AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (977.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

State-of-the-Art Development of Complex Systems and Their Simulation Methods

Yiming Tang1,Lin Li1,Xiaoping Liu1( )
School of Computer and Information, and Engineering Research Center of Safety Critical Industry Measure and Control Technology, Ministry of Education, Hefei University of Technology, Hefei 230601, China

contributed equally to this work.

Show Author Information

Abstract

The research on complex systems is different from that on general systems because the former must consider self-organization, emergence, uncertainty, predetermination, and evolution. As an important method to transform the world, a simulation is one of the most important skills to discover complex systems. In this study, we provide a survey on complex systems and their simulation methods. Initially, the development history of complex system research is summarized from two main lines. Then, the eight common characteristics of the most complex systems are presented. Furthermore, the simulation methods of complex systems are introduced in detail from four aspects, namely, meta-synthesis methods, complex networks, intelligent technologies, and other methods. From the overall point of view, intelligent technologies are the driving force, and complex networks are the advanced structure. Meta-synthesis methods are the integration strategy, and other methods are the supplements. In addition, we show three complex system simulation examples: digital reactor simulation, simulation of a logistics system in the industrial site, and crowd evacuation simulation. The examples show that a simulation is a useful means and an important method in complex system research. Finally, the future development prospects for complex systems and their simulation methods are suggested.

References

1

C. Koch and G. Laurent, Complexity and the nervous system, Science, vol. 284, no. 5411, pp. 96–98, 1999.

2

R. Riser, V. A. Osipov, and E. Kanzieper, Nonperturbative theory of power spectrum in complex systems, Ann. Phys., vol. 413, p. 168065, 2020.

3

M. Ghanbari, A discussion on “solving fuzzy complex system of linear equations”, Informat. Sci., vol. 402, pp. 165–169, 2017.

4

H. W. Ren, P. Shi, F. Q. Deng, and Y. J. Peng, Fixed-time synchronization of delayed complex dynamical systems with stochastic perturbation via impulsive pinning control, J. Franklin Inst., vol. 357, no. 17, pp. 12308–12325, 2020.

5

R. Albert, H. Jeong, and A. L. Barabási, Error and attack tolerance of complex networks, Nature, vol. 406, no. 6794, pp. 378–382, 2000.

6

Y. Yang, T. Nishikawa, and A. E. Motter, Small vulnerable sets determine large network cascades in power grids, Science, vol. 358, no. 6365, p. eaan3184, 2017.

7

R. Q. Lu, W. W. Yu, J. H. Lü, and A. K. Xue, Synchronization on complex networks of networks, IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 11, pp. 2110–2118, 2014.

8

A. Kuzdeuov, D. Baimukashev, A. Karabay, B. Ibragimov, A. Mirzakhmetov, M. Nurpeiissov, M. Lewis, and H. A. Varol, A network-based stochastic epidemic simulator: controlling COVID-19 with region-specific policies, IEEE J Biomed. Health Inform., vol. 24, no. 10, pp. 2743–2754, 2020.

9

X. G. Wang, X. B. Deng, Q. Fu, Q. Zhou, J. P. Feng, H. Ma, W. Y. Liu, and C. S. Zheng, A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT, IEEE Trans. Med. Imaging, vol. 39, no. 8, pp. 2615–2625, 2020.

10

S. Spolaor, M. S. Nobile, G. Mauri, P. Cazzaniga, and D. Besozzi, Coupling mechanistic approaches and fuzzy logic to model and simulate complex systems, IEEE Trans. Fuzzy Syst., vol. 28, no. 8, pp. 1748–1759, 2020.

11
L. V. Bertalanffy, Modern theories of development. New York, NY, USA: Harper Torchbooks, 1928.
12
I. Prigogine and G. Nicolis, On symmetry-breaking instabilities in dissipative systems, The Journal of Chemical Physics, vo. 46, pp. 3542–3550, 1967.https://doi.org/10.1063/1.1841255
13
H. Haken, Synergetics: An Introduction. Springer, 1969.
14
H. A. Simon, The Sciences of the Artificial. Cambridge, MA, USA: MIT Press, 1969.
15
H. A. Simon, The Sciences of the Artificial, 2nd ed. Cambridge, MA, USA: MIT Press, 1981.
16
H. A. Simon, The Sciences of the Artificial, 3rd ed. Cambridge, MA, USA: MIT Press, 1998.
17

