Journal Home > Volume 1 , Issue 2

As pioneering information technology, the Internet of Things (IoT) targets at building an infrastructure of embedded devices and networks of connected objects, to offer omnipresent ecosystem and interaction across billions of smart devices, sensors, and actuators. The deployment of IoT calls for decentralized power supplies, self-powered sensors, and wireless transmission technologies, which have brought both opportunities and challenges to the existing solutions, especially when the network scales up. The Triboelectric Nanogenerators (TENGs), recently developed for mechanical energy harvesting and mechanical-to-electrical signal conversion, have the natural properties of energy and information, which have demonstrated high potentials in various applications of IoT. This context provides a comprehensive review of TENG enabled IoT and discusses the most popular and significant divisions. Firstly, the basic principle of TENG is re-examined in this article. Subsequently, a comprehensive and detailed review is given to the concept of IoT, followed by the scientific development of the TENG enabled IoT. Finally, the future of this evolving area is addressed.


menu
Abstract
Full text
Outline
About this article

Triboelectric nanogenerators enabled internet of things: A survey

Show Author's information Jiarong LiChangsheng WuIshara DharmasenaXiaoyue NiZihan WangHaixu ShenShao-Lun HuangWenbo Ding*( )
Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
Wolfson School of Mechanical Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, UK
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA

Abstract

As pioneering information technology, the Internet of Things (IoT) targets at building an infrastructure of embedded devices and networks of connected objects, to offer omnipresent ecosystem and interaction across billions of smart devices, sensors, and actuators. The deployment of IoT calls for decentralized power supplies, self-powered sensors, and wireless transmission technologies, which have brought both opportunities and challenges to the existing solutions, especially when the network scales up. The Triboelectric Nanogenerators (TENGs), recently developed for mechanical energy harvesting and mechanical-to-electrical signal conversion, have the natural properties of energy and information, which have demonstrated high potentials in various applications of IoT. This context provides a comprehensive review of TENG enabled IoT and discusses the most popular and significant divisions. Firstly, the basic principle of TENG is re-examined in this article. Subsequently, a comprehensive and detailed review is given to the concept of IoT, followed by the scientific development of the TENG enabled IoT. Finally, the future of this evolving area is addressed.

Keywords: Internet of Things (IoT), Triboelectric Nanogenerator (TENG), energy harvesting, sensing system, smart cities

References(176)

