Journal Home > Volume 2 , Issue 3

Satellite communication offers the prospect of service continuity over uncovered and under-covered areas, service ubiquity, and service scalability. However, several challenges must first be addressed to realize these benefits, as the resource management, network control, network security, spectrum management, and energy usage of satellite networks are more challenging than that of terrestrial networks. Meanwhile, artificial intelligence (AI), including machine learning, deep learning, and reinforcement learning, has been steadily growing as a research field and has shown successful results in diverse applications, including wireless communication. In particular, the application of AI to a wide variety of satellite communication aspects has demonstrated excellent potential, including beam-hopping, anti-jamming, network traffic forecasting, channel modeling, telemetry mining, ionospheric scintillation detecting, interference managing, remote sensing, behavior modeling, space-air-ground integrating, and energy managing. This work thus provides a general overview of AI, its diverse sub-fields, and its state-of-the-art algorithms. Several challenges facing diverse aspects of satellite communication systems are then discussed, and their proposed and potential AI-based solutions are presented. Finally, an outlook of field is drawn, and future steps are suggested.


menu
Abstract
Full text
Outline
About this article

Artificial intelligence for satellite communication: A review

Show Author's information Fares Fourati1Mohamed-Slim Alouini1( )
Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia

Abstract

Satellite communication offers the prospect of service continuity over uncovered and under-covered areas, service ubiquity, and service scalability. However, several challenges must first be addressed to realize these benefits, as the resource management, network control, network security, spectrum management, and energy usage of satellite networks are more challenging than that of terrestrial networks. Meanwhile, artificial intelligence (AI), including machine learning, deep learning, and reinforcement learning, has been steadily growing as a research field and has shown successful results in diverse applications, including wireless communication. In particular, the application of AI to a wide variety of satellite communication aspects has demonstrated excellent potential, including beam-hopping, anti-jamming, network traffic forecasting, channel modeling, telemetry mining, ionospheric scintillation detecting, interference managing, remote sensing, behavior modeling, space-air-ground integrating, and energy managing. This work thus provides a general overview of AI, its diverse sub-fields, and its state-of-the-art algorithms. Several challenges facing diverse aspects of satellite communication systems are then discussed, and their proposed and potential AI-based solutions are presented. Finally, an outlook of field is drawn, and future steps are suggested.

Keywords: artificial intelligence, deep learning, machine learning, reinforcement learning, satellite communication, wireless communication

References(222)

1
G. Maral, M. Bousquet, and Z. L. Sun, Satellite Communications Systems: Systems, Techniques and Technology. 6th ed. West Sussex, UK: John Wiley & Sons, 2020.https://doi.org/10.1002/9781119673811
DOI
2

F. Rinaldi, H. L. Maattanen, J. Torsner, S. Pizzi, S. Andreev, A. Iera, Y. Koucheryavy, and G. Araniti, Non-terrestrial networks in 5G & beyond: A survey, IEEE Access, vol. 8, pp. 165178–165200, 2020.

3

P. K. Chowdhury, M. Atiquzzaman, and W. Ivancic, Handover schemes in satellite networks: State-of-the-art and future research directions, IEEE Commun. Surv. Tutorials, vol. 8, no. 4, pp. 2–14, 2006.

4

P. Chini, G. Giambene, and S. Kota, A survey on mobile satellite systems, Int. J. Satell. Commun. Netw., vol. 28, no. 1, pp. 29–57, 2010.

5

P. D. Arapoglou, K. Liolis, M. Bertinelli, A. Panagopoulos, P. Cottis, and R. De Gaudenzi, MIMO over satellite: A review, IEEE Commun. Surv. Tutorials, vol. 13, no. 1, pp. 27–51, 2011.

6

M. De Sanctis, E. Cianca, G. Araniti, I. Bisio, and R. Prasad, Satellite communications supporting internet of remote things, IEEE Int. Things J., vol. 3, no. 1, pp. 113–123, 2016.

7

R. Radhakrishnan, W. W. Edmonson, F. Afghah, R. M. Rodriguez-Osorio, F. Pinto, and S. C. Burleigh, Survey of inter-satellite communication for small satellite systems: Physical layer to network layer view, IEEE Commun. Surv. Tutorials, vol. 18, no. 4, pp. 2442–2473, 2016.

8

C. Niephaus, M. Kretschmer, and G. Ghinea, QoS provisioning in converged satellite and terrestrial networks: A survey of the state-of-the-art, IEEE Commun. Surv. Tutorials, vol. 18, no. 4, pp. 2415–2441, 2016.

9

H. Kaushal and G. Kaddoum, Optical communication in space: Challenges and mitigation techniques, IEEE Commun. Surv. Tutorials, vol. 19, no. 1, pp. 57–96, 2017.

10

J. J. Liu, Y. P. Shi, Z. M. Fadlullah, and N. Kato, Space-air-ground integrated network: A survey, IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 2714–2741, 2018.

11

S. C. Burleigh, T. De Cola, S. Morosi, S. Jayousi, E. Cianca, and C. Fuchs, From connectivity to advanced internet services: A comprehensive review of small satellites communications and networks, Wirel. Commun. Mob. Comput., vol. 2019, no. 11, p. 6243505, 2019.

12

B. Li, Z. S. Fei, C. Q. Zhou, and Y. Zhang, Physical-layer security in space information networks: A survey, IEEE Int. Things J., vol. 7, no. 1, pp. 33–52, 2020.

13

N. Saeed, A. Elzanaty, H. Almorad, H. Dahrouj, T. Y. Al-Naffouri, and M. S. Alouini, CubeSat communications: Recent advances and future challenges, IEEE Commun. Surv. Tutorials, vol. 22, no. 3, pp. 1839–1862, 2020.

14

O. Simeone, A very brief introduction to machine learning with applications to communication systems, IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 4, pp. 648–664, 2018.

15

M. Z. Chen, U. Challita, W. Saad, C. C. Yin, and M. Debbah, Artificial neural networks-based machine learning for wireless networks: A tutorial, IEEE Commun. Surv. Tutorials, vol. 21, no. 4, pp. 3039–3071, 2019.

16

Y. C. Qian, J. Wu, R. Wang, F. S. Zhu, and W. Zhang, Survey on reinforcement learning applications in communication networks, J. Commun. Inform. Netw., vol. 4, no. 2, pp. 30–39, 2019.

17

E. C. Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, and C. Dehos, 6G: The next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication, IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 42–50, 2019.

18

J. Jagannath, N. Polosky, A. Jagannath, F. Restuccia, and T. Melodia, Machine learning for wireless communications in the Internet of Things: A comprehensive survey, Ad Hoc Networks, vol. 93, p. 101913, 2019.

19

G. P. Kumar and P. Venkataram, Artificial intelligence approaches to network management: recent advances and a survey, Comput. Commun., vol. 20, no. 15, pp. 1313–1322, 1997.

20

Y. L. Zou, J. Zhu, X. B. Wang, and L. Hanzo, A survey on wireless security: Technical challenges, recent advances, and future trends, Proc. IEEE, vol. 104, no. 9, pp. 1727–1765, 2016.

21

S. H. Alsamhi, O. Ma, and M. S. Ansari, Survey on artificial intelligence based techniques for emerging robotic communication, Telecommun. Syst., vol. 72, no. 3, pp. 483–503, 2019.

