Journal Home > Volume 3 , Issue 1

The aim of neurorestoratology is to restore, promote and maintain the integrity of impaired or lost neuronal functions and/or structures, using novel cell-based comprehensive neurorestorative strategies. The purpose of this review is to briefly introduce the developing history of neurorestoratology, which includes neurorestorative strategies, the basis of central nervous system neurorestorable theory, communities in the field of neurorestoratology, and journals related to neurorestoratology.


menu
Abstract
Full text
Outline
About this article

Developmental history of neurorestoratology

Show Author's information Hongyun Huang1,2( )Lin Chen3,4Paul R Sanberg5
Institute of Neurorestoratology, General Hospital of Armed Police Forces, Beijing, People’s Republic of China
Beijing Rehabilitation Hospital of Capital Medical University, Beijing, People’s Republic of China
Tsinghua University Yuquan Hospital, Beijing, People’s Republic of China
Medical Center, Tsinghua University, Beijing, People’s Republic of China
Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA

Abstract

The aim of neurorestoratology is to restore, promote and maintain the integrity of impaired or lost neuronal functions and/or structures, using novel cell-based comprehensive neurorestorative strategies. The purpose of this review is to briefly introduce the developing history of neurorestoratology, which includes neurorestorative strategies, the basis of central nervous system neurorestorable theory, communities in the field of neurorestoratology, and journals related to neurorestoratology.

Keywords: neurorestoration, neurorestorative strategies, CNS neurorestorable theory

References(127)