[1]
[2]
G. P. Joshi and S. W. Kim, Survey, nomenclature and comparison of reader anti-collision protocols in RFID, IETE Tech. Rev., vol. 25, no. 5, pp. 234-243, 2008.
[3]
W. He, G. J. Yan, and L. D. Xu, Developing vehicular data cloud services in the IoT environment, IEEE Trans. Ind. Inform., vol. 10, no. 2, pp. 1587-1595, 2014.
[4]
R. Mahmud, F. L. Koch, and R. Buyya, Cloud-fog interoperability in IoT-enabled healthcare solutions, in Proc. 19th Int. Conf. Distributed Computing and Networking, Varanasi, India, 2018, pp. 1-10.
DOI
[5]
D. Ugrenovic and G. Gardasevic, CoAP protocol for Web-based monitoring in IoT healthcare applications, in Proc. 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 2015, pp. 79-82.
DOI
[6]
S. Tyagi, A. Agarwal, and P. Maheshwari, A conceptual framework for IoT-based healthcare system using cloud computing, in Proc. 6th Int. Conf. Cloud System and Big Data Engineering (Confluence), Noida, India, 2016, pp. 503-507.
DOI
[7]
W. B. Ding, F. Yang, H. Yang, J. T. Wang, X. F. Wang, X. Zhang, and J. Song, A hybrid power line and visible light communication system for indoor hospital applications, Comput. Ind., vol. 68, pp. 170-178, 2015.
[8]
C. Thirumalai and H. Kar, Memory Efficient Multi Key (MEMK) generation scheme for secure transportation of sensitive data over cloud and IoT devices, in Proc. 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 2017, pp. 1-6.
DOI
[9]
S. Latre, P. Leroux, T. Coenen, B. Braem, P. Ballon, and P. Demeester, City of things: An integrated and multi-technology testbed for IoT smart city experiments, presented at 2016 IEEE Int. Smart Cities Conf. (ISC2), Trento, Italy, 2016, pp. 1-8.
DOI
[10]
A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, Internet of things for smart cities, IEEE Internet Things J, vol. 1, no. 1, pp. 22-32, 2014.
[11]
D. Kyriazis, T. Varvarigou, D. White, A. Rossi, and J. Cooper, Sustainable smart city IoT applications: Heat and electricity management & Eco-conscious cruise control for public transportation, in Proc. 14th Int. Symp. “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Madrid, Spain, 2013, pp. 1-5.
DOI
[12]
V. Gazis, A. Leonardi, K. Mathioudakis, K. Sasloglou, P. Kikiras, and R. Sudhaakar, Components of fog computing in an industrial internet of things context, in Proc. 12th Annual IEEE Int. Conf. Sensing, Communication, and Networking-Workshops (SECON Workshops), Seattle, WA, USA, 2015, pp. 1-6.
DOI
[13]
K. Wang, Y. H. Wang, Y. F. Sun, S. Guo, and J. S. Wu, Green industrial Internet of Things architecture: An energy-efficient perspective, IEEE Commun. Mag., vol. 54, no. 12, pp. 48-54, 2016.
[14]
S. Jeschke, C. Brecher, T. Meisen, D. Özdemir, and T. Eschert, Industrial internet of things and cyber manufacturing systems, in Industrial Internet of Things: Cybermanufacturing Systems, S. Jeschke, C. Brecher, H. B. Song, and D. B. Rawat, eds. Cham, Germany: Springer, 2017, pp. 3-19.
DOI
[15]
L. Li, X. G. Hu, K. Chen, and K. T. He, The applications of WiFi-based wireless sensor network in internet of things and smart grid, in Proc. 6th IEEE Conf. Industrial Electronics and Applications, Beijing, China, 2011, pp. 789-793.
DOI
[16]
Y. Miao and Y. X. Bu, Research on the architecture and key technology of Internet of Things (IoT) applied on smart grid, presented at 2010 Int. Conf. Advances in Energy Engineering, Beijing, China, 2010, pp. 69-72.
DOI
[17]
Y. K. Li, X. Cheng, Y. Cao, D. X. Wang, and L. Q. Yang, Smart choice for the smart grid: Narrowband Internet of Things (NB-IoT), IEEE Internet Things J., vol. 5, no. 3, pp. 1505-1515, 2018.
[18]
K. Nair, J. Kulkarni, M. Warde, Z. Dave, V. Rawalgaonkar, G. Gore, and J. Joshi, Optimizing power consumption in iot based wireless sensor networks using bluetooth low energy, presented at 2015 Int. Conf. Green Computing and Internet of Things (ICGCIoT), Noida, India, 2015, pp. 589-593.
DOI
[19]
F. Wu, C. Rüdiger, and M. R. Yuce, Real-time performance of a self-powered environmental IoT sensor network system, Sensors, vol. 17, no. 2, p. 282, 2017.
[20]
A. Adhikaree, T. Kim, J. Vagdoda, A. Ochoa, P. J. Hernandez, and Y. Lee, Cloud-based battery condition monitoring platform for large-scale lithium-ion battery energy storage systems using internet-of-things (IoT), presented at 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 2017, pp. 1004-1009.
DOI
[21]
Q. Wang, C. Shen, K. Zhang, and L. Q. Zheng, Super-capacitor and Li-polymer battery hybrid energy storage for kinetic energy harvesting applications, presented at 2017 IEEE Conf. Energy Conversion (CENCON), Kuala Lumpur, Malaysia, 2017, pp. 73-77.
DOI
[22]
L. Zheng, Z. H. Lin, G. Cheng, W. Z. Wu, X. N. Wen, S. M. Lee, and Z. L. Wang, Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy, Nano Energy, vol. 9, pp. 291-300, 2014.
[23]
S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O’Donnell, C. R. Saha, and S. Roy, A micro electromagnetic generator for vibration energy harvesting, J. Micromech. Microengin., vol. 17, no. 7, pp. 1257-1265, 2007.
[24]
A. Khaligh, P. Zeng, and C. Zheng, Kinetic energy harvesting using piezoelectric and electromagnetic technologies—State of the art, IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 850-860, 2010.
[25]
