AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Novel PIO Algorithm with Multiple Selection Strategies for Many-Objective Optimization Problems

School of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
the School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
State Key Laboratory of Intelligent Control and Management of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
the School of Computing, University of Eastern Finland, Kuopio, FI-70211, Finland
Show Author Information

Abstract

With the increase of problem dimensions, most solutions of existing many-objective optimization algorithms are non-dominant. Therefore, the selection of individuals and the retention of elite individuals are important. Existing algorithms cannot provide sufficient solution precision and guarantee the diversity and convergence of solution sets when solving practical many-objective industrial problems. Thus, this work proposes an improved many-objective pigeon-inspired optimization (ImMAPIO) algorithm with multiple selection strategies to solve many-objective optimization problems. Multiple selection strategies integrating hypervolume, knee point, and vector angles are utilized to increase selection pressure to the true Pareto Front. Thus, the accuracy, convergence, and diversity of solutions are improved. ImMAPIO is applied to the DTLZ and WFG test functions with four to fifteen objectives and compared against NSGA-III, GrEA, MOEA/D, RVEA, and many-objective Pigeon-inspired optimization algorithm. Experimental results indicate the superiority of ImMAPIO on these test functions.

References

1
R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in Proc. the 6thInt. Symp. on Micro Machine and Human Science, Nagoya, Japan, 2002, pp. 39–43.
2

Z. H. Cui, J. J. Zhang, D. Wu, X. J. Cai, H. Wang, W. S. Zhang, and J. J. Chen, Hybrid many-objective particle swarm optimization algorithm for green coal production problem, Informat. Sci., vol. 518, pp. 256–271, 2020.

3
X. S. Yang, A new metaheuristic bat-inspired algorithm, in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), J. R. González, D. A. Pelta, C. Cruz, G. Terrazas, N. Krasnogor, eds. Berlin, Germany: Springer, vol. 284, pp. 65–74, 2010.https://doi.org/10.1007/978-3-642-12538-6_6
4

H. T. Rauf, M. Hadi, and A. Rehman, Bat algorithm with Weibull walk for solving global optimisation and classification problems, Int. J. Bio-Inspir. Comput., vol. 15, no. 3, pp. 159–170, 2020.

5

M. Dorigo, V. Maniezzo, and A. Colorni, Ant system: Optimization by a colony of cooperating agents, IEEE Trans. Syst. Man Cybern. Part B Cybern., vol. 26, no. 1, pp. 29–41, 1996.

6
X. S. Yang and S. Deb, Cuckoo search via Lévy flights, presented at 2009 World Congress on Nature&Biologically Inspired Computing (NaBIC), Coimbatore, India, 2010, pp. 210–214.https://doi.org/10.1109/NABIC.2009.5393690
7

Z. H. Cui, M. Q. Zhang, H. Wang, X. J. Cai, W. S. Zhang, and J. J. Chen, Hybrid many-objective cuckoo search algorithm with Lévy and exponential distributions, Memetic Comput., vol. 12, no. 3, pp. 251–265, 2020.

8
X. S. Yang, Firefly algorithm, in Engineering Optimization: An Introduction with Metaheuristic Applications, X. S. Yang, ed. Hoboken, NJ, USA: John Wiley&Sons, Inc., 2010, pp. 221–230.https://doi.org/10.1002/9780470640425.ch17
9

J. Zhao, J. J. Tang, A. Y. Shi, T. H. Fan, and L. Z. Xu, Improved density peaks clustering based on firefly algorithm, Int. J. Bio-Inspir. Comput., vol. 15, no. 1, pp. 24–42, 2020.

10

D. Karaboga, Artificial bee colony algorithm, Scholarpedia, vol. 5, no. 3, p. 6915, 2010.

11

Y. N. Guo, H. Yang, M. R. Chen, J. Cheng, and D. W. Gong, Ensemble prediction-based dynamic robust multi-objective optimization methods, Swarm Evol. Comput., vol. 48, pp. 156–171, 2019.

12

Y. N. Guo, J. Cheng, S. Luo, D. W. Gong, and Y. Xue, Robust dynamic multi-objective vehicle routing optimization method, IEEE-ACM Trans. Comput. Biol. Bioinf., vol. 15, no. 6, pp. 1891–1903, 2018.

13

H. B. Duan and P. X. Qiao, Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning, Int. J. Intell. Comput. Cybern., vol. 7, no. 1, pp. 24–37, 2014.