J. F. Traub, Complexity of approximately solved problems, Journal of Complexity, vol. 1, no. 1, pp. 3–10, 1985.

18
J. Gleick, Chaos: Making a New Science. London, UK: Penguin Books, 1987.
19
J. Holland, Adaptation in Natural and Artificial Systems. Cambridge, MA, USA: MIT Press, 1992.https://doi.org/10.7551/mitpress/1090.001.0001
20

G. M. Whitesides and R. F. Ismagilov, Complexity in chemistry, Science, vol. 284, no. 5411, pp. 89–92, 1999.

21

F. Vega-Redondo, Network organizations, J. Complex Netw., vol. 1, no. 1, pp. 72–82, 2013.

22

B. Xin, J. X. Zhang, J. Chen, Q. Wang, and Y. Qu, Overview of research on transformation of multi-AUV formations, Complex Syst. Model. Simul., vol. 1, no. 1, pp. 1–14, 2021.

23
X. S. Qian, Engineering Cybernetics, New York, NY, USA: McGraw Hill, 1954.
24

X. S. Qian, J. Y. Yu, and R. W. Dai, A new discipline of science: The study of open complex giant system and its methodology, (in Chinese), Nat. Mag., vol. 13, no. 1, pp. 3–10&64, 1990.

25

X. S. Qian and H. S. Tsien, Revisiting issues on open complex giant systems, (in Chinese), Pattern Recognit. Artif. Intell., vol. 4, no. 1, pp. 5–8, 1991.

26

R. W. Dai, Comprehensive integration technology from qualitative to quantitative, (in Chinese), Pattern Recognit. Artif. Intell., vol. 4, no. 1, pp. 5–10, 1991.

27

R. W. Dai and Y. D. Li, Researches on hall for workshop of metasynthetic engineering and system complexity, (in Chinese), Complex Syst. Complex. Sci., vol. 1, no. 4, pp. 1–24, 2004.

28

F. Y. Wang, R. W. Dai, S. Y. Zhang, G. L. Chen, S. M. Tang, D. Y. Yang, X. G. Yang, and P. Li, A complex system approach for studying sustainable and integrated development of metropolitan transportation, logistics and ecosystems, (in Chinese), Complex Syst. Complex. Sci., vol. 1, no. 2, pp. 60–69, 2004.

29

L. B. Cao, R. W. Dai, and M. C. Zhou, Metasynthesis: M-Space, M-Interaction, and M-computing for open complex giant systems, IEEE Trans. Syst. Man Cybern. Part A:Syst. Humans, vol. 39, no. 5, pp. 1007–1021, 2009.

30

C. L. P. Chen and Z. L. Liu, Broad learning system: An effective and efficient incremental learning system without the need for deep architecture, IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 1, pp. 10–24, 2018.

31

Z. M. Zheng, J. H. Lv, W. Wei, and S. T. Tang, Refined intelligence theory: Artificial intelligence regarding complex dynamic objects, (in Chinese), Sci. Sin. Informat., vol. 51, no. 4, p. 678, 2021.

32

X. P. Liu, Y. M. Tang, and L. P. Zheng, Survey of complex system and complex system simulation, (in Chinese), J. Syst. Simul., vol. 20, no. 23, pp. 6303–6315, 2008.

33
A. Randall, Risk and Precaution. Cambridge, MA, USA: Cambridge University Press, 2011.
34

A. Majdandzic, B. Podobnik, S. V. Buldyrev, D. Y. Kenett, S. Havlin, and H. E. Stanley, Spontaneous recovery in dynamical networks, Nat. Phys., vol. 10, no. 1, pp. 34–38, 2014.

35

S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, Catastrophic cascade of failures in interdependent networks, Nature, vol. 464, no. 7291, pp. 1025–1028, 2010.

36

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep., vol. 424, nos. 4&5, pp. 175–308, 2006.

37

R. Albert and A. L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys., vol. 74, no. 1, pp. 47–94, 2002.

38

S. H. An and R. H. Yu, Review on complex network theory research, (in Chinese), Computer Syst. Appl., vol. 29, no. 9, pp. 26–31, 2020.

39
M. Newman, Networks: An Introduction. Oxford, UK: Oxford University Press, 2010.
40

E. A. Bender and E. R. Canfield, The asymptotic number of labelled graphs with given degree sequences, Journal of Combinatorial Theory,Series A, vol. 24, pp. 296–307, 1978.