22
H. M. El Misilmani and T. Naous, Machine learning in antenna design: An overview on machine learning concept and algorithms, presented at 2019 Int. Conf. High Performance Computing & Simulation (HPCS), Dublin, Ireland, 2019, pp. 600–607.https://doi.org/10.1109/HPCS48598.2019.9188224
DOI
23

P. S. Bithas, E. T. Michailidis, N. Nomikos, D. Vouyioukas, and A. G. Kanatas, A survey on machinelearning techniques for UAV-based communications, Sensors, vol. 19, no. 23, p. 5170, 2019.

24

M. A. Lahmeri, M. A. Kishk, and M. S. Alouini, Artificial intelligence for UAV-enabled wireless networks: A survey, IEEE Open J. Commun. Soc., vol. 2, pp. 1015–1040, 2021.

25
M. Á. Vázquez, P. Henarejos, A. I. Pérez-Neira, E. Grechi, A. Voight, J. C. Gil, I. Pappalardo, F. Di Credico, and R. M. Lancellotti, On the use of AI for satellite communications, arXiv preprint arXiv: 2007.10110, 2020.
26

N. Kato, Z. M. Fadlullah, F. X. Tang, B. M. Mao, S. Tani, A. Okamura, and J. J. Liu, Optimizing space-air-ground integrated networks by artificial intelligence, IEEE Wirel. Commun., vol. 26, no. 4, pp. 140–147, 2019.

27
V. Kothari, E. Liberis, and N. D. Lane, The final frontier: Deep learning in space, in Proc. 21st Int. Workshop on Mobile Computing Systems and Applications, Austin, TX, USA, 2020, pp. 45–49.https://doi.org/10.1145/3376897.3377864
DOI
28
F. Chollet, Deep learning with Python. New York, NY, USA: Simon and Schuster, 2017.
29
B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal margin classifiers, in Proc. 5th Annu. Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 1992, pp. 144–152.https://doi.org/10.1145/130385.130401
DOI
30
C. M. Bishop, Pattern recognition and Machine Learning. New York, NY, USA: Springer, 2006.
31

J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, A comprehensive survey on support vector machine classification: Applications, challenges and trends, Neurocomputing, vol. 408, pp. 189–215, 2020.

32

J. R. Quinlan, Induction of decision trees, Mach. Learn., vol. 1, no. 1, pp. 81–106, 1986.

33

L. Breiman, Random forests, Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.

34

L. Breiman, Bagging predictors, Mach. Learn., vol. 24, no. 2, pp. 123–140, 1996.

35

J. H. Friedman, Greedy function approximation: a gradient boosting machine, Ann. Statist., vol. 29, pp. 1189–1232, 2001.

36
XGBoost documentation, https://xgboost.readthedocs.io/en/latest/, 2021.
37

T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, R. Mitchell, I. Cano, T. Zhou, et al, XGBoost: Extreme gradient boosting, R package version 0.4–2, vol. 1, no. 4, pp. 1–4, 2015.

38
Kaggle, https://www.kaggle.com/, 2021.
39

P. Baldi and K. Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural Networks, vol. 2, no. 1, pp. 53–58, 1989.

40
R. Hecht-Nielsen, Theory of the backpropagation neural network, in Neural Networks for Perception (Vol. 2): Computation, Learning, Architectures. San Diego, CA, USA: Harcourt Brace & Co., 1992, pp. 65–93.https://doi.org/10.1016/B978-0-12-741252-8.50010-8
DOI
41
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT Press, 2016.
42
S. Albawi, T. A. Mohammed, and S. Al-Zawi, Understanding of a convolutional neural network, presented at 2017 Int. Conf. Engineering and Technology (ICET), Antalya, Turkey, 2017, pp. 1–6.https://doi.org/10.1109/ICEngTechnol.2017.8308186
DOI
43
T. He, Z. Zhang, H. Zhang, Z. Y. Zhang, J. Y. Xie, and M. Li, Bag of tricks for image classification with convolutional neural networks, in Proc. 2019 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 558–567.https://doi.org/10.1109/CVPR.2019.00065
DOI
44
Z. X. Zou, Z. W. Shi, Y. H. Guo, and J. P. Ye, Object detection in 20 years: A survey, arXiv preprint arXiv: 1905.05055, 2019.
45
Q. Chu, W. L. Ouyang, H. S. Li, X. G. Wang, B. Liu, and N. H. Yu, Online multi-object tracking using CNN-based single object tracker with spatial-temporal attention mechanism, in Proc. 2017 IEEE Int. Conf. Computer Vision (ICCV), Venice, Italy, 2017, pp. 4846–4855.https://doi.org/10.1109/ICCV.2017.518
DOI
46
K. R. Chowdhary, Natural language processing, in Fundamentals of Artificial Intelligence, K. R. Chowdhary, ed. Springer, 2020, pp. 603–649.https://doi.org/10.1007/978-81-322-3972-7_19
DOI
47

Y. S. Wang, H. X. Yao, and S. C. Zhao, Auto-encoder based dimensionality reduction, Neurocomputing, vol. 184, pp. 232–242, 2016.

48
C. Zhou and R. C. Paffenroth, Anomaly detection with robust deep autoencoders, in Proc. 23rd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Halifax, Canada, 2017, pp. 665–674.https://doi.org/10.1145/3097983.3098052
DOI
49
C. Doersch, Tutorial on variational autoencoders, arXiv preprint arXiv: 1606.05908, 2021.
50
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial nets, in Proc. 27th Int. Conf. Neural Information Processing Systems, Montreal, Canada, 2014, pp. 2672–2680.
51

A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath, Generative adversarial networks: An overview, IEEE Signal Process. Mag., vol. 35, no. 1, pp. 53–65, 2018.

52
R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. 2nd ed. Cambridge, MA, USA: MIT Press, 2018.
53
D. D. Margineantu and T. G. Dietterich, Pruning adaptive boosting, in Proc. 14th Int. Conf. Machine Learning, Nashville, TN, USA, 1997, pp. 211–218.
54
J. Snoek, H. Larochelle, and R. P. Adams, Practical Bayesian optimization of machine learning algorithms, in Proc. 25th Int. Conf. Neural Information Processing Systems, Lake Tahoe, NV, USA, 2012, pp. 2951–2959.
55
M. Á. Vázquez, A. Pérez-Neira, D. Christopoulos, S. Chatzinotas, B. Ottersten, P.-D. Arapoglou, A. Ginesi, and G. Taricco, Precoding in multibeam satellite communications: Present and future challenges, IEEE Wireless Communications, vol. 23, no. 6, pp. 88–95, 2016.https://doi.org/10.1109/MWC.2016.1500047WC
DOI
56
A. Freedman, D. Rainish, and Y. Gat, Beam hopping how to make it possible, in Proc. Ka and Broadband Communication Conf., Bologna, Italy, 2015, p. 6.
57

L. Lei, E. Lagunas, Y. X. Yuan, M. G. Kibria, S. Chatzinotas, and B. Ottersten, Beam illumination pattern design in satellite networks: Learning and optimization for efficient beam hopping, IEEE Access, vol. 8, pp. 136655–136667, 2020.

