020.2991178
144
D. Shen and L. Dai, Dimension reduced channel feedback for reconfigurable intelligent surface aided wireless communications, IEEE Trans. on Commun., vol. 69, no. 11, pp. 7748–7760, 2021.https://doi.org/10.1109/TCOMM.2021.3100428
145
X. Wei, D. Shen, and L. Dai, Channel estimation for RIS assisted wireless communications—part II: An improved solution based on double-structured sparsity, IEEE Commun. Lett., vol. 25, no. 5, pp. 1403–1407, 2021.https://doi.org/10.1109/LCOMM.2021.3052787
146
N. K. Kundu and M. R. Mckay, Large intelligent surfaces with channel estimation overhead: Achievable rate and optimal configuration, IEEE Wireless Commun. Lett., vol. 10, no. 5, pp. 986–990, 2021.https://doi.org/10.1109/LWC.2021.3053593
147
Y. Jin, J. Zhang, X. Zhang, H. Xiao, B. Ai, and D. W. K. Ng, Channel estimation for semi-passive reconfigurable intelligent surfaces with enhanced deep residual networks, IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 11083–11088, 2021.https://doi.org/10.1109/TVT.2021.3109937
148
R. Schroeder, J. He, and M. Juntti, Passive RIS vs. hybrid RIS: A comparative study on channel estimation, in Proc. 2021 IEEE 93rdVTC-Spring, Helsinki, Finland, 2021, pp. 1–7.https://doi.org/10.1109/VTC2021-Spring51267.2021.9448802
149
K. Ardah, S. Gherekhloo, A. L. F. D. Almeida, and M. Haardt, TRICE: A channel estimation framework for RIS-aided millimeter-wave MIMO systems, IEEE Signal Process. Lett., vol. 28, pp. 513–517, 2021.https://doi.org/10.1109/LSP.2021.3059363
150
J. Mirza and B. Ali, Channel estimation method and phase shift design for reconfigurable intelligent surface assisted MIMO networks, IEEE Trans. Cogn. Commun. Netw., vol. 7, no. 2, pp. 441–451, 2021.https://doi.org/10.1109/TCCN.2021.3072895
151
H. Liu, J. Zhang, Q. Wu, H. Xiao, and B. Ai, ADMM based channel estimation for RISs aided millimeter wave communications, IEEE Commun. Lett., vol. 25, no. 9, pp. 2894–2898, 2021.https://doi.org/10.1109/LCOMM.2021.3095218
152
M. Jian and R. Liu, Baseband signal processing for terahertz: Waveform design, modulation and coding, in Proc. 2021 IEEE Int. Wireless Commun. Mob. Comput., Harbin, China, 2021, pp. 1710–1715.https://doi.org/10.1109/IWCMC51323.2021.9498810
153
S. Ma, W. Shen, J. An, and L. Hanzo, Wideband channel estimation for IRS-aided systems in the face of beam squint, IEEE Trans. Wireless Commun., vol. 20, no. 10, pp. 6240–6253, 2021.https://doi.org/10.1109/TWC.2021.3072694
154
Y. Liu, S. Zhang, F. Gao, J. Tang, and O. A. Dobre, Cascaded channel estimation for RIS assisted mmWave MIMO transmissions, arXiv preprint arXiv: 2106.10405, 2021.https://doi.org/10.1109/LWC.2021.3092147
155
Y. Chen, D. Chen, and T. Jiang, Beam-squint mitigating in reconfigurable intelligent surface aided wideband mmWave communications, in Proc. 2021 IEEE WCNC, Nanjing, China, 2021, pp. 1–6.https://doi.org/10.1109/WCNC49053.2021.9417413
156
B. Al-Nahhas, Q. -U. -A. Nadeem, and A. Chaaban, Intelligent reflecting surface assisted MISO downlink: Channel estimation and asymptotic analysis, in Proc. 2020 IEEE GLOBECOM, Taiwan, Province of China, 2020, pp.1–6.https://doi.org/10.1109/GLOBECOM42002.2020.9322316
157
S. E. Zegrar, L. Afeef, and H. Arslan, Reconfigurable intelligent surface (RIS): Eigenvalue decomposition-based separate channel estimation, in Proc. 2021 IEEE 32ndPIMRC, Helsinki, Finland, 2021, pp. 1–6.
158
Z. Zhou, N. Ge, Z. Wang, and L. Hanzo, Joint transmit precoding and reconfigurable intelligent surface phase adjustment: A decomposition-aided channel estimation approach, IEEE Trans. Commun., vol. 69, no. 2, pp. 1228–1243, 2020.https://doi.org/10.1109/TCOMM.2020.3034259
159