N. G. Elvin and A. A. Elvin, A general equivalent circuit model for piezoelectric generators, J. Intell. Mater. Syst. Struct., vol. 20, no. 1, pp. 3-9, 2009.
[26]
C. Lagomarsini, C. Jean-Mistral, G. Lombardi, and A. Sylvestre, Hybrid piezoelectric-electrostatic generators for wearable energy harvesting applications, Smart Mater. Struct., vol. 28, no. 3, p. 035003, 2019.
[27]
A. C. M. de Queiroz and L. C. M. de Oliveira Filho, Energy harvesting with 3D-printed electrostatic generators, in Proc. 7th Latin American Symp. Circuits & Systems (LASCAS), Florianopolis, Brazil, 2016, pp. 127-130.
DOI
[28]
G. Daniel, B. D. Casse, A. R. Volkel, and V. Liu, Rectifying circuit for multiband radio frequency (RF) energy harvesting, European Patent EP3038209, February 12, 2020.
[29]
T. Le, K. Mayaram, and T. Fiez, Efficient far-field radio frequency energy harvesting for passively powered sensor networks, IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1287-1302, 2008.
[30]
M. Park and Y. Gao, Error analysis and stochastic modeling of low-cost MEMS accelerometer, J. Intell. Robot. Syst., vol. 46, no. 1, pp. 27-41, 2006.
[31]
L. X. Zheng, W. C. Zhou, W. W. Tang, X. C. Zheng, A. Peng, and H. R. Zheng, A 3D indoor positioning system based on low-cost MEMS sensors, Simul. Model. Pract. Theory, vol. 65, pp. 45-56, 2016.
[32]
F. R. Fan, Z. Q. Tian, and Z. L. Wang, Flexible triboelectric generator, Nano Energy, vol. 1, no. 2, pp. 328-334, 2012.
[33]
Q. Zheng, Y. M. Jin, Z. Liu, H. Ouyang, H. Li, B. J. Shi, W. Jiang, H. Zhang, Z. Li, and Z. L. Wang, Robust multilayered encapsulation for high-performance triboelectric nanogenerator in harsh environment, ACS Appl. Mater. Interfaces, vol. 8, no. 40, pp. 26 697-26 703, 2016.
[34]
Y. C. Wu, Y. S. Hu, Z. Y. Huang, C. K. Lee, and F. Wang, Electret-material enhanced triboelectric energy harvesting from air flow for self-powered wireless temperature sensor network, Sens. Actuators A: Phys., vol. 271, pp. 364-372, 2018.
[35]
L. M. Zhao, Q. Zheng, H. Ouyang, H. Li, L. Yan, B. J. Shi, and Z. Li, A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator, Nano Energy, vol. 28, pp. 172-178, 2016.
[36]
W. S. Jung, M. G. Kang, H. G. Moon, S. H. Baek, S. J. Yoon, Z. L. Wang, S. W. Kim, and C. Y. Kang, High output piezo/triboelectric hybrid generator, Sci. Rep., vol. 5, p. 9309, 2015.
[37]
S. X. Xu, W. B. Ding, H. Y. Guo, X. H. Wang, and Z. L. Wang, Boost the performance of triboelectric nanogenerators through circuit oscillation, Adv. Energy Mater., vol. 9, no. 30, p. 1900772, 2019.
[38]
Y. L. Zi, C. S. Wu, W. B. Ding, X. F. Wang, Y. J. Dai, J. Cheng, J. Y. Wang, Z. J. Wang, and Z. L. Wang, Field emission of electrons powered by a triboelectric nanogenerator, Adv. Funct. Mater., vol. 28, no. 21, p. 1800610, 2018.
[39]
R. Y. Liu, X. Kuang, J. A. Deng, Y. C. Wang, A. C. Wang, W. B. Ding, Y. C. Lai, J. Chen, P. H. Wang, Z. Q. Lin, et al., Shape memory polymers for body motion energy harvesting and self-powered mechanosensing, Adv. Mater., vol. 30, no. 8, p. 1705195, 2018.
[40]
B. J. Shi, Q. Zheng, W. Jiang, L. Yan, X. X. Wang, H. Liu, Y. Yao, Z. Li, and Z. Lin, A packaged self-powered system with universal connectors based on hybridized nanogenerators, Adv. Mater., vol. 28, no. 5, pp. 846-852, 2016.
[41]
W. B. Ding, J. F. Zhou, J. Cheng, Z. Z. Wang, H. Y. Guo, C. S. Wu, S. X. Xu, Z. Y. Wu, X. Xie, and Z. L. Wang, TriboPump: A low-cost, hand-powered water disinfection system, Adv. Energy Mater., vol. 9, no. 27, p. 1901320, 2019.
[42]
T. Chen, Q. F. Shi, Z. Yang, J. C. Liu, H. C. Liu, L. N. Sun, and C. K. Lee, A self-powered six-axis tactile sensor by using triboelectric mechanism, Nanomaterials, vol. 8, no. 7, p. 503, 2018.
[43]
C. S. Wu, J. S. Jiang, H. Y. Guo, X. J. Pu, L. S. Liu, W. B. Ding, P. A. Kohl, and Z. L. Wang, Sunlight-triggerable transient energy harvester and sensors based on triboelectric nanogenerator using acid-sensitive poly(phthalaldehyde), Adv. Electron. Mater., vol. 5, no. 12, p. 1900725, 2019.
[44]
K. Han, J. J. Luo, Y. W. Feng, Q. S. Lai, Y. Bai, W. Tang, and Z. L. Wang, Wind-driven radial-engine-shaped triboelectric nanogenerators for self-powered absorption and degradation of NOx, ACS Nano, vol. 14, no. 3, pp. 2751-2759, 2020.
[45]
J. Bae, J. Lee, S. Kim, J. Ha, B. S. Lee, Y. Park, C. Choong, J. B. Kim, Z. L. Wang, H. Y. Kim, et al., Flutter-driven triboelectrification for harvesting wind energy, Nat. Commun., vol. 5, p. 4929, 2014.
[46]
Z. L. Wang, Catch wave power in floating nets, Nature, vol. 542, no. 7640, pp. 159-160, 2017.
[47]
L. Xu, Y. K. Pang, C. Zhang, T. Jiang, X. Y. Chen, J. J. Luo, W. Tang, X. Cao, and Z. L. Wang, Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting, Nano Energy, vol. 31, pp. 351-358, 2017.
[48]
Z. Y. Wu, H. Y. Guo, W. B. Ding, Y. C. Wang, L. Zhang, and Z. L. Wang, A hybridized triboelectric-electromagnetic water wave energy harvester based on a magnetic sphere, ACS Nano, vol. 13, no. 2, pp. 2349-2356, 2019.
[49]
Y. W. Feng, T. Jiang, X. Liang, J. An, and Z. L. Wang, Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy, Appl. Phys. Rev., vol. 7, no. 2, p. 021401, 2020.
[50]
T. Jiang, L. M. Zhang, X. Y. Chen, C. B. Han, W. Tang, C. Zhang, L. Xu, and Z. L. Wang, Structural optimization of triboelectric nanogenerator for harvesting water wave energy, ACS Nano, vol. 9, no. 12, pp. 12 562-12 572, 2015.
[51]