58
P. Angeletti, D. F. Prim, and R. Rinaldo, Beam hopping in multi-beam broadband satellite systems: System performance and payload architecture analysis, presented at 24th AIAA Int. Communications Satellite Systems Conf., San Diego, CA, USA, 2006, p. 5376.https://doi.org/10.2514/6.2006-5376
DOI
59
J. Anzalchi, A. Couchman, P. Gabellini, G. Gallinaro, L. D’Agristina, N. Alagha, and P. Angeletti, Beam hopping in multi-beam broadband satellite systems: System simulation and performance comparison with non-hopped systems, presented at 2010 5th Advanced Satellite Multimedia Systems Conf. and the 11th Signal Processing for Space Communications Workshop, Cagliari, Italy, 2010, pp. 248–255.https://doi.org/10.1109/ASMS-SPSC.2010.5586860
DOI
60
X. Alberti, J. M. Cebrian, A. Del Bianco, Z. Katona, J. Lei, M. A. Vazquez-Castro, A. Zanus, L. Gilbert, and N. Alagha, System capacity optimization in time and frequency for multibeam multi-media satellite systems, presented at 2010 5th Advanced Satellite Multimedia Systems Conf. and the 11th Signal Processing for Space Communications Workshop, Cagliari, Italy, 2010, pp. 226–233.https://doi.org/10.1109/ASMS-SPSC.2010.5586902
DOI
61
B. Evans and P. Thompson, Key issues and technologies for a terabit/s satellite, presented at 28th AIAA Int. Communications Satellite Systems Conf. (ICSSC-2010), Anaheim, CA, USA, 2010, pp. 92–102.https://doi.org/10.2514/6.2010-8713
DOI
62

J. Lei and M. Á. Vázquez-Castro, Multibeam satellite frequency/time duality study and capacity optimization, J. Commun. Netw., vol. 13, no. 5, pp. 472–480, 2011.

63
R. Alegre, N. Alagha, and M. Á. Vázquez-Castro, Heuristic algorithms for flexible resource allocation in beam hopping multi-beam satellite systems, presented at 29th AIAA Int. Communications Satellite Systems Conf. (ICSSC-2011), Nara, Japan, 2011, p. 8001.https://doi.org/10.2514/6.2011-8001
DOI
64
R. Alegre-Godoy, N. Alagha, and M. A. Vázquez-Castro, Offered capacity optimization mechanisms for multi-beam satellite systems, presented at 2012 IEEE Int. Conf. Communications (ICC), Ottawa, Canada, 2012, pp. 3180–3184.https://doi.org/10.1109/ICC.2012.6364414
DOI
65

H. Y. Liu, Z. M. Yang, and Z. C. Cao, Max-min rate control on traffic in broadband multibeam satellite communications systems, IEEE Commun. Lett., vol. 17, no. 7, pp. 1396–1399, 2013.

66

H. Han, X. Q. Zheng, Q. F. Huang, and Y. Lin, QoS-equilibrium slot allocation for beam hopping in broadband satellite communication systems, Wirel. Netw., vol. 21, no. 8, pp. 2617–2630, 2015.

67

S. C. Shi, G. X. Li, Z. Q. Li, H. P. Zhu, and B. Gao, Joint power and bandwidth allocation for beam-hopping user downlinks in smart gateway multibeam satellite systems, Int. J. Distrib. Sens. Netw., vol. 13, no. 5, pp. 1–11, 2017.

68
A. Ginesi, E. Re, and P. D. Arapoglou, Joint beam hopping and precoding in HTS systems, presented at 9th Int. Conf. Wireless and Satellite Systems, Oxford, UK, 2017, pp. 43–51.https://doi.org/10.1007/978-3-319-76571-6_5
DOI
69

G. Cocco, T. De Cola, M. Angelone, Z. Katona, and S. Erl, Radio resource management optimization of flexible satellite payloads for DVB-S2 systems, IEEE Trans. Broadcast., vol. 64, no. 2, pp. 266–280, 2018.

70

X. Hu, S. J. Liu, Y. P. Wang, L. X. Xu, Y. C. Zhang, C. Wang, and W. D. Wang, Deep reinforcement learning-based beam hopping algorithm in multibeam satellite systems, IET Commun., vol. 13, no. 16, pp. 2485–2491, 2019.

71
Y. C. Zhang, X. Hu, R. Chen, Z. L. Zhang, L. Q. Wang, and W. D. Wang, Dynamic beam hopping for DVB-S2X satellite: A multi-objective deep reinforcement learning approach, presented at 2019 IEEE Int. Conf. Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS), Shenyang, China, 2019, pp. 164–169.https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00056
DOI
72

X. Hu, Y. C. Zhang, X. L. Liao, Z. J. Liu, W. D. Wang, and F. M. Ghannouchi, Dynamic beam hopping method based on multi-objective deep reinforcement learning for next generation satellite broadband systems, IEEE Trans. Broadcast., vol. 66, no. 3, pp. 630–646, 2020.

73
M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread Spectrum Communications Handbook, Electronic Edition. New York, NY, USA: McGraw-Hill, 2002.
74
D. Torrieri, Principles of Spread-Spectrum Communication Systems. Berlin, Germany: Springer, 2015.https://doi.org/10.1007/978-3-319-14096-4
DOI
75

S. Bae, S. Kim, and J. Kim, Efficient frequency-hopping synchronization for satellite communications using dehop-rehop transponders, IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 1, pp. 261–274, 2016.

76

F. Q. Yao, L. L. Jia, Y. M. Sun, Y. H. Xu, S. Feng, and Y. G. Zhu, A hierarchical learning approach to anti-jamming channel selection strategies, Wirel. Netw., vol. 25, no. 1, pp. 201–213, 2019.

77

L. Xiao, D. H. Jiang, D. J. Xu, H. Z. Zhu, Y. Y. Zhang, and H. V. Poor, Two-dimensional antijamming mobile communication based on reinforcement learning, IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 9499–9512, 2018.

78

C. Han and Y. T. Niu, Cross-layer anti-jamming scheme: A hierarchical learning approach, IEEE Access, vol. 6, pp. 34874–34883, 2018.

79

S. Lee, S. Kim, M. Seo, and D. Har, Synchronization of frequency hopping by LSTM network for satellite communication system, IEEE Commun. Lett., vol. 23, no. 11, pp. 2054–2058, 2019.

80

C. Han, L. Y. Huo, X. H. Tong, H. C. Wang, and X. Liu, Spatial anti-jamming scheme for internet of satellites based on the deep reinforcement learning and stackelberg game, IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5331–5342, 2020.

81

C. Han, A. J. Liu, H. C. Wang, L. Y. Huo, and X. H. Liang, Dynamic anti-jamming coalition for satellite-enabled army IoT: A distributed game approach, IEEE Int. Things J., vol. 7, no. 11, pp. 10932–10944, 2020.

82

Y. X. Bie, L. Z. Wang, Y. Tian, and Z. Hu, A combined forecasting model for satellite network self-similar traffic, IEEE Access, vol. 7, pp. 152004–152013, 2019.

83

L. Rossi, J. Chakareski, P. Frossard, and S. Colonnese, A Poisson hidden Markov model for multiview video traffic, IEEE/ACM Trans. Netw., vol. 23, no. 2, pp. 547–558, 2015.