41

D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature, vol. 393, no. 6684, pp. 440–442, 1998.

42

M. E. J. Newman and D. J. Watts, Renormalization group analysis of the small-world network model, Phys. Lett. A, vol. 263, nos. 4–6, pp. 341–346, 1999.

43

A. L. Barabási, R. Albert, and H. Jeong, Mean-field theory for scale-free random networks, Phys. A:Stat. Mech. Appl., vol. 272, nos. 1&2, pp. 173–187, 1999.

44

X. Li and G. R. Chen, A local-world evolving network model, Phys. A:Stat. Mech. Appl., vol. 328, nos. 1&2, pp. 274–286, 2003.

45

S. Qin and G. Z. Dai, A new local-world evolving network model, Chin. Phys. B, vol. 18, no. 2, pp. 383–390, 2009.

46

S. H. Yook, H. Jeong, A. L. Barabási, and Y. Tu, Weighted evolving networks, Phys. Rev. Lett., vol. 86, no. 25, pp. 5835–5838, 2001.

47

A. Barrat, M. Barthélemy, and A. Vespignani, Weighted evolving networks: Coupling topology and weight dynamics, Phys. Rev. Lett., vol. 92, no. 22, p. 228701, 2004.

48

W. H. Li, T. Aste, F. Caccioli, and G. Livan, Early coauthorship with top scientists predicts success in academic careers, Nat. Commun., vol. 10, no. 1, p. 5170, 2019.

49

W. Chen, J. Nagler, X. Q, Cheng, X. L. Jin, H. W. Shen, Z. M. Zheng, and R. M. D’Souza, Phase transitions in supercritical explosive percolation, Phys. Rev. E, vol. 87, no. 5, p. 052130, 2013.

50

W. Chen and R. M. D’Souza, Explosive percolation with multiple giant components, Phys. Rev. Lett., vol. 106, no. 11, p. 115701, 2011.

51

Q. T. Guo, Y. J. Lei, X. Jiang, Y. F. Ma, G. Y. Huo, and Z. M. Zheng, Epidemic spreading with activity-driven awareness diffusion on multiplex network, Chaos, vol. 26, no. 4, p. 043110, 2016.

52

S. Yan, S. T. Tang, S. Pei, S. J. Jiang, and Z. M. Zheng, Dynamical immunization strategy for seasonal epidemics, Phys. Rev. E, vol. 90, no. 2, p. 022808, 2014.

53

W. H. Li, S. T. Tang, W. Y. Fang, Q. T. Guo, X. Zhang, and Z. M. Zheng, How multiple social networks affect user awareness: The information diffusion process in multiplex networks, Phys. Rev. E, vol. 92, no. 4, p. 042810, 2015.

54

X. Wang, W. H. Li, L. Z. Liu, S. Pei, S. T. Tang, and Z. M. Zheng, Promoting information diffusion through interlayer recovery processes in multiplex networks, Phys. Rev. E, vol. 96, no. 3, p. 032304, 2017.

55

S. Pei, S. Kandula, Y. Wan, and J. Shaman, Forecasting the spatial transmission of influenza in the United States, Proc. Natl. Acad. Sci. USA, vol. 115, no. 11, pp. 2752–2757, 2018.

56

R. Y. Li, S. Pei, B. Chen, Y. M. Song, T. Zhang, W. Yang, and J. Shaman, Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2), Science, vol. 368, no. 6490, pp. 489–493, 2020.

57

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Nature, vol. 323, no. 6088, pp. 533–536, 1986.

58

G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, vol. 313, no. 5786, pp. 504–507, 2006.

59

G. E. Hinton, S. Osindero, and Y. W. Teh, A fast learning algorithm for deep belief nets, Neural Comput., vol. 18, no. 7, pp. 1527–1554, 2006.

60

M. S. Long, Y. Cao, Z. J. Cao, J. M. Wang, and M. I. Jordan, Transferable representation learning with deep adaptation networks, IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 12, pp. 3071–3085, 2019.

61

L. Zhang, J. Liu, B. Zhang, D. Zhang, and C. Zhu, Deep cascade model-based face recognition: When deep-layered learning meets small data, IEEE Trans. Image Proc., vol. 29, pp. 1016–1029, 2019.

62

H. R. Li, Q. C. Zhang, and D. B. Zhao, Deep reinforcement learning-based automatic exploration for navigation in unknown environment, IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 6, pp. 2064–2076, 2020.