X. F. Wang, S. M. Niu, F. Yi, Y. J. Yin, C. L. Hao, K. R. Dai, Y. Zhang, Z. You, and Z. L. Wang, Harvesting ambient vibration energy over a wide frequency range for self-powered electronics, ACS Nano, vol. 11, no. 2, pp. 1728-1735, 2017.
[52]
J. Yang, J. Chen, Y. Yang, H. L. Zhang, W. Q. Yang, P. Bai, Y. J. Su, and Z. L. Wang, Broadband vibrational energy harvesting based on a triboelectric nanogenerator, Adv. Energy Mater., vol. 4, no. 6, p. 1 301 322, 2014.
[53]
M. Y. Xu, P. H. Wang, Y. C. Wang, S. L. Zhang, A. C. Wang, C. L. Zhang, Z. J. Wang, X. X. Pan, and Z. L. Wang, A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self-powered vibration sensing, Adv. Energy Mater., vol. 8, no. 9, p. 1702432, 2018.
[54]
C. S. Wu, R. Y. Liu, J. Wang, Y. L. Zi, L. Lin, and Z. L. Wang, A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy, Nano Energy, vol. 32, pp. 287-293, 2017.
[55]
K. Dong, J. A. Deng, W. B. Ding, A. C. Wang, P. H. Wang, C. Y. Cheng, Y. C. Wang, L. M. Jin, B. H. Gu, B. Z. Sun, et al., Versatile core-sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing, Adv. Energy Mater., vol. 8, no. 23, p. 1801114, 2018.
[56]
J. Wang, S. M. Li, F. Yi, Y. L. Zi, J. Lin, X. F. Wang, Y. L. Xu, and Z. L. Wang, Sustainably powering wearable electronics solely by biomechanical energy, Nat. Commun., vol. 7, p. 12744, 2016.
[57]
R. Hinchet, H. J. Yoon, H. Ryu, M. K. Kim, E. K. Choi, D. S. Kim, and S. W. Kim, Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology, Science, vol. 365, no. 6452, pp. 491-494, 2019.
[58]
J. Q. Xiong, P. Cui, X. L. Chen, J. X. Wang, K. Parida, M. F. Lin, and P. S. Lee, Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting, Nat. Commun., vol. 9, no. 1, p. 4280, 2018.
[59]
J. A. Deng, X. Kuang, R. Y. Liu, W. B. Ding, A. C. Wang, Y. C. Lai, K. Dong, Z. Wen, Y. X. Wang, L. L. Wang, et al., Vitrimer elastomer-based jigsaw puzzle-Like healable triboelectric nanogenerator for self-powered wearable electronics, Adv. Mater., vol. 30, no. 14, p. 1705918, 2018.
[60]
P. K. Yang, Z. H. Lin, K. C. Pradel, L. Lin, X. H. Li, X. N. Wen, J. H. He, and Z. L. Wang, Paper-based origami triboelectric nanogenerators and self-powered pressure sensors, ACS Nano, vol. 9, no. 1, pp. 901-907, 2015.
[61]
J. J. Luo, F. R. Fan, T. Zhou, W. Tang, F. Xue, and Z. L. Wang, Ultrasensitive self-powered pressure sensing system, Extreme Mech. Lett., vol. 2, pp. 28-36, 2015.
[62]
X. D. Wang, M. L. Que, M. X. Chen, X. Han, X. Y. Li, C. F. Pan, and Z. L. Wang, Full dynamic-range pressure sensor matrix based on optical and electrical dual-mode sensing, Adv. Mater., vol. 29, no. 15, p. 1605817, 2017.
[63]
F. Yi, L. Lin, S. M. Niu, J. Yang, W. Z. Wu, S. H. Wang, Q. L. Liao, Y. Zhang, and Z. L. Wang, Self-powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor, Adv. Funct. Mater., vol. 24, no. 47, pp. 7488-7494, 2014.
[64]
Y. S. Zhou, G. Zhu, S. M. Niu, Y. Liu, P. Bai, Q. S. Jing, and Z. L. Wang, Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification, Adv. Mater., vol. 26, no. 11, pp. 1719-1724, 2014.
[65]
W. Q. Yang, J. Chen, X. N. Wen, Q. S. Jing, J. Yang, Y. J. Su, G. Zhu, W. Z. Wu, and Z. L. Wang, Triboelectrification based motion sensor for human-machine interfacing, ACS Appl. Mater. Interfaces, vol. 6, no. 10, pp. 7479-7484, 2014.
[66]
X. Fan, J. Chen, J. Yang, P. Bai, Z. L. Li, and Z. L. Wang, Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording, ACS Nano, vol. 9, no. 4, pp. 4236-4243, 2015.
[67]
W. Li, D. Torres, R. Díaz, Z. J. Wang, C. S. Wu, C. Wang, Z. L. Wang, and N. Sepúlveda, Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics, Nat. Commun., vol. 8, p. 15310, 2017.
[68]
H. Y. Guo, X. J. Pu, J. Chen, Y. Meng, M. H. Yeh, G. L. Liu, Q. Tang, B. D. Chen, D. Liu, S. Qi, et al., A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids, Sci. Robot., vol. 3, no. 20, p. eaat2516, 2018.
[69]
N. Arora, S. L. Zhang, F. Shahmiri, D. Osorio, Y. C. Wang, M. Gupta, Z. J. Wang, T. Starner, Z. L. Wang, and G. D. Abowd, SATURN: A thin and flexible self-powered microphone leveraging triboelectric nanogenerator, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 2, p. 60, 2018.
[70]
P. H. Wang, L. Pan, J. Y. Wang, M. Y. Xu, G. Z. Dai, H. Y. Zou, K. Dong, and Z. L. Wang, An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor, ACS Nano, vol. 12, no. 9, pp. 9433-9440, 2018.
[71]
Y. Yang, G. Zhu, H. L. Zhang, J. Chen, X. D. Zhong, Z. H. Lin, Y. J. Su, P. Bai, X. N. Wen, and Z. L. Wang, Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system, ACS Nano, vol. 7, no. 10, pp. 9461-9468, 2013.
[72]
J. Y. Wang, W. B. Ding, L. Pan, C. S. Wu, H. Yu, L. J. Yang, R. J. Liao, and Z. L. Wang, Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator, ACS Nano, vol. 12, no. 4, pp. 3954-3963, 2018.
[73]
M. Y. Xu, S. Wang, S. L. Zhang, W. B. Ding, P. T. Kien, C. Wang, Z. Li, X. X. Pan, and Z. L. Wang, A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment, Nano Energy, vol. 57, pp. 574-580, 2019.
[74]
W. J. Fan, Q. He, K. Y. Meng, X. L. Tan, Z. H. Zhou, G. Q. Zhang, J. Yang, and Z. L. Wang, Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring, Sci. Adv., vol. 6, no. 11, p. eaay2840, 2020.
[75]
Z. M. Lin, J. Chen, X. S. Li, Z. H. Zhou, K. Y. Meng, W. Wei, J. Yang, and Z. L. Wang, Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring, ACS Nano, vol. 11, no. 9, pp. 8830-8837, 2017.