84
D. Yan and L. Y. Wang, TPDR: Traffic prediction based dynamic routing for LEO&GEO satellite networks, presented at 2015 IEEE 5th Int. Conf. Electronics Information and Emergency Communication, Beijing, China, 2015, pp. 104–107.https://doi.org/10.1109/ICEIEC.2015.7284498
DOI
85

F. L. Xu, Y. Y. Lin, J. X. Huang, D. Wu, H. Z. Shi, J. Song, and Y. Li, Big data driven mobile traffic understanding and forecasting: A time series approach, IEEE Trans. Serv. Comput., vol. 9, no. 5, pp. 796–805, 2016.

86

C. Katris and S. Daskalaki, Comparing forecasting approaches for internet traffic, Expert Syst. Appl., vol. 42, no. 21, pp. 8172–8183, 2015.

87

B. Gao, Q. Y. Zhang, Y. S. Liang, N. N. Liu, C. B. Huang, and N. T. Zhang, Predicting self-similar networking traffic based on EMD and ARMA, (in Chinese), J. Commun., vol. 32, no. 4, pp. 47–56, 2011.

88

X. Q. Pan, W. S. Zhou, Y. Lu, and N. Sun, Prediction of network traffic of smart cities based on DE-BP neural network, IEEE Access, vol. 7, pp. 55807–55816, 2019.

89

J. X. Liu and Z. H. Jia, Telecommunication traffic prediction based on improved LSSVM, Int. J. Patt. Recogn. Artif. Intell., vol. 32, no. 3, p. 1850007, 2018.

90

Z. L. Liu and X. Li, Short-term traffic forecasting based on principal component analysis and a generalized regression neural network for satellite networks, J. China Univ. Posts Telecommun., vol. 25, no. 1, pp. 15–28, 36, 2018.

91

Z. Na, Z. Pan, X. Liu, Z. A. Deng, Z. H. Gao, and Q. Guo, Distributed routing strategy based on machine learning for LEO satellite network, Wirel. Commun. Mob. Comput., vol. 2018, p. 3026405, 2018.

92
G. B. Huang, Q. Y. Zhu, and C. K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, presented at 2004 IEEE Int. Joint Conf. Neural Networks (IEEE Cat. No.04CH37541), Budapest, Hungary, 2004, pp. 985–990.
93
A. Goldsmith, Wireless Communications. Cambridge, MA, USA: Cambridge University Press, 2005.
94

T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design, IEEE Trans. Commun., vol. 63, no. 9, pp. 3029–3056, 2015.

95

S. Sangodoyin, S. Niranjayan, and A. F. Molisch, A measurement-based model for outdoor near-ground ultrawideband channels, IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 740–751, 2016.

96

C. X. Wang, J. Bian, J. Sun, W. S. Zhang, and M. G. Zhang, A survey of 5G channel measurements and models, IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 3142–3168, 2018.

97

B. Ai, K. Guan, R. S. He, J. Z. Li, G. K. Li, D. P. He, Z. D. Zhong, and K. M. S. Huq, On indoor millimeter wave massive MIMO channels: Measurement and simulation, IEEE J. Select. Areas Commun., vol. 35, no. 7, pp. 1678–1690, 2017.

98

G. Liang and H. L. Bertoni, A new approach to 3-D ray tracing for propagation prediction in cities, IEEE Trans. Antennas Propag., vol. 46, no. 6, pp. 853–863, 1998.

99
M. F. Zhu, A. Singh, and F. Tufvesson, Measurement based ray launching for analysis of outdoor propagation, presented at 2012 6th European Conf. Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012, pp. 3332–3336.https://doi.org/10.1109/EuCAP.2012.6206329
DOI
100

Z. Q. Yun and M. F. Iskander, Ray tracing for radio propagation modeling: Principles and applications, IEEE Access, vol. 3, pp. 1089–1100, 2015.

101
D. Cichon and T. Kümer, Propagation prediction models, in Digital Mobile Radio towards Future Generation Systems. E Damosso and L M Correia, eds. Belgium, Brussels: European Commisson, 1999, pp. 115–208.
102

L. C. Fernandes and A. J. M. Soares, Simplified characterization of the urban propagation environment for path loss calculation, IEEE Antennas Wirel. Propag. Lett., vol. 9, pp. 24–27, 2010.

103
L. C. Fernandes and A. J. M. Soares, On the use of image segmentation for propagation path loss prediction, presented at 2011 SBMO/IEEE MTT-S Int. Microwave and Optoelectronics Conf. (IMOC 2011), Natal, Brazil, 2011, pp. 129–133.https://doi.org/10.1109/IMOC.2011.6169225
DOI
104

M. Piacentini and F. Rinaldi, Path loss prediction in urban environment using learning machines and dimensionality reduction techniques, Comput. Manag. Sci., vol. 8, no. 4, pp. 371–385, 2011.

105
M. Uccellari, F. Facchini, M. Sola, E. Sirignano, G. M. Vitetta, A. Barbieri, and S. Tondelli, On the use of support vector machines for the prediction of propagation losses in smart metering systems, presented at 2016 IEEE 26th Int. Workshop on Machine Learning for Signal Processing (MLSP), Vietri sul Mare, Italy, 2016, pp. 1–6.https://doi.org/10.1109/MLSP.2016.7738887
DOI
106

S. P. Sotiroudis, S. K. Goudos, K. A. Gotsis, K. Siakavara, and J. N. Sahalos, Application of a composite differential evolution algorithm in optimal neural network design for propagation path-loss prediction in mobile communication systems, IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 364–367, 2013.

107

S. P. Sotiroudis and K. Siakavara, Mobile radio propagation path loss prediction using artificial neural networks with optimal input information for urban environments, AEU-Int. J. Electron. Commun., vol. 69, no. 10, pp. 1453–1463, 2015.

108
I. Popescu, I. Nafornita, and P. Constantinou, Comparison of neural network models for path loss prediction, presented at WiMob’2005, IEEE Int. Conf. Wireless and Mobile Computing, Networking and Communications, Montreal, Canada, 2005, pp. 44–49.
109

E. Ostlin, H. J. Zepernick, and H. Suzuki, Macrocell path-loss prediction using artificial neural networks, IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2735–2747, 2010.

110

B. J. Cavalcanti, G. A. Cavalcante, L. M. de Mendonça, G. M. Cantanhede, M. M. M. de Oliveira, and A. G. D’Assunção, A hybrid path loss prediction model based on artificial neural networks using empirical models for LTE and LTE-A at 800 MHz and 2600 MHz, J. Microw. Optoelectron. Electromagn. Appl., vol. 16, no. 3, pp. 708–722, 2017.

111

Y. Zhang, J. X. Wen, G. S. Yang, Z. W. He, and X. R. Luo, Air-to-air path loss prediction based on machine learning methods in urban environments, Wirel. Commun. Mob. Comput., vol. 2018, p. 8489326, 2018.

112

C. A. Oroza, Z. R. Zhang, T. Watteyne, and S. D. Glaser, A machine-learning-based connectivity model for complex terrain large-scale low-power wireless deployments, IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp. 576–584, 2017.

113

Y. Zhang, J. X. Wen, G. S. Yang, Z. W. He, and J. Wang, Path loss prediction based on machine learning: Principle, method, and data expansion, Appl. Sci., vol. 9, no. 9, p. 1908, 2019.