G. T. D. Araujo, A. L. D. Almeida, and R. Boyer, Channel estimation for intelligent reflecting surface assisted MIMO systems: A tensor modeling approach, IEEE J. Sel. Areas Commun., vol. 15, no. 3, pp. 789–802, 2021.https://doi.org/10.1109/JSTSP.2021.3061274
160
R. A. Harshman and M. E. Lundy, PARAFAC: Parallel factor analysis, Comput. Stat. & Data Analysis, vol. 18, no. 1, pp. 39–72, 1994.https://doi.org/10.1016/0167-9473(94)90132-5
161
L. Wei, C. Huang, G. C. Alexandropoulos, C. Yuen, Z. Zhang, and M. Debbah, Channel estimation for RIS-empowered multi-user MISO wireless communications, IEEE Trans. Commun., vol. 69, no. 6, pp. 4144–4157, 2021.https://doi.org/10.1109/TCOMM.2021.3063236
162
J. Yuan, G. C. Alexandropoulos, E. Kofidis, T. L. Jensen, and E. D. Carvalho, Tensor-based channel tracking for RIS-empowered multi-user MIMO wireless systems, arXiv preprint arXiv: 2202.08315, 2022.
163
Z. Mao, M. Peng, and X. Liu, Channel estimation for reconfigurable intelligent surface assisted wireless communication systems in mobility scenarios, China Commun., vol. 18, no. 3, pp. 29–38, 2021.https://doi.org/10.23919/JCC.2021.03.003
164
M. Xu, S. Zhang, J. Ma, and O. A. Dobre, Deep learning-based time-varying channel estimation for RIS assisted communication, arXiv preprint arXiv: 2108.05661, 2021.
165
S. Sun and H. Yan, Channel estimation for reconfigurable intelligent surface-assisted wireless communications considering doppler effect, IEEE Wireless Commun. Lett., vol. 10, no. 4, pp. 790–794, 2020.https://doi.org/10.1109/LWC.2020.3044004
166
J. He, H. Wymeersch, and M. Juntti, Leveraging location information for RIS-aided mmWave MIMO communications, IEEE Wireless Commun. Lett., vol. 10, no. 7, pp. 1380–1384, 2021.https://doi.org/10.1109/LWC.2021.3067474
167
K. Keykhosravi, M. F. Keskin, G. Seco-Granados, and H. Wymeersch, SISO RIS-enabled joint 3D downlink localization and synchronization, in Proc. 2021 IEEE ICC, Montreal, Canada, 2021, pp. 1–6.https://doi.org/10.1109/ICC42927.2021.9500281
168
Y. Liu, E. Liu, R. Wang, and Y. Geng, Reconfigurable intelligent surface aided wireless localization, in Proc. 2021 IEEE ICC, Montreal, Canada, 2021, pp. 1–6.https://doi.org/10.1109/ICC42927.2021.9500437
169
L. Wang, N. Shlezinger, G. C. Alexandropoulos, H. Zhang, B. Wang, and Y. C. Eldar, Jointly learned symbol detection and signal reflection in RIS-aided multi-user MIMO systems, in Proc. 2021 55thAsilomar Conf. Signals, Sys., Comp., Pacific Grove, CA, USA, 2021, pp. 715–721.https://doi.org/10.1109/IEEECONF53345.2021.9723108
170
N. K. Kundu and M. R. McKay, Channel estimation for reconfigurable intelligent surface aided MISO communications: From LMMSE to deep learning solutions, IEEE Open J. Commun. Soc., vol. 2, pp. 471–487, 2021.https://doi.org/10.1109/OJCOMS.2021.3063171
171
E. Shtaiwi, H. Zhang, A. Abdelhadi, and Z. Han, RIS-assisted mmWave channel estimation using convolutional neural networks, in Proc. 2021 IEEE WCNCW, Nanjing, China, 2021, pp. 1–6.https://doi.org/10.1109/WCNCW49093.2021.9419974
172
S. Gao, P. Dong, Z. Pan, and G. Y. Li, Deep multi-stage CSI acquisition for reconfigurable intelligent surface aided MIMO systems, IEEE Commun. Lett., vol. 25, no. 6, pp. 2024–2028, 2021.https://doi.org/10.1109/LCOMM.2021.3063464
173
W. Yang, H. Li, M. Li, Y. Liu, and Q. Liu, Channel estimation for practical IRS-assisted OFDM systems, in Proc. 2021 IEEE WCNCW, Nanjing, China, 2021, pp. 1–6.https://doi.org/10.1109/WCNCW49093.2021.9419982
174
Y. Liu, E. Liu, R. Wang, and Y. Geng, Channel estimation and power scaling of reconfigurable intelligent surface with non-ideal hardware, in Proc. 2021 IEEE WCNC, Nanjing, China, 2021, pp. 1–6.https://doi.org/10.1109/WCNC49053.2021.9417454
175