14

Y. N. Guo, X. Zhang, D. W. Gong, Z. Zhang, and J. J. Yang, Novel interactive preference-based multiobjective evolutionary optimization for bolt supporting networks, IEEE Trans. Evol. Comput., vol. 24, no. 4, pp. 750–764, 2020.

15

Y. N. Guo, P. Zhang, J. Cheng, C. Wang, and D. W. Gong, Interval multi-objective quantum-inspired cultural algorithms, Neural Comput. Appl., vol. 30, no. 3, pp. 709–722, 2018.

16

Z. H. Cui, Y. R. Zhao, Y. Cao, X. J. Cai, W. S. Zhang, and J. J. Chen, Malicious code detection under 5G HetNets based on a multi-objective RBM model, IEEE Netw., vol. 35, no. 2, pp. 82–87, 2021.

17

H. B. Duan, J. X. Zhao, Y. M. Deng, Y. H. Shi, and X. L. Ding, Dynamic discrete pigeon-inspired optimization for multi-UAV cooperative search-attack mission planning, IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 1, pp. 706–720, 2021.

18

H. X. Qiu and H. B. Duan, A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles, Inform. Sci., vol. 509, pp. 515–529, 2020.

19

Z. H. Cui, J. J. Zhang, Y. C. Wang, Y. Cao, X. J. Cai, W. S. Zhang, and J. J. Chen, A pigeon-inspired optimization algorithm for many-objective optimization problems, (in Chinese), Sci. China Inf. Sci., vol. 62, no. 7, p. 70212, 2019.

20

Z. H. Cui, X. H. Xu, F. Xue, X. J. Cai, Y. Cao, W. S. Zhang, and J. J. Chen, Personalized recommendation system based on collaborative filtering for IoT scenarios, IEEE Trans. Serv. Comput., vol. 13, no. 4, pp. 685–695, 2020.

21

Z. H. Cui, F. Xue, S. Q. Zhang, X. J. Cai, Y. Cao, W. S. Zhang, and J. J. Chen, A hybrid Block Chain-based identity authentication scheme for Multi-WSN, IEEE Trans. Serv. Comput., vol. 13, no. 2, pp. 241–251, 2020.

22

X. J. Cai, S. J. Geng, D. Wu, J. H. Cai, and J. J. Chen, A multicloud-model-based many-objective intelligent algorithm for efficient task scheduling in internet of things, IEEE Int. Things J., vol. 8, no. 12, pp. 9645–9653, 2021.

23

C. Li and H. B. Duan, Target detection approach for UAVs via improved pigeon-inspired optimization and edge potential function, Aerosp. Sci. Technol., vol. 39, pp. 352–360, 2014.

24

H. B. Duan, H. X. Qiu, and Y. M. Fan, Unmanned aerial vehicle close formation cooperative control based on predatory escaping pigeon-inspired optimization, (in Chinese), Sci. Sin. Tech., vol. 45, no. 6, pp. 559–572, 2015.

25

B. Zhang and H. B. Duan, Three-dimensional path planning for uninhabited combat aerial vehicle based on predator-prey pigeon-inspired optimization in dynamic environment, IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 14, no. 1, pp. 97–107, 2017.

26
H. Arshad, S. Batool, Z. Amjad, M. Ali, S. Aimal, and N. Javaid, Pigeon inspired optimization and enhanced differential evolution using time of use tariff in smart grid, presented at the 9th Int. Conf. Intelligent Networking and Collaborative Systems (INCoS 2017), Tronto, Canada, 2017, pp. 563–575.https://doi.org/10.1007/978-3-319-65636-6_51
27
X. X. Sun, J. S. Pan, S. C. Chu, P. Hu, and A. Q. Tian, A novel pigeon-inspired optimization with QUasi-Affine TRansformation evolutionary algorithm for DV-Hop in wireless sensor networks, Int. J. Distrib. Sens. Netw. vol. 16, no. 6, p. 155014772093274, 2020.https://doi.org/10.1177/1550147720932749
28

H. X. Qiu and H. B. Duan, Multi-objective pigeon-inspired optimization for brushless direct current motor parameter design, (in Chinese), Sci. China Tech. Sci., vol. 58, no. 11, pp. 1915–1923, 2015.

29

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002.

30

H. B. Duan, M. Z. Huo, and Y. H. Shi, Limit-cycle-based mutant multiobjective pigeon-inspired optimization, IEEE Trans. Evol. Comput., vol. 24, no. 5, pp. 948–959, 2020.