114

H. F. Ates, S. M. Hashir, T. Baykas, and B. K. Gunturk, Path loss exponent and shadowing factor prediction from satellite images using deep learning, IEEE Access, vol. 7, pp. 101366–101375, 2019.

115

J. Thrane, D. Zibar, and H. L. Christiansen, Model-aided deep learning method for path loss prediction in mobile communication systems at 2.6 GHz, IEEE Access, vol. 8, pp. 7925–7936, 2020.

116

O. Ahmadien, H. F. Ates, T. Baykas, and B. K. Gunturk, Predicting path loss distribution of an area from satellite images using deep learning, IEEE Access, vol. 8, pp. 64982–64991, 2020.

117

T. Yairi, N. Takeishi, T. Oda, Y. Nakajima, N. Nishimura, and N. Takata, A data-driven health monitoring method for satellite housekeeping data based on probabilistic clustering and dimensionality reduction, IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 3, pp. 1384–1401, 2017.

118
T. Yairi, T. Tagawa, and N. Takata, Telemetry monitoring by dimensionality reduction and learning hidden Markov model, presented at Int. Symp. Artificial Intelligence, Robotics and Automation in Space, Turin, Italy, 2012.
119
T. Yairi, M. Nakatsugawa, K. Hori, S. Nakasuka, K. Machida, and N. Ishihama, Adaptive limit checking for spacecraft telemetry data using regression tree learning, presented at 2004 IEEE Int. Conf. Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), the Hague, the Netherlands, 2004, pp. 5130–5135.
120
S. Tariq, S. Lee, Y. Shin, M. S. Lee, O. Jung, D. Chung, and S. S. Woo, Detecting anomalies in space using multivariate convolutional LSTM with mixtures of probabilistic PCA, in Proc. 25th ACM SIGKDD Int. Conf. Knowledge Discovery & Data Mining, Anchorage, AK, USA, 2019, pp. 2123–2133.https://doi.org/10.1145/3292500.3330776
DOI
121
K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soderstrom, Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding, in Proc. 24th ACM SIGKDD Int. Conf. Knowledge Discovery & Data Mining, London, UK, 2018, pp. 387–395.https://doi.org/10.1145/3219819.3219845
DOI
122
S. Fuertes, G. Picart, J. Y. Tourneret, L. Chaari, A. Ferrari, and C. Richard, Improving spacecraft health monitoring with automatic anomaly detection techniques, presented at SpaceOps 2016 Conf., Daejeon, Republic of Korea, 2016, p. 1.https://doi.org/10.2514/6.2016-2430
DOI
123

D. L. Iverson, R. Martin, M. Schwabacher, L. Spirkovska, W. Taylor, R. Mackey, J. P. Castle, and V. Baskaran, General purpose data-driven monitoring for space operations, J. Aerosp. Comput. Inform. Commun., vol. 9, no. 2, pp. 26–44, 2012.

124
P. Robinson, M. Shirley, D. Fletcher, R. Alena, D. Duncavage, and C. Lee, Applying model-based reasoning to the FDIR of the command & data handling subsystem of the international space station, presented at 7 th Int. Symp. Artificial Intelligence, Robotics and Automation in Space: i-SAIRAS 2003, Nara, Japan, 2003.
125

Y. Y. Sun, L. L. Guo, Y. M. Wang, Z. S. Ma, and Y. Niu, Fault diagnosis for space utilisation, J. Eng., vol. 2019, no. 23, pp. 8770–8775, 2019.

126

S. K. Ibrahim, A. Ahmed, M. A. E. Zeidan, and I. E. Ziedan, Machine learning methods for spacecraft telemetry mining, IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 4, pp. 1816–1827, 2019.

127

P. Wan, Y. F. Zhan, and W. W. Jiang, Study on the satellite telemetry data classification based on self-learning, IEEE Access, vol. 8, pp. 2656–2669, 2020.

128
P. W. Ward, J. W. Betz, and C. J. Hegarty, Satellite signal acquisition, tracking, and data demodulation, in Understanding GPS: Principles and Applications, 2nd ed., C. J. Hegarty, ed. London, UK: Artech House, 2006, pp. 153–241.
129
A. J. Van Dierendonck, J. Klobuchar, and Q. Hua, Ionospheric scintillation monitoring using commercial single frequency C/A code receivers, in Proc. 6th Int. Technical Meeting of Satellite Division of the Institute of Navigation (ION GPS 1993), Salt Lake City, UT, USA, 1993, pp. 1333–1342.
130

J. Lee, Y. T. J. Morton, J. Lee, H. S. Moon, and J. Seo, Monitoring and mitigation of ionospheric anomalies for GNSS-based safety critical systems: A review of up-to-date signal processing techniques, IEEE Signal Process. Mag., vol. 34, no. 5, pp. 96–110, 2017.

131
C. Cesaroni, L. Alfonsi, R. Romero, N. Linty, F. Dovis, S. V. Veettil, J. Park, D. Barroca, M. C. Ortega, and R. O. Perez, Monitoring ionosphere over South America: The MImOSA and MImOSA2 projects, presented at 2015 Int. Association of Institutes of Navigation World Congress (IAIN), Prague, Czech Republic, 2015, pp. 1–7.https://doi.org/10.1109/IAIN.2015.7352226
DOI
132
N. Linty, R. Romero, C. Cristodaro, F. Dovis, M. Bavaro, J. T. Curran, J. Fortuny-Guasch, J. Ward, G. Lamprecht, P. Riley, et al., Ionospheric scintillation threats to GNSS in polar regions: The DemoGRAPE case study in Antarctica, presented at 2016 European Navigation Conf. (ENC), Helsinki, Finland, 2016, pp. 1–7.https://doi.org/10.1109/EURONAV.2016.7530546
DOI
133

J. Vilà-Valls, P. Closas, C. Fernández-Prades, and J. T. Curran, On the mitigation of ionospheric scintillation in advanced GNSS receivers, IEEE Trans. Aerosp. Electron. Syst., vol. 54, no. 4, pp. 1692–1708, 2018.

134
S. Taylor, Y. Morton, Y. Jiao, J. Triplett, and W. Pelgrum, An improved ionosphere scintillation event detection and automatic trigger for a GNSS data collection system, in Proc. 2012 Int. Technical Meeting of the Institute of Navigation, Newport Beach, CA, USA, 2012, pp. 1563–1569.
135
W. X. Fu, S. W. Han, C. Rizos, M. Knight, and A. Finn, Real-time ionospheric scintillation monitoring, in Proc. 12th Int. Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1999), Nashville, TN, USA, 1999, pp. 1461–1472.
136

S. Miriyala, P. R. Koppireddi, and S. R. Chanamallu, Robust detection of ionospheric scintillations using MF-DFA technique, Earth,Planets and Space, vol. 67, no. 1, p. 98, 2015.

137
R. Romero, N. Linty, F. Dovis, and R. V. Field, A novel approach to ionospheric scintillation detection based on an open loop architecture, presented at 2016 8th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), Noordwijk, the Netherlands, 2016, pp. 1–9.https://doi.org/10.1109/NAVITEC.2016.7931741
DOI
138

L. F. C. Rezende, E. R. De Paula, S. Stephany, I. J. Kantor, M. T. A. H. Muella, P. M. de Siqueira, and K. S. Correa, Survey and prediction of the ionospheric scintillation using data mining techniques, Space Weather, vol. 8, no. 6, p. S06D09, 2010.