B. Li, Z. Zhang, Z. Hu, and Y. Chen, Joint array diagnosis and channel estimation for RIS-aided mmWave MIMO system, IEEE Access, vol. 8, pp. 193992–194006, 2020.https://doi.org/10.1109/ACCESS.2020.3032775
176
G. Zhou, C. Pan, H. Ren, K. Wang, and A. Nallanathan, A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels, IEEE Trans. Signal Process., vol. 68, pp. 5092–5106, 2020.https://doi.org/10.1109/TSP.2020.3019666
177
M. Jung, W. Saad, Y. Jang, G. Kong, and S. Choi, Performance analysis of large intelligent surfaces (LISs): Asymptotic data rate and channel hardening effects, IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2052–2065, 2020.https://doi.org/10.1109/TWC.2019.2961990
178
J. Zhang, J. Liu, S. Ma, C. -K. Wen, and S. Jin, Large system achievable rate analysis of RIS-assisted MIMO wireless communication with statistical CSIT, IEEE Trans. Wireless Commun., vol. 20, no. 9, pp. 5572–5585, 2021.https://doi.org/10.1109/TWC.2021.3068494
179
G. T. D. Araújo and A. L. F. D. Almeida, PARAFAC-based channel estimation for intelligent reflective surface assisted MIMO system, in Proc. 2020 IEEE 11th SAM, Hangzhou, China, 2020, pp. 1–5.https://doi.org/10.1109/SAM48682.2020.9104260
180
P. Wang, J. Fang, H. Duan, and H. Li, Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems, IEEE Signal Process. Lett., vol. 27, pp. 905–909, 2020.https://doi.org/10.1109/LSP.2020.2998357
181
J. Zhang and M. Haardt, Channel estimation and training design for hybrid multi-carrier mmWave massive MIMO systems: The beamspace ESPRIT approach, in Proc. 2017 25thEUSIPCO, Kos, Greece, 2017, pp. 385–389.https://doi.org/10.23919/EUSIPCO.2017.8081234
182
W. Han, P. Chen, and Z. Cao, Deep neural network-based quantized signal reconstruction for DOA estimation, arXiv preprint arXiv: 2005.01102, 2020.
183
Y. Jin, J. Zhang, B. Ai, and X. Zhang, Channel estimation for mmWave massive MIMO with convolutional blind denoising network, IEEE Commun. Lett., vol. 24, no. 1, pp. 95–98, 2020.https://doi.org/10.1109/LCOMM.2019.2952845
184
L. Wei, C. Huang, G. C. Alexandropoulos, and C. Yuen, Parallel factor decomposition channel estimation in RIS-assisted multi-user MISO communication, in Proc. 2020 IEEE 11thSAM, Hangzhou, China, 2020, pp. 1–5.https://doi.org/10.1109/SAM48682.2020.9104305
185
M. Jian, R. Liu, and Y. Chen, Standardization for reconfigurable intelligent surfaces: Progresses, challenges and the road ahead, in Proc. 2021 IEEE/CIC Int. Conf. Commun. China, Xiamen, China, 2021, pp. 337–342.https://doi.org/10.1109/ICCCWorkshops52231.2021.9538911
186
187
China Communications Standards Association, Meeting detail of TC5 WG6 meeting 55, http://www.ccsa.org.cn/meetingDetail, 2020.
188
ETSI, Work item descriptions of new WIs, https://portal.etsi.org, 2022.
189
ITU-R, Future technology trends of terrestrial IMT Systems towards 2030 and beyond, https://www.itu.int/md/R19-WP5D-210607-TD-0400, 2021.
190
ZTE Corporation, Sanechips, Support of reconfigurable intelligent surface for 5G Advanced, https://www.3gpp.org/ftp/TSG_RAN/TSG_RAN/TSGR_91e/Docs/RP-210618.zip, 2021.
191
R. Liu, Q. Wu, M. D. Renzo, and Y. Yuan, A path to smart radio environments: An industrial viewpoint on reconfigurable intelligent surfaces, IEEE Wireless Communications, vol. 29, no. 1, pp. 202–208, 2022.https://doi.org/10.1109/MWC.111.2100258
Intelligent and Converged Networks
Pages 1-32
Cite this article:
Jian M, Alexandropoulos GC, Basar E, et al. Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques. Intelligent and Converged Networks, 2022, 3(1): 1-32. https://doi.org/10.23919/ICN.2022.0005

8675

Views

1497

Downloads

169

Crossref

159

Scopus

Altmetrics

Published: 30 March 2022
© All articles included in the journal are copyrighted to the ITU and TUP.

This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/

Return