1.
International Association of Neurorestoratology. Beijing declaration of international association of neurorestoratology (IANR). Cell Transplant. 2009;18:487.
2.
Huang H, Chen L. Neurorestoratology – New discipline, new theory and new field. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2008;22: 439–445. Chinese.
3.
Dimitrijević MR, Kakulas BA, Vrbová G. Recent Achievements in Restorative Neurology. Basel, Switzerland: Karger Publishing House; 1986.
4.
Liberson WT. More on restorative neurosurgery. Electromyogr Clin Neurophysiol. 1987;27(6–7):323–325.
5.
Neural repair. Based on a discussion meeting. Kolimbari, Crete, March 1987. J Exp Biol. 1987;132:1–289.
6.
Keith MW, Peckham PH, Thrope GB, Buckett JR, Stroh KC, Menger V. Functional neuromuscular stimulation neuroprostheses for the tetraplegic hand. Clin Orthop Relat Res. 1988;(233):25–33.
7.
Fernández CI, Soto J, González O, González ME, Quijano Z. Neurorestorative techniques as experimental approach to Alzheimer disease treatment. Mol Chem Neuropathol. 1995;24(2–3):241–244.
8.
Jiménez-Jiménez FJ, Molina JA. [Neuroprotective and neurorestorative therapy in Parkinson’s disease]. Rev Neurol. 1997;25 Suppl 2:S185–S193. Spanish.
9.
Andres RH, Meyer M, Ducray AD, Widmer HR. Restorative neuroscience: concepts and perspectives. Swiss Med Wkly. 2008; 138(11–12):155–172.
10.
Huang H, Chen L, Sanberg P. Clinical achievements, obstacles, falsehoods, and future directions of cell-based neurorestoratology. Cell Transplant. 2012;21 Suppl 1:S3–S11.
11.
Dunnett SB. Chapter 55: neural transplantation. Handb Clin Neurol. 2010;95:885–912.
12.
Das GD. Neural transplantation: an historical perspective. Neurosci Biobehav Rev. 1990;14(4):389–401.
13.
Cajal SR. Degeneration and Regeneration of the Nervous System (Translated by May RM). London, UK: Oxford University Press; 1928.
14.
Greene HS. Compatibility and non-compatibility in tissue transplantation. In: Butler EG, editor. Biological Specificity and Growth. The Twelfth Symposium of the Society for the Study of Development and Growth. Princeton, NJ: Princeton University Press; 1955:177–194.
DOI
15.
Greene HS. The use of transplanted tissues in biology and histology. In: Bourne GH, editor. In Vivo Techniques in Histology. Baltimore, MD: Williams and Wilkins: 1967:80–112.
16.
Oppenheimer JM. Methods and techniques. In: Willier BH, Weiss PA, Hamburger V, editors. Analysis of Development. Philadelphia, PA: WB Saunders Co; 1955:25–38.
17.
Olson L, Seiger A. Brain tissue transplanted to the anterior chamber of the eye: 1. Fluorescence histochemistry of immature catecholamine and 5-hydroxytryptamine neurons reinnervating the rat iris. Z Zellforsch Mikrosk Anat. 1972;135(2):175–194.
18.
Perlow M, Freed W, Hoffer B, Seiger A, Olson L, Wyatt R. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science. 1979;204(4393):643–647.
19.
Björklund A, Stenevi U, Svendgaard N. Growth of transplanted monoaminergic neurones into the adult hippocampus along the perforant path. Nature. 1976;262(5571):787–790.
20.
David S, Aguayo AJ. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science. 1981;214(4523):931–933.
21.
Ramón-Cueto A, Nieto-Sampedro M. Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Exp Neurol. 1994;127(2):232–244.
22.
Ramón-Cueto A, Cordero MI, Santos-Benito FF, Avila J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron. 2000;25(2):425–435.
23.
Franklin RJ, Gilson JM, Franceschini IA, Barnett SC. Schwann cell-like myelination following transplantation of an olfactory bulb-ensheathing cell line into areas of demyelination in the adult CNS. Glia. 1996;17(3):217–224.
DOI
24.
Li Y, Field PM, Raisman G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science. 1997; 277(5334):2000–2002.
25.
Olson L, Backlund EO, Sedvall G, et al. Intrastriatal chromaffin grafts in experimental and clinical Parkinsonism: first impressions. In: Usdin E, Carlsson A, Dahlström A, Engel J, editors. Catecholamines. Part C. Neuropharmacology and Central Nervous System. Therapeutic Aspects (Neurology and Neurobiology Vol 8C). New York, NY: Alan R Liss, Inc.; 1984:195–201.
26.
Backlund EO, Granberg PO, Hamberger B, et al. Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials. J Neurosurg. 1985;62(2):169–173.
27.
Lindvall O, Brundin P, Widner H, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science. 1990;247(4942):574–577.
28.
Sawle GV, Bloomfield PM, Björklund A, et al. Transplantation of fetal dopamine neurons in Parkinson’s disease: PET [18F]6-L-fluorodopa studies in two patients with putaminal implants. Ann Neurol. 1992;31(2):166–173.
29.
Widner H, Tetrud J, Rehncrona S, et al. Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N Engl J Med. 1992;327(22):1556–1563.
30.
Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med. 2001;344(10):710–719.
31.
Kopyov OV, Jacques S, Lieberman A, Duma CM, Eagle KS. Safety of intrastriatal neurotransplantation for Huntington’s disease patients. Exp Neurol. 1998;149(1):97–108.
32.
Bachoud-Lévi AC, Rémy P, Nguyen JP, et al. Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet. 2000;356(9246):1975–1979.
33.
Rosser AE, Barker RA, Harrower T, et al. Unilateral transplantation of human primary fetal tissue in four patients with Huntington’s disease: NEST-UK safety report ISRCTN no 36485475. J Neurol Neurosurg Psychiatry. 2002;73(6):678–685.
34.
Huang H, Chen L, Sanberg P. Cell therapy from bench to bedside translation in CNS neurorestoratology era. Cell Med. 2010;1(1):15–46.
35.
Kondziolka D, Wechsler L, Goldstein S, et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology. 2000;55(4):565–569.
36.