139
Y. Jiao, J. Hall, and Y. J. Morton, Performance evaluations of an equatorial GPS amplitude scintillation detector using a machine learning algorithm, in Proc. 29th Int. Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2016), Portland, OR, USA, 2016, pp. 195–199.https://doi.org/10.33012/2016.14554
DOI
140

Y. Jiao, J. J. Hall, and Y. T. Morton, Automatic equatorial GPS amplitude scintillation detection using a machine learning algorithm, IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 1, pp. 405–418, 2017.

141
Y. Jiao, J. Hall, and Y. J. Morton, Automatic GPS phase scintillation detector using a machine learning algorithm, in Proc. 2017 Int. Technical Meeting of the Institute of Navigation, Monterey, CA, USA, 2017, pp. 1160–1172.https://doi.org/10.33012/2017.14903
DOI
142

Y. Jiao, J. J. Hall, and Y. T. Morton, Performance evaluation of an automatic GPS ionospheric phase scintillation detector using a machine-learning algorithm, J. Inst. Navig., vol. 64, no. 3, pp. 391–402, 2017.

143

N. Linty, A. Farasin, A. Favenza, and F. Dovis, Detection of GNSS ionospheric scintillations based on machine learning decision tree, IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 1, pp. 303–317, 2019.

144
R. Imam and F. Dovis, Distinguishing ionospheric scintillation from multipath in GNSS signals using bagged decision trees algorithm, presented at 2020 IEEE Int. Conf. Wireless for Space and Extreme Environments (WiSEE), Vicenza, Italy, 2020, pp. 83–88.https://doi.org/10.1109/WiSEE44079.2020.9262699
DOI
145
C. Politis, S. Maleki, C. Tsinos, S. Chatzinotas, and B. Ottersten, On-board the satellite interference detection with imperfect signal cancellation, presented at 2016 IEEE 17th Int. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Edinburgh, UK, 2016, pp. 1–5.https://doi.org/10.1109/SPAWC.2016.7536813
DOI
146

A. V. Dandawate and G. B. Giannakis, Statistical tests for presence of cyclostationarity, IEEE Trans. Signal Process., vol. 42, no. 9, pp. 2355–2369, 1994.

147

O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, Survey of automatic modulation classification techniques: Classical approaches and new trends, IET Commun., vol. 1, no. 2, pp. 137–156, 2007.

148
J. Hu, D. M. Bian, Z. D. Xie, Y. Q. Li, and L. H. Fan, An approach for narrow band interference detection in satellite communication using morphological filter, presented at Int. Conf. Information Technology and Management Innovation, Shenzhen, China, 2015, pp. 1015–1020.https://doi.org/10.2991/icitmi-15.2015.171
DOI
149

Q. Liu, J. Yang, C. J. Zhuang, A. Barnawi, and B. A. Alzahrani, Artificial intelligence based mobile tracking and antenna pointing in satellite-terrestrial network, IEEE Access, vol. 7, pp. 177497–177503, 2019.

150
L. Pellaco, N. Singh, and J. Jaldén, Spectrum prediction and interference detection for satellite communications, arXiv preprint arXiv: 1912.04716, 2019.
151
P. Henarejos, M. Á. Vázquez, and A. I. Pérez-Neira, Deep learning for experimental hybrid terrestrial and satellite interference management, presented at 2019 IEEE 20th Int. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2019, pp. 1–5.https://doi.org/10.1109/SPAWC.2019.8815532
DOI
152

N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, Deep learning classification of land cover and crop types using remote sensing data, IEEE Geosci. Remote Sens. Lett., vol. 14, no. 5, pp. 778–782, 2017.

153

F. Zhang, B. Du, and L. P. Zhang, Scene classification via a gradient boosting random convolutional network framework, IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1793–1802, 2016.

154

A. S. Li, V. Chirayath, M. Segal-Rozenhaimer, J. L. Torres-Pérez, and J. van den Bergh, NASA NeMO-Net's convolutional neural network: Mapping marine habitats with spectrally heterogeneous remote sensing imagery, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 5115–5133, 2020.

155
S. A. Fatima, A. Kumar, A. Pratap, and S. S. Raoof, Object recognition and detection in remote sensing images: a comparative study, presented at 2020 Int. Conf. Artificial Intelligence and Signal Processing (AISP), Amaravati, India, 2020, pp. 1–5.https://doi.org/10.1109/AISP48273.2020.9073614
DOI
156
L. M. Zhou, J. M. Liu, and L. Chen, Vehicle detection based on remote sensing image of YOLOv3, presented at 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conf. (ITNEC), Chongqing, China, 2020, pp. 468–472.https://doi.org/10.1109/ITNEC48623.2020.9084975
DOI
157
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified, real-time object detection, in Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 779–788.https://doi.org/10.1109/CVPR.2016.91
DOI
158
J. Redmon and A. Farhadi, YOLOv3: An incremental improvement, arXiv preprint arXiv: 1804.02767, 2018.
159
A. Femin and K. Biju, Accurate detection of buildings from satellite images using CNN, presented at 2020 Int. Conf. Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, Turkey, 2020, pp. 1–5.https://doi.org/10.1109/ICECCE49384.2020.9179232
DOI
160
A. Hassan, W. M. Hussein, E. Said, and M. E. Hanafy, A deep learning framework for automatic airplane detection in remote sensing satellite images, presented at 2019 IEEE Aerospace Conf., Big Sky, MT, USA, 2019, pp. 1–10.https://doi.org/10.1109/AERO.2019.8741938
DOI
161

G. Mateo-García, V. Laparra, D. López-Puigdollers, and L. Gómez-Chova, Cross-sensor adversarial domain adaptation of landsat-8 and Proba-V images for cloud detection, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 747–761, 2021.

162

Z. F. Shao, Y. Pan, C. Y. Diao, and J. J. Cai, Cloud detection in remote sensing images based on multiscale features-convolutional neural network, IEEE Trans. Geosci. Remote Sens., vol. 57, no. 6, pp. 4062–4076, 2019.

163
M. Tian, H. Chen, and G. H. Liu, Cloud detection and classification for S-NPP FSR CRIS data using supervised machine learning, presented at IGARSS 2019-2019 IEEE Int. Geoscience and Remote Sensing Symp., Yokohama, Japan, 2019, pp. 9827–9830.https://doi.org/10.1109/IGARSS.2019.8898876
DOI
164
F. Wang, F. S. Liao, and H. Q. Zhu, FPA-DNN: A forward propagation acceleration based deep neural network for ship detection, presented at 2020 Int. Joint Conf. Neural Networks (IJCNN), Glasgow, UK, 2020, pp. 1–8.https://doi.org/10.1109/IJCNN48605.2020.9207603
DOI
165
Z. L. Li, L. Y. Wang, J. Y. Yu, B. W. Cheng, L. Hao, S. Jiang, Z. Li, and J. F. Yin, Remote sensing ship target detection and recognition system based on machine learning, presented at IGARSS 2019-2019 IEEE Int. Geoscience and Remote Sensing Symp., Yokohama, Japan, 2019, pp. 1272–1275.
166
H. Bandarupally, H. R. Talusani, and T. Sridevi, Detection of military targets from satellite images using deep convolutional neural networks, presented at 2020 IEEE 5th Int. Conf. Computing Communication and Automation (ICCCA), Greater Noida, India, 2020, pp. 531–535.https://doi.org/10.1109/ICCCA49541.2020.9250864
DOI
167

J. H. Zheng, X. Y. Liu, and X. D. Wang, Single image cloud removal using U-Net and generative adversarial networks, IEEE Trans. Geosci. Remote Sens., vol. 59, no. 8, pp. 6371–6385, 2021.