63

T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications, IEEE Trans. Cybern., vol. 50, no. 9, pp. 3826–3839, 2020.

64

L. R. Chen, Z. R. Zhang, J. F. Cao, and X. Q. Wang, A novel method of combining nonlinear frequency spectrum and deep learning for complex system fault diagnosis, Measurement, vol. 151, p. 107190, 2020.

65

Y. S. Lv, Y. J. Duan, W. W. Kang, Z. X. Li, and F. Y. Wang, Traffic flow prediction with big data: A deep learning approach, IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 865–873, 2015.

66

M. M. Hanczyc, Engineering life: A review of synthetic biology, Artif. Life, vol. 26, no. 2, pp. 260–273, 2020.

67

Y. S. Ong and A. Gupta, AIR5: Five pillars of artificial intelligence research, IEEE Trans. Emerg. Top. Comput. Intell., vol. 3, no. 5, pp. 411–415, 2019.

68

J. Q. Liu and K. Shimohara, Molecular computation and evolutionary wetware: A cutting-edge technology for artificial life and nanobiotechnologies, IEEE Trans. Syst. Man Cybern. Part C, vol. 37, no. 3, pp. 325–336, 2007.

69

K. Dale and P. Husbands, The evolution of reaction-diffusion controllers for minimally cognitive agents, Artif. Life, vol. 16, no. 1, pp. 1–19, 2010.

70

C. Holden, Darwin’s place on campus is secure—but not supreme, Science, vol. 311, no. 5762, pp. 769–771, 2006.

71

S. Q. Zhang, H. Y. Zhao, and M. K. Ng, Functional module analysis for gene coexpression networks with network integration, IEEE/ACM Trans. Comput. Biol. Bioinformat., vol. 12, no. 5, pp. 1146–1160, 2015.

72

L. L. Chang, Z. J. Zhou, Y. W. Chen, T. J. Liao, Y. Hu, and L. H. Yang, Belief rule base structure and parameter joint optimization under disjunctive assumption for nonlinear complex system modeling, IEEE Trans. Syst. Man Cybern. Syst., vol. 48, no. 9, pp. 1542–1554, 2018.

73

D. A. Burbano-L, G. Russo, and M. Di Bernardo, Pinning controllability of complex network systems with noise, IEEE Trans. Control Netw. Syst., vol. 6, no. 2, pp. 874–883, 2019.

74

M. Mamei, A. Roli, and F. Zambonelli, Emergence and control of macro-spatial structures in perturbed cellular automata, and implications for pervasive computing systems, IEEE Trans. Syst. Man Cybern. Part A:Syst. Humans, vol. 35, no. 3, pp. 337–348, 2005.

75

P. Wang. X. Z. Xu, S. Feng, and A. H. Xu, A novel evolutionary-fuzzy control algorithm for complex systems, J. Syst. Eng. Electron., vol. 13, no. 3, pp. 52–60, 2002.

76
X. P. Liu, E. Z. Wang, L. P. Zheng, and X. W. Wei, Study on template for parallel computing in visual parallel programming platform, in Proc. of the 1st Int. Symp. Pervasive Computing and Applications, Urumqi, China, 2006, pp. 476–481.https://doi.org/10.1109/SPCA.2006.297439
77
X. P. Liu, J. Qin, and Y. M. Tang, An innovative function-tree building method based on similarity theory and extension theory, in Proc. of the 7th Int. Conf. Computer-Aided Industrial Design and Conceptual Design (CAID & CD), Hangzhou, China, 2006, pp. 199–204.https://doi.org/10.1109/CAIDCD.2006.329434
78
X. P. Liu, H. Shi, Z. Q. Mao, and L. P. Zheng, Cooperative template mechanism for cooperative design, in Proc. of 9th Int. Conf. on Computer Supported Cooperative Work in Design II, W. M. Shen, K. M. Chao, Z. K. Lin, J. P. A. Barthès, A. James, eds. Berlin, Germany: Springer, vol. 3865, pp. 102–111, 2006.https://doi.org/10.1007/11686699_11
79

S. J. Li, H. S. Zhu, L. P. Zheng, and L. Li, A perceptual-based noise-agnostic 3D skeleton motion data refinement network, IEEE Access, vol. 8, pp. 52927–52940, 2020.

80

Y. Chen, Y. Zhao, S. J. Li, W. M. Zuo, W. Jia, and X. P. Liu, Blind quality assessment for cartoon images, IEEE Trans. Circuits and Syst. Video Technol., vol. 30, no. 9, pp. 3282–3288, 2020.