31

Y. Hu, J. Wang, J. Liang, K. J. Yu, H. Song, Q. Q. Guo, C. T. Yue, and Y. L. Wang, A self-organizing multimodal multi-objective pigeon-inspired optimization algorithm, (in Chinese), Sci. China Inf. Sci., vol. 62, no. 7, p. 70206, 2019.

32

Q. Z. Lin, S. B. Liu, Q. L. Zhu, C. Y. Tang, R. Z. Song, J. Y. Chen, C. A. C. Coello, K. C. Wong, and J. Zhang, Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems, IEEE Trans. Evol. Comput., vol. 22, no. 1, pp. 32–46, 2018.

33

M. A. Dulebenets, Archived elitism in evolutionary computation: Towards improving solution quality and population diversity, Int. J. Bio-Inspir. Comput., vol. 15, no. 3, pp. 135–146, 2020.

34

J. Bader and E. Zitzler, HypE: An algorithm for fast hypervolume-based many-objective optimization, Evol. Comput., vol. 19, no. 1, pp. 45–76, 2011.

35

X. Y. Zhang, Y. Tian, and Y. C. Jin, A knee point-driven evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., vol. 19, no. 6, pp. 761–776, 2015.

36

Y. Xiang, Y. R. Zhou, M. Q. Li, and Z. F. Chen, A vector angle-based evolutionary algorithm for unconstrained many-objective optimization, IEEE Trans. Evol. Comput., vol. 21, no. 1, pp. 131–152, 2017.

37
K. Li, J. H. Zheng, M. Q. Li, C. Zhou, and H. Lv, A novel algorithm for non-dominated hypervolume-based multiobjective optimization, presented at 2009 IEEE Int. Conf. Systems, Man and Cybernetics (SMC’2009), San Antonio, TX, USA, 2009, pp. 5220–5226.https://doi.org/10.1109/ICSMC.2009.5345983
38

Q. Z. Lin, J. Q. Li, Z. H. Du, J. Y. Chen and Z. Ming, A novel multi-objective particle swarm optimization with multiple search strategies, Eur. J. Oper. Res., vol. 247, no. 3, pp. 732–744, 2015.

39
K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, Scalable multi-objective optimization test problems, in Proc. 2002 Congress on Evolutionary Computation, Honolulu, HI, USA, 2002, pp. 825–830.
40
S. Huband, P. Hingston, L. Barone, and L. While, A review of multiobjective test problems and a scalable test problem toolkit, IEEE Trans. Evol. Comput., vol. 10, no. 5, pp. 477–506, 2006.https://doi.org/10.1109/TEVC.2005.861417
41
K. Deb and H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints, IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 577–601, 2014.https://doi.org/10.1109/TEVC.2013.2281535
42
S. X. Yang, M. Q. Li, X. H. Liu, and J. H. Zheng, A grid-based evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., vol. 17, no. 5, pp. 721–736, 2013.https://doi.org/10.1109/TEVC.2012.2227145
43
Q. F. Zhang and H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, 2007.https://doi.org/10.1109/TEVC.2007.892759
44
R. Cheng, Y. C. Jin, M. Olhofer, and B. Sendhoff, A reference vector guided evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., vol. 20, no. 5, pp. 773–791, 2016.https://doi.org/10.1109/TEVC.2016.2519378
45

E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca, Performance assessment of multiobjective optimizers: An analysis and review, IEEE Trans. Evol. Comput., vol. 7, no. 2, pp. 117–132, 2003.

46

E. Zitzler and L. Thiele, Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Trans. Evol. Comput., vol. 3, no. 4, pp. 257–271, 1999.

Complex System Modeling and Simulation
Pages 291-307

{{item.num}}

Comments on this article

Go to comment

< Back to all reports

Review Status: {{reviewData.commendedNum}} Commended , {{reviewData.revisionRequiredNum}} Revision Required , {{reviewData.notCommendedNum}} Not Commended Under Peer Review

Review Comment

Close
Close
Cite this article:
Cui Z, Zhao L, Zeng Y, et al. Novel PIO Algorithm with Multiple Selection Strategies for Many-Objective Optimization Problems. Complex System Modeling and Simulation, 2021, 1(4): 291-307. https://doi.org/10.23919/CSMS.2021.0023

1127

Views

66

Downloads

17

Crossref

0

Web of Science

18

Scopus

Altmetrics

Received: 06 August 2021
Revised: 04 September 2021
Accepted: 13 September 2021
Published: 31 December 2021
© The author(s) 2021

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).