168
O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional networks for biomedical image segmentation, presented at 18th Int. Conf. Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015, pp. 234–241.https://doi.org/10.1007/978-3-319-24574-4_28
DOI
169

J. Lu, Y. N. Chen, and R. J. He, A learning-based approach for agile satellite onboard scheduling, IEEE Access, vol. 8, pp. 16941–16952, 2020.

170
R. Mital, K. Cates, J. Coughlin, and G. Ganji, A machine learning approach to modeling satellite behavior, presented at 2019 IEEE Int. Conf. Space Mission Challenges for Information Technology (SMC-IT), Pasadena, CA, USA, 2019, pp. 62–69.https://doi.org/10.1109/SMC-IT.2019.00013
DOI
171
P. Dao, K. Weasenforth, J. Hollon, T. Payne, K. Kinateder, and A. Kruchten, Machine learning-based stability assessment and change detection for geosynchronous satellites, presented at the Advanced Maui Optical and Space Surveillance Technologies Conf., Maui, HI, USA, 2018.
172
B. Jia, K. D. Pham, E. Blasch, Z. H. Wang, D. Shen, and G. S. Chen, Space object classification using deep neural networks, presented at 2018 IEEE Aerospace Conf., Big Sky, MT, USA, 2018, pp. 1–8.https://doi.org/10.1109/AERO.2018.8396567
DOI
173

R. Chalapathy and C. Sanjay, Deep learning for anomaly detection: A survey, arXiv preprint arXiv: 1901.03407, 2019.

174
B. Chen, J. W. Cao, A. Parra, and T. J. Chin, Satellite pose estimation with deep landmark regression and nonlinear pose refinement, in Proc. 2019 IEEE/CVF Int. Conf. Computer Vision Workshops (ICCVW), Seoul, Republic of Korea, 2019, pp. 2816–2824.https://doi.org/10.1109/ICCVW.2019.00343
DOI
175

M. Kisantal, S. Sharma, T. H. Park, D. Izzo, M. Märtens, and S. D’Amico, Satellite pose estimation challenge: Dataset, competition design, and results, IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 5, pp. 4083–4098, 2020.

176
S. Jahirabadkar, P. Narsay, S. Pharande, G. Deshpande, and A. Kitture, Space objects classification techniques: A survey, presented at 2020 Int. Conf. Computational Performance Evaluation (ComPE), Shillong, India, 2020, pp. 786–791.https://doi.org/10.1109/ComPE49325.2020.9199996
DOI
177
D. Yadava, R. Hosangadi, S. Krishna, P. Paliwal, and A. Jain, Attitude control of a nanosatellite system using reinforcement learning and neural networks, presented at 2018 IEEE Aerospace Conf., Big Sky, MT, USA, 2018, pp. 1–8.https://doi.org/10.1109/AERO.2018.8396409
DOI
178
A. M. Ahmed, A. Salama, H. A. Ibrahim, M. A. E. Sayed, and S. Yacout, Prediction of battery remaining useful life on board satellites using logical analysis of data, presented at 2019 IEEE Aerospace Conf., Big Sky, MT, USA, 2019, pp. 1–8.https://doi.org/10.1109/AERO.2019.8741717
DOI
179
J. H. Lee, J. Park, M. Bennis, and Y. C. Ko, Integrating LEO satellite and UAV relaying via reinforcement learning for non-terrestrial networks, presented at GLOBECOM 2020–2020 IEEE Global Communications Conf., Taipei, China, 2020, pp. 1–6.https://doi.org/10.1109/GLOBECOM42002.2020.9348105
DOI
180

N. Cheng, F. Lyu, W. Quan, C. H. Zhou, H. L. He, W. S. Shi, and X. M. Shen, Space/aerial-assisted computing offloading for IoT applications: A learning-based approach, IEEE J. Select. Areas Commun., vol. 37, no. 5, pp. 1117–1129, 2019.

181

C. X. Jiang and X. M. Zhu, Reinforcement learning based capacity management in multi-layer satellite networks, IEEE Trans. Wirel. Commun., vol. 19, no. 7, pp. 4685–4699, 2020.

182

C. Qiu, H. P. Yao, F. R. Yu, F. M. Xu, and C. L. Zhao, Deep Q-learning aided networking, caching, and computing resources allocation in software-defined satellite-terrestrial networks, IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 5871–5883, 2019.

183
W. Y. Liu, F. Tian, Z. Y. Jiang, G. T. Li, and Q. J. Jiang, Beam-hopping based resource allocation algorithm in LEO satellite network, presented at 3rd Int. Conf. Space Information Network, Changchun, China, 2018, pp. 113–123.https://doi.org/10.1007/978-981-13-5937-8_13
DOI
184

Z. C. Qu, G. X. Zhang, H. T. Cao, and J. D. Xie, LEO satellite constellation for internet of things, IEEE Access, vol. 5, pp. 18391–18401, 2017.

185

H. Tsuchida, Y. Kawamoto, N. Kato, K. Kaneko, S. Tani, S. Uchida, and H. Aruga, Efficient power control for satellite-borne batteries using Q-learning in low-earth-orbit satellite constellations, IEEE Wirel. Commun. Lett., vol. 9, no. 6, pp. 809–812, 2020.

186

B. K. Zhao, J. H. Liu, Z. L. Wei, and I. You, A deep reinforcement learning based approach for energy efficient channel allocation in satellite internet of things, IEEE Access, vol. 8, pp. 62197–62206, 2020.

187

G. F. Cui, X. Y. Li, L. X. Xu, and W. D. Wang, Latency and energy optimization for MEC enhanced SAT-IoT networks, IEEE Access, vol. 8, pp. 55915–55926, 2020.

188
C. C. Zhang, N. Zhang, W. Cao, K. B. Tian, and Z. Yang, An AI-based optimization of handover strategy in non-terrestrial networks, presented at 2020 ITU Kaleidoscope: Industry-Driven Digital Transformation (ITU K), Ha Noi, Vietnam, 2020, pp. 1–6.https://doi.org/10.23919/ITUK50268.2020.9303210
DOI
189

X. Q. Chen, W. Yao, Y. Zhao, X. Q. Chen, and X. H. Zheng, A practical satellite layout optimization design approach based on enhanced finite-circle method, Struct. Multidisc. Optim., vol. 58, no. 6, pp. 2635–2653, 2018.

190

K. Chen, J. W. Xing, S. F. Wang, and M. X. Song, Heat source layout optimization in two-dimensional heat conduction using simulated annealing method, Int. J. Heat Mass Transfer, vol. 108, pp. 210–219, 2017.

191

Y. Aslan, J. Puskely, and A. Yarovoy, Heat source layout optimization for two-dimensional heat conduction using iterative reweighted L1-norm convex minimization, Int. J. Heat Mass Transfer, vol. 122, pp. 432–441, 2018.