81

S. J. Li, Y. Zhou, H. S. Zhu, W. J. Xie, Y. Zhao, and X. P. Liu, Bidirectional recurrent autoencoder for 3D skeleton motion data refinement, Comput. Graph., vol. 81, pp. 92–103, 2019.

82

M. W. Cao, L. Li, W. J. Xie, W. Jia, Z. H. Lv, L. P. Zheng, and X. P. Liu, Parallel K nearest neighbor matching for 3D reconstruction, IEEE Access, vol. 7, pp. 55248–55260, 2019.

83

M. W. Cao, W. Jia, Z. H. Lv, W. J. Xie, L. P. Zheng, and X. P. Liu, Two-pass K nearest neighbor search for feature tracking, IEEE Access, vol. 6, pp. 72939–72951, 2018.

84

Y. Zhao, G. P. Li, W. J. Xie, W. Jia, H. Min, and X. P. Liu, GUN: Gradual upsampling network for single image super-resolution, IEEE Access, vol. 6, pp. 39363–39374, 2018.

85

Y. Zhao, R. G. Wang, W. Jia, W. M. Zuo, X. P. Liu, and W. Gao, Deep reconstruction of least significant bits for bit-depth expansion, IEEE Trans. Image Proc., vol. 28, no. 6, pp. 2847–2859, 2019.

86
J. Q. Hu and Y. Q. Cao, Fuzzy Petri net based dynamic risk analysis of complex system considering protection layers, in Proc. of the 12th Int. Conf. Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, China, 2015, pp. 308–312.
87
L. Y. Liu, X. P. Wu, and Q. Ye, Safety analysis for complex systems based on petri nets and reachability trees, in Proc. of Second Int. Symp. Intelligent Information Technology Application, Shanghai, China, 2008, pp. 578–582.https://doi.org/10.1109/IITA.2008.201
88

H. S. Hu and M. C. Zhou, A petri net-based discrete-event control of automated manufacturing systems with assembly operations, IEEE Trans. Control Syst. Technol., vol. 23, no. 2, pp. 513–524, 2015.

89

F. M. Lu, Q. T. Zeng, M. C. Zhou, Y. X. Bao, and H. Duan, Complex reachability trees and their application to deadlock detection for unbounded petri nets, IEEE Trans. Syst. Man Cybern. Syst., vol. 49, no. 6, pp. 1164–1174, 2019.

90

Y. Yang and H. S. Hu, A distributed control approach to automated manufacturing systems with complex routes and operations using petri nets, IEEE Trans. Syst. Man Cybern. Syst, vol. 50, no. 10, pp. 3670–3684, 2020.

91

H. S. Hu, R. Su, M. C. Zhou, and Y. Liu, Polynomially complex synthesis of distributed supervisors for large-scale AMSs using petri nets, IEEE Trans. Control Syst. Technol., vol. 24, no. 5, pp. 1610–1622, 2016.

92

B. Li, M. Khlif-Bouassida, and A. Toguyéni. Reduction rules for diagnosability analysis of complex systems modeled by labeled petri nets, IEEE Trans. Automat. Sci. Eng., vol. 17, no. 2, pp. 1061–1069, 2020.

93

Y. M. Tang and F. J. Ren, Fuzzy systems based on universal triple I method and their response functions, Int. J. Informat. Technol. Decis. Making, vol. 16, no. 2, pp. 443–471, 2017.

94

Y. M. Tang and F. J. Ren, Universal triple I method for fuzzy reasoning and fuzzy controller, Iranian J. Fuzzy Syst., vol. 10, no. 5, pp. 1–24, 2013.

95

Y. M. Tang and X. P. Liu, Differently implicational universal triple I method of (1, 2, 2) type, Comput. Math. Appl., vol. 59, no. 6, pp. 1965–1984, 2010.

96

Y. M. Tang and X. Z. Yang, Symmetric implicational method of fuzzy reasoning, Int. J. Approx. Reason., vol. 54, no. 8, pp. 1034–1048, 2013.

97

Y. M. Tang, X. Z. Yang, X. P. Liu, and J. Yang, Double fuzzy implications-based restriction inference algorithm, Iranian J. Fuzzy Syst., vol. 12, no. 6, pp. 17–40, 2015.