[76]
M. M. Liu, X. Pu, C. Y. Jiang, T. Liu, X. Huang, L. B. Chen, C. H. Du, J. M. Sun, W. G. Hu, and Z. L. Wang, Large-area all-textile pressure sensors for monitoring human motion and physiological signals, Adv. Mater., vol. 29, no. 41, p. 1703700, 2017.
[77]
W. X. Song, B. C. Gan, T. Jiang, Y. Zhang, A. F. Yu, H. T. Yuan, N. Chen, C. W. Sun, and Z. L. Wang, Nanopillar arrayed triboelectric nanogenerator as a self-powered sensitive sensor for a sleep monitoring system, ACS Nano, vol. 10, no. 8, pp. 8097-8103, 2016.
[78]
P. Wang, S. Zhang, L. Zhang, L. F. Wang, H. Xue, and Z. L. Wang, Non-contact and liquid-liquid interfacing triboelectric nanogenerator for self-powered water/liquid level sensing, Nano Energy, vol. 72, p. 104703, 2020.
[79]
W. C. Wang, Y. H. Wu, Z. H. Chang, F. Q. Chen, H. Y. Wang, G. Q. Gu, H. W. Zheng, G. Cheng, and Z. L. Wang, Self-powered intelligent water meter for electrostatic scale preventing, rust protection, and flow sensor in a solar heater system, ACS Appl. Mater. Interfaces, vol. 11, no. 6, pp. 6396-6403, 2019.
[80]
Y. Bai, L. Xu, C. He, L. P. Zhu, X. D. Yang, T. Jiang, J. H. Nie, W. Zhong, and Z. L. Wang, High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping, Nano Energy, vol. 66, p. 104117, 2019.
[81]
S. M. Niu, X. F. Wang, F. Yi, Y. S. Zhou, and Z. L. Wang, A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics, Nat. Commun., vol. 6, p. 8975, 2015.
[82]
Y. L. Zi, S. M. Niu, J. Wang, Z. Wen, W. Tang, and Z. L. Wang, Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators, Nat. Commun., vol. 6, p. 8376, 2015.
[83]
X. J. Pu, H. Y. Guo, J. Chen, X. Wang, Y. Xi, C. G. Hu, and Z. L. Wang, Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator, Sci. Adv., vol. 3, no. 7, p. e1700694, 2017.
[84]
C. S. Wu, W. B. Ding, R. Y. Liu, J. Y. Wang, A. C. Wang, J. Wang, S. M. Li, Y. L. Zi, and Z. L. Wang, Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array, Mater. Today, vol. 21, no. 3, pp. 216-222, 2018.
[85]
A. Kiaghadi, S. Z. Homayounfar, J. Gummeson, T. Andrew, and D. Ganesan, Phyjama: Physiological sensing via fiber-enhanced pyjamas, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 3, no. 3, p. 89, 2019.
[86]
J. J. Luo, W. Tang, F. R. Fan, C. F. Liu, Y. K. Pang, G. Z. Cao, and Z. L. Wang, Transparent and flexible self-charging power film and its application in a sliding unlock system in touchpad technology, ACS Nano, vol. 10, no. 8, pp. 8078-8086, 2016.
[87]
W. B. Ding, C. S. Wu, Y. L. Zi, H. Y. Zou, J. Y. Wang, J. Cheng, A. C. Wang, and Z. L. Wang, Self-powered wireless optical transmission of mechanical agitation signals, Nano Energy, vol. 47, pp. 566-572, 2018.
[88]
X. Cao, M. Zhang, J. R. Huang, T. Jiang, J. D. Zou, N. Wang, and Z. L. Wang, Inductor-free wireless energy delivery via Maxwell’s displacement current from an electrodeless triboelectric nanogenerator, Adv. Mater., vol. 30, no. 6, p. 1704077, 2018.
[89]
Y. D. Chen, Y. Cheng, Y. Jie, X. Cao, N. Wang, and Z. L. Wang, Energy harvesting and wireless power transmission by a hybridized electromagnetic-ctriboelectric nanogenerator, Energy Environ. Sci., vol. 12, no. 9, pp. 2678-2684, 2019.
[90]
C. Zhang, J. K. Chen, W. P. Xuan, S. Y. Huang, B. You, W. J. Li, L. L. Sun, H. Jin, X. Z. Wang, S. R. Dong, et al., Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors, Nat. Commun., vol. 11, no. 1, p. 58, 2020.
[91]
S. M. Niu and Z. L. Wang, Theoretical systems of triboelectric nanogenerators, Nano Energy, vol. 14, pp. 161-192, 2015.
[92]
C. S. Wu, A. C. Wang, W. B. Ding, H. Y. Guo, and Z. L. Wang, Triboelectric nanogenerator: A foundation of the energy for the new era, Adv. Energy Mater., vol. 9, no. 1, p. 1802906, 2019.
[93]
R. D. I. G. Dharmasena, K. D. G. I. Jayawardena, C. A. Mills, R. A. Dorey, and S. R. P. Silva, A unified theoretical model for triboelectric nanogenerators, Nano Energy, vol. 48, pp. 391-400, 2018.
[94]
R. D. I. G. Dharmasena, J. H. B. Deane, and S. R. P. Silva, Nature of power generation and output optimization criteria for triboelectric nanogenerators, Adv. Energy Mater., vol. 8, no. 31, p. 1802190, 2018.
[95]
T. Suicmez and S. Kizgut, Coal floatability characterization by film flotation, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 32, no. 19, pp. 1801-1811, 2010.
[96]
Y. L. Zi, J. Wang, S. H. Wang, S. M. Li, Z. Wen, H. Y. Guo, and Z. L. Wang, Effective energy storage from a triboelectric nanogenerator, Nat. Commun., vol. 7, p. 10987, 2016.
[97]
Y. L. Zi, H. Y. Guo, J. Wang, Z. Wen, S. M. Li, C. G. Hu, and Z. L. Wang, An inductor-free auto-power-management design built-in triboelectric nanogenerators, Nano Energy, vol. 31, pp. 302-310, 2017.
[98]
S. M. Niu, S. H. Wang, Y. Liu, Y. S. Zhou, L. Lin, Y. F. Hu, K. C. Pradela, and Z. L. Wang, A theoretical study of grating structured triboelectric nanogenerators, Energy Environ. Sci., vol. 7, no. 7, pp. 2339-2349, 2014.
[99]
S. M. Niu, S. H. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. F. Hua, and Z. L. Wang, Theoretical study of contact-mode triboelectric nanogenerators as an effective power source, Energy Environ. Sci., vol. 6, no. 12, pp. 3576-3583, 2013.
[100]