192

K. Chen, S. F. Wang, and M. X. Song, Temperature-gradient-aware bionic optimization method for heat source distribution in heat conduction, Int. J. Heat Mass Transfer, vol. 100, pp. 737–746, 2016.

193

J. L. Sun, J. Zhang, X. Y. Zhang, and W. E. Zhou, A deep learning-based method for heat source layout inverse design, IEEE Access, vol. 8, pp. 140038–140053, 2020.

194

H. Li, P. Wang, C. H. Shen, and G. Y. Zhang, Show, attend and read: A simple and strong baseline for irregular text recognition, Proc. AAAI Conf. Artif. Intell., vol. 33, no. 1, pp. 8610–8617, 2019.

195

Y. J. Zhang and W. J. Ye, Deep learning-based inverse method for layout design, Struct. Multidisc. Optim., vol. 60, no. 2, pp. 527–536, 2019.

196

J. Peurifoy, Y. C. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, Nanophotonic particle simulation and inverse design using artificial neural networks, Sci. Adv., vol. 4, no. 6, p. eaar4206, 2018.

197
J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin, Accelerating eulerian fluid simulation with convolutional networks, in Proc. 34th Int. Conf. Machine Learning, Sydney, Australia, 2017, pp. 3424–3433.
198

A. Agrawal, P. D. Deshpande, A. Cecen, G. P. Basavarsu, A. N. Choudhary, and S. R. Kalidindi, Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters, Integr. Mater. Manuf. Innovat., vol. 3, no. 1, pp. 90–108, 2014.

199

P. Robustillo, J. Zapata, J. A. Encinar, and J. Rubio, ANN characterization of multi-layer reflectarray elements for contoured-beam space antennas in the Ku-band, IEEE Trans. Antennas Propag., vol. 60, no. 7, pp. 3205–3214, 2012.

200

A. Freni, M. Mussetta, and P. Pirinoli, Neural network characterization of reflectarray antennas, Int. J. Antennas Propagat., vol. 2012, p. 541354, 2012.

201

F. Güneş, S. Nesil, and S. Demirel, Design and analysis of minkowski reflectarray antenna using 3-D CST microwave studio-based neural network model with particle swarm optimization, Int. J. RF Microw. Comput.-Aided Eng., vol. 23, no. 2, pp. 272–284, 2013.

202

P. Robustillo, J. Zapata, J. A. Encinar, and M. Arrebola, Design of a contoured-beam reflectarray for a EuTELSAT European coverage using a stacked-patch element characterized by an artificial neural network, IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 977–980, 2012.

203
T. Shan, M. K. Li, S. S. Xu, and F. Yang, Synthesis of refiectarray based on deep learning technique, presented at 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conf. (CSQRWC), Xuzhou, China, 2018, pp. 1–2.https://doi.org/10.1109/CSQRWC.2018.8454981
DOI
204

M. Salucci, L. Tenuti, G. Oliveri, and A. Massa, Efficient prediction of the EM response of reflectarray antenna elements by an advanced statistical learning method, IEEE Trans. Antennas Propag., vol. 66, no. 8, pp. 3995–4007, 2018.

205

D. R. Prado, J. A. López-Fernández, G. Barquero, M. Arrebola, and F. Las-Heras, Fast and accurate modeling of dual-polarized reflectarray unit cells using support vector machines, IEEE Trans. Antennas Propag., vol. 66, no. 3, pp. 1258–1270, 2018.

206

D. R. Prado, J. A. López-Fernández, M. Arrebola, and G. Goussetis, Support vector regression to accelerate design and crosspolar optimization of shaped-beam reflectarray antennas for space applications, IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1659–1668, 2019.

207

D. R. Prado, J. A. López-Fernández, M. Arrebola, M. R. Pino, and G. Goussetis, Wideband shaped-beam reflectarray design using support vector regression analysis, IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 11, pp. 2287–2291, 2019.

208
P. Henttu and S. Aromaa, Consecutive mean excision algorithm, presented at IEEE 7th Int. Symp. Spread Spectrum Techniques and Applications, Prague, Czech Republic, 2002, pp. 450–454.
209
H. Saarnisaari, Consecutive mean excision algorithms in narrowband or short time interference mitigation, presented at PLANS 2004. Position Location and Navigation Symp. (IEEE Cat. No.04CH37556), Monterey, CA, USA, 2004, pp. 447–454.
210
H. Saarnisaari and P. Henttu, Impulse detection and rejection methods for radio systems, presented at IEEE Military Communications Conf., 2003. MILCOM, Boston, MA, USA, 2003, pp. 1126–1131.
211
H. G. Keane, A new approach to frequency line tracking, presented at Conf. Record of the 25th Asilomar Conf. Signals, Systems & Computers, Pacific Grove, CA, USA, 1991, pp. 808–812.
212

R. Escbbach, Z. Fan, K. T. Knox, and G. Marcu, Threshold modulation and stability in error diffusion, IEEE Signal Process. Mag., vol. 20, no. 4, pp. 39–50, 2003.

213
H. Mustafa, M. Doroslovacki, and H. Deng, Algorithms for emitter detection based on the shape of power spectrum, in Proc. of the Conf. on Information Sciences and Systems, Baltimore, MD, USA, 2003, pp. 808–812.
214
J. Vartiainen, Localization of multiple narrowband signals based on the FCME algorithm, in Proc. Nordic Radio Symp., Oulu, Finland, 2004, p. 5.
215
J. Vartiainen, J. Lehtomaki, and H. Saarnisaari, Double-threshold based narrowband signal extraction, presented at 2005 IEEE 61st Vehicular Technology Conf., Stockholm, Sweden, 2005, pp. 1288–1292.
216
J. Kim, M. Kim, I. Won, S. Yang, K. Lee, and W. Huh, A biomedical signal segmentation algorithm for event detection based on slope tracing, presented at 2009 Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 2009, pp. 1889–1892.
217
O. Morozov and P. Ovchinnikov, Neural network detection of MSK signals, presented at 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, Marco Island, FL, USA, 2009, pp. 594–596.https://doi.org/10.1109/DSP.2009.4785992
DOI
218

Y. Yuan, Z. H. Sun, Z. H. Wei, and K. B. Jia, DeepMorse: A deep convolutional learning method for blind morse signal detection in wideband wireless spectrum, IEEE Access, vol. 7, pp. 80577–80587, 2019.

219

H. Huang, J. Q. Li, J. Wang, and H. Wang, FCN-based carrier signal detection in broadband power spectrum, IEEE Access, vol. 8, pp. 113042–113051, 2020.

220
J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, in Proc. 2015 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 3431–3440.https://doi.org/10.1109/CVPR.2015.7298965
DOI
221
K. M. He, G. Gkioxari, P. Dollár, and R. Girshick, Mask R-CNN, in Proc. 2017 IEEE Int. Conf. Computer Vision (ICCV), Venice, Italy, 2017, pp. 2980–2988.
222

University of Freiburg, U-Net: Convolutional networks for biomedical image segmentation, https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/, 2015.

Publication history
Copyright
Rights and permissions

Publication history

Received: 25 January 2021
Revised: 01 June 2021
Accepted: 12 July 2021
Published: 01 September 2021
Issue date: September 2021

Copyright

© All articles included in the journal are copyrighted to the ITU and TUP.

Rights and permissions

This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/

Return