98

Y. M. Tang and F. J. Ren, Variable differently implicational algorithm of fuzzy inference, J. Intell. Fuzzy Syst., vol. 28, no. 4, pp. 1885–1897, 2015.

99

Y. M. Tang and W. Pedrycz, On the a(u, v)-symmetric implicational method for R- and (S, N)-implications, Int. J. Approx. Reason., vol. 92, pp. 212–231, 2018.

100

Y. M. Tang and W. Pedrycz, On continuity of the entropy-based differently implicational algorithm, Kybernetika, vol. 55, no. 2, pp. 307–336, 2019.

101

Y. M. Tang, X. H. Hu, W. Pedrycz, and X. C. Song, Possibilistic fuzzy clustering with high-density viewpoint, Neurocomputing, vol. 329, pp. 407–423, 2019.

102

Y. M. Tang, F. J. Ren, and W. Pedrycz, Fuzzy C-means clustering through SSIM and patch for image segmentation, Appl. Soft Comput, vol. 87, p. 105928, 2020.

103

D. S. Yang, Y. H. Sun, B. W. Zhou, X. T. Gao, and H. G. Zhang, Critical nodes identification of complex power systems based on electric cactus structure, IEEE Syst. J., vol. 14, no. 3, pp. 4477–4488, 2020.

104
Y. M. Tang and W. Pedrycz, Oscillation-bound estimation of perturbations under Bandler-Kohout subproduct, IEEE Trans. Cybern., doi: 10.1109/TCYB.2020.3025793.https://doi.org/10.1109/TCYB.2020.3025793
105

T. Pakula, Dielectric relaxation modeling in complex polymer systems, IEEE Trans. Dielect. Elect. Insulat., vol. 8, no. 6, pp. 936–941, 2001.

106
Y. M. Tang, W. Pedrycz, and F. J. Ren, Granular symmetric implicational method, IEEE Trans. Emerg. Top. Comput. Intell., doi: 10.1109/TETCI.2021.3100597.https://doi.org/10.1109/TETCI.2021.3100597
107

W. L. Noorduin, A. Grinthal, L. Mahadevan, and J. Aizenberg, Rationally designed complex, hierarchical microarchitectures, Science, vol. 340, no. 6134, pp. 832–837, 2013.

108

Y. Zhang, Y. B. Li, B. Yang, X. Zheng, and M. Chen, Risk assessment of COVID-19 based on multisource data from a geographical viewpoint, IEEE Access, vol. 8, pp. 125702–125713, 2020.

109

L. F. Li, Q. P. Zhang, X. Wang, J. Zhang, T. Wang, T. L. Gao, W. Duan, K. K. F. Tsoi, and F. Y. Wang, Characterizing the propagation of situational information in social media during COVID-19 epidemic: A case study on Weibo, IEEE Trans. Comput. Soc. Syst., vol. 7, no. 2, pp. 556–562, 2020.

110

N. N. Zheng, S. Y. Du, J. J. Wang, H. Zhang, W. T. Cui, Z. J. Kang, T. Yang, B. Lou, Y. T. Chi, H. Long, et al., Predicting COVID-19 in China using hybrid AI model, IEEE Trans. Cybern., vol. 50, no. 7, pp. 2891–2904, 2020.

111

J. Forsman, R. Moll, and C. Linder, Extending the theoretical framing for physics education research: An illustrative application of complexity science, Phys. Rev. ST Phys. Educ. Res., vol. 10, no. 2, p. 020122, 2014.

112

J. Ruths and D. Ruths, Control profiles of complex networks, Science, vol. 343, no. 6177, pp. 1373–1376, 2014.

Complex System Modeling and Simulation
Pages 271-290

{{item.num}}

Comments on this article

Go to comment

< Back to all reports

Review Status: {{reviewData.commendedNum}} Commended , {{reviewData.revisionRequiredNum}} Revision Required , {{reviewData.notCommendedNum}} Not Commended Under Peer Review

Review Comment

Close
Close
Cite this article:
Tang Y, Li L, Liu X. State-of-the-Art Development of Complex Systems and Their Simulation Methods. Complex System Modeling and Simulation, 2021, 1(4): 271-290. https://doi.org/10.23919/CSMS.2021.0025

1407

Views

130

Downloads

21

Crossref

0

Web of Science

22

Scopus

Altmetrics

Received: 29 March 2021
Revised: 21 June 2021
Accepted: 09 October 2021
Published: 31 December 2021
© The author(s) 2021

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).