S. M. Niu, Y. Liu, S. H. Wang, L. Lin, Y. S. Zhou, Y. F. Hu, and Z. L. Wang, Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators, Adv. Funct. Mater., vol. 24, no. 22, pp. 3332-3340, 2014.
[101]
S. M. Niu, Y. Liu, S. H. Wang, L. Lin, Y. S. Zhou, Y. F. Hu, and Z. L. Wang, Theory of sliding-mode triboelectric nanogenerators, Adv. Mater., vol. 25, no. 43, pp. 6184-6193, 2013.
[102]
S. M. Niu, Y. Liu, X. Y. Chen, S. H. Wang, Y. S. Zhou, L. Lin, Y. N. Xie, and Z. L. Wang, Theory of freestanding triboelectric-layer-based nanogenerators, Nano Energy, vol. 12, pp. 760-774, 2015.
[103]
J. Cheng, W. B. Ding, Y. L. Zi, Y. J. Lu, L. H. Ji, F. Liu, C. S. Wu, and Z. L. Wang, Triboelectric microplasma powered by mechanical stimuli, Nat. Commu., vol. 9, no. 1, p. 3733, 2018.
[104]
S. C. Liu, F. Yang, W. B. Ding, J. Song, and A. M. Tonello, Structured compressed sensing based narrowband interference elimination for in-home power line communications, IEEE Trans. Consum. Electron., vol. 63, no. 1, pp. 10-18, 2017.
[105]
S. X. Xu, L. Zhang, W. B. Ding, H. Y. Guo, X. L. Wang, and Z. L. Wang, Self-doubled-rectification of triboelectric nanogenerator, Nano Energy, vol. 66, p. 104165, 2019.
[106]
G. Q. Xu, X. Y. Li, X. Xia, J. J. Fu, W. B. Ding, and Y. L. Zi, On the force and energy conversion in triboelectric nanogenerators, Nano Energy, vol. 59, pp. 154-161, 2019.
[107]
Y. L. Zi, C. S. Wu, W. B. Ding, and Z. L. Wang, Maximized effective energy output of contact-separation-triggered triboelectric nanogenerators as limited by air breakdown, Adv. Funct. Mater., vol. 27, no. 24, p. 1700049, 2017.
[108]
X. Ma, J. N. Gao, F. Yang, W. B. Ding, H. Yang, and J. Song, Integrated power line and visible light communication system compatible with multi-service transmission, IET Commun., vol. 11, no. 1, pp. 104-111, 2017.
[109]
C. S. Wu, H. Tetik, J. Cheng, W. B. Ding, H. Y. Guo, X. T. Tao, N. J. Zhou, Y. L. Zi, Z. Y. Wu, H. X. Wu, et al., Electrohydrodynamic jet printing driven by a triboelectric nanogenerator, Adv. Funct. Mater., vol. 29, no. 22, p. 1901102, 2019.
[110]
C. Xu, B. B. Zhang, A. C. Wang, H. Y. Zou, G. L. Liu, W. B. Ding, C. S. Wu, M. Ma, P. Z. Feng, Z. Q. Lin, et al., Contact-electrification between two identical materials: Curvature effect, ACS Nano, vol. 13, no. 2, pp. 2034-2041, 2019.
[111]
R. D. I. G. Dharmasena and S. R. P. Silva, Towards optimized triboelectric nanogenerators, Nano Energy, vol. 62, pp. 530-549, 2019.
[112]
G. Zhu, C. F. Pan, W. X. Guo, C. Y. Chen, Y. S. Zhou, R. M. Yu, and Z. L. Wang, Triboelectric-generator-driven pulse electrodeposition for micropatterning, Nano Lett., vol. 12, no. 9, pp. 4960-4965, 2012.
[113]
S. H. Wang, L. Lin, and Z. L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics, Nano Lett., vol. 12, no. 12, pp. 6339-6346, 2012.
[114]
S. H. Wang, L. Lin, Y. N. Xie, Q. S. Jing, S. M. Niu, and Z. L. Wang, Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism, Nano Lett., vol. 13, no. 5, pp. 2226-2233, 2013.
[115]
G. Zhu, J. Chen, Y. Liu, P. Bai, Y. S. Zhou, Q. S. Jing, C. F. Pan, and Z. L. Wang, Linear-grating triboelectric generator based on sliding electrification, Nano Lett., vol. 13, no. 5, pp. 2282-2289, 2013.
[116]
Y. Yang, Y. S. Zhou, H. L. Zhang, Y. Liu, S. M. Lee, and Z. L. Wang, A single-electrode based triboelectric nanogenerator as self-powered tracking system, Adv. Mater., vol. 25, no. 45, pp. 6594-6601, 2013.
[117]
Y. Yang, H. L. Zhang, J. Chen, Q. S. Jing, Y. S. Zhou, X. N. Wen, and Z. L. Wang, Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system, ACS Nano, vol. 7, no. 8, pp. 7342-7351, 2013.
[118]
S. H. Wang, Y. N. Xie, S. M. Niu, L. Lin, and Z. L. Wang, Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes, Adv. Mater., vol. 26, no. 18, pp. 2818-2824, 2014.
[119]
J. J. Luo, L. Xu, W. Tang, T. Jiang, F. R. Fan, Y. K. Pang, L. B. Chen, Y. Zhang, and Z. L. Wang, Direct-current triboelectric nanogenerator realized by air breakdown induced ionized air channel, Adv. Energy Mater., vol. 8, no. 27, p. 1800889, 2018.
[120]
D. Liu, X. Yin, H. Y. Guo, L. L. Zhou, X. Y. Li, C. L. Zhang, J. Wang, and Z. L. Wang, A constant current triboelectric nanogenerator arising from electrostatic breakdown, Sci. Adv., vol. 5, no. 4, p. eaav6437, 2019.
[121]
S. X. Xu, H. Y. Guo, S. L. Zhang, L. Jin, W. B. Ding, X. H. Wang, and Z. L. Wang, Theoretical investigation of air breakdown direct current triboelectric nanogenerator, Appl. Phys. Lett., vol. 116, no. 26, p. 263901, 2020.
[122]
Y. Li, M. J. Hou, H. Liu, and Y. Liu, Towards a theoretical framework of strategic decision, supporting capability and information sharing under the context of Internet of Things, Inf. Technol. Manag., vol. 13, no. 4, pp. 205-216, 2012.
[123]
S. C. Li, L. D. Xu, X. H. Wang, and J. Wang, Integration of hybrid wireless networks in cloud services oriented enterprise information systems, Enterpr. Inf. Syst., vol. 6, no. 2, pp. 165-187, 2012.
[124]
D. Kiritsis, Closed-loop PLM for intelligent products in the era of the Internet of things, Comput. Aided Des., vol. 43, no. 5, pp. 479-501, 2011.
[125]
J. Song, W. B. Ding, F. Yang, H. M. Zhang, K. W. Peng, C. Y. Pan, J. Wang, and J. T. Wang, presented at 9th Workshop on Power Line Communications, Klagenfurt, Austria, 2018.
[126]
W. B. Ding, Y. Lu, F. Yang, W. Dai, and J. Song, Sparse channel state information acquisition for power line communications, presented at 2015 IEEE Int. Conf. Communications (ICC), London, UK, 2015, pp. 746-751.
DOI
[127]
S. G. Li, J. P. Yuan, and H. Lipson, Ambient wind energy harvesting using cross-flow fluttering, J. Appl. Phys., vol. 109, no. 2, p. 026104, 2011.
[128]
S. Orrego, K. Shoele, A. Ruas, K. Doran, B. Caggiano, R. Mittal, and S. H. Kang, Harvesting ambient wind energy with an inverted piezoelectric flag, Appl. Energy, vol. 194, pp. 212-222, 2017.
[129]
S. G. Li and H. Lipson, Vertical-stalk flapping-leaf generator for wind energy harvesting, presented at ASME 2009 Conf. Smart Materials, Adaptive Structures and Intelligent Systems, Oxnard, CA, USA, 2009, pp. 611-619.
DOI
[130]
M. Z. Jacobson and C. L. Archer, Saturation wind power potential and its implications for wind energy, Proc. Natl. Acad. Sci. USA, vol. 109, no. 39, pp. 15679-15684, 2012.
[131]
A. Ananthaswamy and M. Le Page, How clean is green, New Sci., vol. 213, no. 2849, pp. 34-38, 2012.
[132]
H. L. Zhang, J. Wang, Y. H. Xie, G. Yao, Z. C. Yan, L. Huang, S. H. Chen, T. S. Pan, L. P. Wang, Y. J. Su, et al., Self-powered, wireless, remote meteorologic monitoring based on triboelectric nanogenerator operated by scavenging wind energy, ACS Appl. Mater. Interfaces, vol. 8, no. 48, pp. 32649-32654, 2016.
[133]
T. Aderinto and H. Li, Ocean wave energy converters: Status and challenges, Energies, vol. 11, no. 5, p. 1250, 2018.
[134]
J. Ringwood, Practical challenges in harvesting wave energy, presented at Engineering Committee on Oceanic Resources (ECOR) Symp., Newfoundland, Canada, 2008.
[135]
B. Czech and P. Bauer, Wave energy converter concepts: Design challenges and classification, IEEE Ind. Electron. Mag., vol. 6, no. 2, pp. 4-16, 2012.
[136]
Y. L. Zi, H. Y. Guo, Z. Wen, M. H. Yeh, C. G. Hu, and Z. L. Wang, Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator, ACS Nano, vol. 10, no. 4, pp. 4797-4805, 2016.
DOI
[137]
W. Q. Yang, J. Chen, G. Zhu, J. Yang, P. Bai, Y. J. Su, Q. S. Jing, X. Cao, and Z. L. Wang, Harvesting energy from the natural vibration of human walking, ACS Nano, vol. 7, no. 12, pp. 11317-11324, 2013.
[138]
T. C. Yuan, J. Yang, R. G. Song, and X. W. Liu, Vibration energy harvesting system for railroad safety based on running vehicles, Smart Mater. Struct., vol. 23, no. 12, p. 125046, 2014.
[139]
M. A. A. Abdelkareem, L. Xu, M. K. A. Ali, A. Elagouz, J. Mi, S. J. Guo, Y. L. Liu, and L. Zuo, Vibration energy harvesting in automotive suspension system: A detailed review, Appl. Energy, vol. 229, pp. 672-699, 2018.
[140]
M. Peigney and D. Siegert, Piezoelectric energy harvesting from traffic-induced bridge vibrations, Smart Mater. Struct., vol. 22, no. 9, p. 095019, 2013.
[141]
S. L. Zhang, Q. Jiang, Z. Y. Wu, W. B. Ding, L. Zhang, H. N. Alshareef, and Z. L. Wang, Energy harvesting-storage bracelet incorporating electrochemical microsupercapacitors self-charged from a single hand gesture, Adv. Energy Mater., vol. 9, no. 18, p. 1900152, 2019.
[142]
Z. L. Li, J. L. Shen, I. Abdalla, J. Y. Yu, and B. Ding, Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting, Nano Energy, vol. 36, pp. 341-348, 2017.
[143]
X. L. Cheng, B. Meng, X. S. Zhang, M. D. Han, Z. M. Su, and H. X. Zhang, Wearable electrode-free triboelectric generator for harvesting biomechanical energy, Nano Energy, vol. 12, pp. 19-25, 2015.
[144]
K. Dong, J. A. Deng, Y. L. Zi, Y. C. Wang, C. Xu, H. Y. Zou, W. B. Ding, Y. J. Dai, B. H. Gu, B. Z. Sun, et al., 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors, Adv. Mater., vol. 29, no. 38, p. 1702648, 2017.
[145]
X. L. Cheng, L. M. Miao, Y. Song, Z. M. Su, H. T. Chen, X. X. Chen, J. X. Zhang, and H. X. Zhang, High efficiency power management and charge boosting strategy for a triboelectric nanogenerator, Nano Energy, vol. 38, pp. 438-446, 2017.
[146]
F. B. Xi, Y. K. Pang, W. Li. T. Jiang, L. M. Zhang, T. Guo, G. X. Liu, C. Zhang, and Z. L. Wang, Universal power management strategy for triboelectric nanogenerator, Nano Energy, vol. 37, pp. 168-176, 2017.
[147]
M. Lee, J. Bae, J. Lee, C. S. Lee, S. Hong, and Z. L. Wang, Self-powered environmental sensor system driven by nanogenerators, Energy Environ. Sci., vol. 4, no. 9, pp. 3359-3363, 2011.
[148]
Z. L. Wang, Toward self-powered sensor networks, Nano Today, vol. 5, no. 6, pp. 512-514, 2010.
[149]
H. Askari, E. Hashemi, A. Khajepour, M. B. Khamesee, and Z. L. Wang, Tire condition monitoring and intelligent tires using nanogenerators based on piezoelectric, electromagnetic, and triboelectric effects, Adv. Mater. Technol., vol. 4, no. 1, p. 1800105, 2019.
[150]
Z. Y. Wu, W. B. Ding, Y. J. Dai, K. Dong, C. S. Wu, L. Zhang, Z. M. Lin, J. Cheng, and Z. L. Wang, Self-powered multifunctional motion sensor enabled by magnetic-regulated triboelectric nanogenerator, ACS Nano, vol. 12, no. 6, pp. 5726-5733, 2018.
[151]
H. Yu, X. He, W. B. Ding, Y. S. Hu, D. C. Yang, S. Lu, C. S. Wu, H. Y. Zou, R. Y. Liu, C. H. Lu, et al., A self-powered dynamic displacement monitoring system based on triboelectric accelerometer, Adv. Energy Mater., vol. 7, no. 19, p. 1700565, 2017.
[152]
P. H. Wang, R. Y. Liu, W. B. Ding, P. Zhang, L. Pan, G. Z. Dai, H. Y. Zou, K. Dong, C. Xu, and Z. L. Wang, Complementary electromagnetic-triboelectric active sensor for detecting multiple mechanical triggering, Adv. Funct. Mater., vol. 28, no. 11, p. 1705808, 2018.
[153]
G. López, L. Quesada, and L. A. Guerrero, Alexa vs. Siri vs. Cortana vs. Google assistant: A comparison of speech-based natural user interfaces, in Proc. AHFE 2017 Int. Conf. Human Factors and Systems Interaction, Los Angeles, CA, USA, 2017, pp. 241-250.
DOI
[154]
P. R. Cohen and S. L. Oviatt, The role of voice input for human-machine communication, Proc. Natl. Acad. Sci. USA, vol. 92, no. 22, pp. 9921-9927, 1995.
[155]
J. Yang, J. Chen, Y. Liu, W. Q. Yang, Y. J. Su, and Z. L. Wang, Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing, ACS Nano, vol. 8, no. 3, pp. 2649-2657, 2014.
[156]
K. A. A. Makinwa and J. H. Huijsing, A smart wind sensor using thermal sigma-delta modulation techniques, Sens. Actuators A: Phys., vols. 97&98, pp. 15-20, 2002.
[157]
M. Y. Xu, Y. C. Wang, S. L. Zhang, W. B. Ding, J. Cheng, X. He, P. Zhang, Z. J. Wang, X. X. Pan, and Z. L. Wang, An aeroelastic flutter based triboelectric nanogenerator as a self-powered active wind speed sensor in harsh environment, Extreme Mech. Lett., vol. 15, pp. 122-129, 2017.
[158]
X. Xin, N. B. Zhong, Q. Liao, Y. Y. Cen, R. H. Wu, and Z. K. Wang, High-sensitivity four-layer polymer fiber-optic evanescent wave sensor, Biosens. Bioelectron., vol. 91, pp. 623-628, 2017.
[159]
J. Mir and J. K. Lee, Compact minimally invasive biomedical monitor, WIPO Patent WO/2008/150829, December 11, 2008.
[160]
X. He, H. Y. Zou, Z. S. Geng, X. F. Wang, W. B. Ding, F. Hu, Y. L. Zi, C. Xu, S. L. Zhang, H. Yu, et al., A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products, Adv. Funct. Mater., vol. 28, no. 45, p. 1805540, 2018.
[161]
Y. Ma, Q. Zheng, Y. Liu, B. J. Shi, X. Xue, W. P. Ji, Z. Liu, Y. M. Jin, Y. Zou, Z. An, et al., Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring, Nano Lett., vol. 16, no. 10, pp. 6042-6051, 2016.
[162]
A. Tapashetti, D. Vegiraju, and T. Ogunfunmi, IoT-enabled air quality monitoring device: A low cost smart health solution, presented at 2016 IEEE Global Humanitarian Technology Conf. (GHTC), Seattle, WA, USA, 2016, pp. 682-685.
DOI
[163]
N. Vijayakumar and R. Ramya, The real time monitoring of water quality in IoT environment, presented at 2015 Int. Conf. Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 2015, pp. 1-5.
DOI
[164]
S. S. K. Mallineni, Y. C. Dong, H. Behlow, A. M. Rao, and R. Podila, A wireless triboelectric nanogenerator, Adv. Energy Mater., vol. 8, no. 10, p. 1702736, 2018.
[165]
S. D. Barman, A. W. Reza, N. Kumar, M. E. Karim, and A. B. Munir, Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications, Renew. Sustain. Energy Rev., vol. 51, pp. 1525-1552, 2015.
[166]
A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, Wireless power transfer via strongly coupled magnetic resonances, Science, vol. 317, no. 5834, pp. 83-86, 2007.
[167]
W. Jiang, H. Li, Z. Liu, Z. Li, J. J. Tian, B. J. Shi, Y. Zou, H. Ouyang, C. C. Zhao, L. M. Zhao, et al., Fully bioabsorbable natural-materials-based triboelectric nanogenerators, Adv. Mater., vol. 30, no. 32, p. 1801895, 2018.
[168]
H. Elgala, R. Mesleh, and H. Haas, Indoor optical wireless communication: Potential and state-of-the-art, IEEE Commun. Mag., vol. 49, no. 9, pp. 56-62, 2011.
[169]
J. Song, W. B. Ding, F. Yang, H. Yang, B. Y. Yu, and H. M. Zhang, An indoor broadband broadcasting system based on PLC and VLC, IEEE Trans. Broadcast., vol. 61, no. 2, pp. 299-308, 2015.
[170]
L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. D. Langer, High-speed visible light communication systems, IEEE Commun. Mag., vol. 51, no. 12, pp. 60-66, 2013.
[171]
A. Dementyev, S. Hodges, S. Taylor, and J. Smith, Power consumption analysis of Bluetooth Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario, presented at 2013 IEEE Int. Wireless Symp. (IWS), Beijing, China, 2013.
[172]
D. Liu, B. D. Chen, J. An, C. Y. Li, G. X. Liu, J. J. Shao, W. Tang, C. Zhang, and Z. L. Wang, Wind-driven self-powered wireless environmental sensors for Internet of Things at long distance, Nano Energy, vol. 73, p. 104819, 2020.
[173]
G. Zhu, Y. S. Zhou, P. Bai, X. S. Meng, Q. S. Jing, J. Chen, and Z. L. Wang, A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification, Adv. Mater., vol. 26, no. 23, pp. 3788-3796, 2014.
[174]
Y. N. Xie, S. H. Wang, S. M. Niu, L. Lin, Q. S. Jing, J. Yang, Z. Y. Wu, and Z. L. Wang, Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency, Adv. Mater., vol. 26, no. 38, pp. 6599-6607, 2014.
[175]
Z. M. Lin, J. Chen, and J. Yang, Recent progress in triboelectric nanogenerators as a renewable and sustainable power source, J. Nanomater., vol. 2016, p. 5651613, 2016.
[176]
S. Sripadmanabhan Indira, C. Aravind Vaithilingam, K. S. P. Oruganti, F. Mohd, and S. Rahman, Nanogenerators as a sustainable power source: State of art, applications, and challenges, Nanomaterials, vol. 9, no. 5, p. 773, 2019.
Publication history
Copyright
Rights and permissions

Publication history

Received: 05 July 2020
Accepted: 05 August 2020
Published: 01 December 2020
Issue date: September 2020

Copyright

© All articles included in the journal are copyrighted to the ITU and TUP 2020

Rights and permissions

© All articles included in the journal are copyrighted to the ITU and TUP. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

Return