Huang H, Chen L, Wang H, et al. Influence of patients’ age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J (Engl). 2003;116(10):1488–1491.
37.
Rabinovich SS, Seledtsov VI, Poveschenko OV, et al. Transplantation treatment of spinal cord injury patients. Biomed Pharmacother. 2003;57(9):428–433.
38.
Lima C, Pratas-Vital J, Escada P, Hasse-Ferreira A, Capucho C, Peduzzi JD. Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med. 2006;29(3):191–203; discussion 204–206.
39.
Mackay-Sim A, Féron F, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain. 2008;131(Pt 9):2376–2386.
40.
Chernykh ER, Stupak VV, Muradov GM, et al. Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bull Exp Biol Med. 2007;143(4):543–547.
41.
Cristante AF, Barros-Filho TE, Tatsui N, et al. Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord. 2009;47(10):733–738.
42.
Deda H, Inci MC, Kürekçi AE, et al. Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy. 2008;10(6):565–574.
43.
Geffner LF, Santacruz P, Izurieta M, et al. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant. 2008;17(12):1277–1293.
44.
Huang H, Xi H, Chen L, Zhang F, Liu Y. Long-term outcome of olfactory ensheathing cell therapy for patients with complete chronic spinal cord injury. Cell Transplant. 2012;21 Suppl 1:S23–S31.
45.
Moviglia GA, Fernandez Viña R, Brizuela JA, et al. Combined protocol of cell therapy for chronic spinal cord injury. Report on the electrical and functional recovery of two patients. Cytotherapy. 2006; 8(3):202–209.
46.
Park JH, Kim DY, Sung IY, et al. Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery. 2012;70(5):1238–1247.
47.
Wu J, Sun T, Ye C, Yao J, Zhu B, He H. Clinical observation of fetal olfactory ensheathing glia transplantation (OEGT) in patients with complete chronic spinal cord injury. Cell Transplant. 2012;21 Suppl 1:S33–S37.
48.
Burt RK, Loh Y, Cohen B, et al. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol. 2009;8(3):244–253.
49.
Fassas A, Passweg, JR, Anagnostopoulos A, et al; Autoimmune Disease Working Party of the EBMT (European Group for Blood and Marrow Transplantation). Hematopoietic stem cell transplantation for multiple sclerosis. A retrospective multicenter study. J Neurol. 2002;249(8):1088–1097.
50.
Kondziolka D, Steinberg GK, Wechsler L, et al. Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg. 2005;103(1):38–45.
51.
Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY; STARTING collaborators. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28(6):1099–1106.
52.
Huang H, Chen L, Xi H, et al. Fetal olfactory ensheathing cells transplantation in amyotrophic lateral sclerosis patients: a controlled pilot study. Clin Transplant. 2008;22(6):710–718.
53.
Martinez HR, Gonzalez-Garza MT, Moreno-Cuevas JE, Caro E, Gutierrez-Jimenez E, Segura JJ. Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy. 2009;11(1):26–34.
54.
Chen L, Huang H, Xi H, et al. Intracranial transplant of olfactory ensheathing cells in children and adolescents with cerebral palsy: a randomized controlled clinical trial. Cell Transplant. 2010;19(2):185–191.
55.
Huang H, Chen L, Xi H, et al. Olfactory ensheathing cells transplantation for central nervous system diseases in 1,255 patients. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2009;23(1):14–20. Chinese.
56.
Ma Y, Tang C, Chaly T, et al. Dopamine cell implantation in Parkinson’s disease: long-term clinical and (18)F-FDOPA PET outcomes. J Nucl Med. 2010;51(1):7–15.
57.
Chen L, Chen D, Xi HT, et al. Olfactory ensheathing cell neurorestorotherapy for amyotrophic lateral sclerosis patients: benefits from multiple transplantations. Cell Transplant. 2012;21 Suppl 1:S65–S77.
58.
Aldini J. Essai théoriqueet expérimental sur le galvanisme, avec une série d’expériences faites devant des commissaires del’Institut nationale de France, et en divers amphithéâtres anatomiques de Londres. Paris, France: Fournier Fils; 1804.
DOI
59.
Sironi VA. Origin and evolution of deep brain stimulation. Front Integr Neurosci. 2011;5:42.
60.
Bartholow R. Experimental investigations into the functions of the human brain. Am J Med Sci. 1874;134:305–313.
61.
Zimmermann M. Electrical stimulation of the human brain. Hum Neurobiol. 1982;1(4):227–229.
62.
Cicardo VH, Torino A. Release of potassium by the brain of the dog during electrical stimulation. Science. 1942;95(2477):625.
63.
Baba T, Kameda M, Yasuhara T, et al. Electrical stimulation of the cerebral cortex exerts antiapoptotic, angiogenic, and anti-inflammatory effects in ischemic stroke rats through phosphoinositide 3-kinase/Akt signaling pathway. Stroke. 2009;40(11):e598–e605.
64.
Rothwell JC. Plasticity in the human motor system. Folia Phoniatr Logop. 2010;62(4):153–157.
65.
Borgens RB, Blight AR, Murphy DJ, Stewart L. Transected dorsal column axons within the guinea pig spinal cord regenerate in the presence of an applied electric field. J Comp Neurol. 1986;250(2):168–180.
66.
Hamid S, Hayek R. Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur Spine J. 2008; 17(9):1256–1269.
67.
Li Q, Brus-Ramer M, Martin JH, McDonald JW. Electrical stimulation of the medullary pyramid promotes proliferation and differentiation of oligodendrocyte progenitor cells in the corticospinal tract of the adult rat. Neurosci Lett. 2010;479(2):128–133.
68.
Fehlings MG, Tator CH, Linden RD. The effect of direct-current field on recovery from experimental spinal cord injury. J Neurosurg. 1988; 68(5):781–792.
69.
Carmel JB, Berrol LJ, Brus-Ramer M, Martin JH. Chronic electrical stimulation of the intact corticospinal system after unilateral injury restores skilled locomotor control and promotes spinal axon outgrowth. J Neurosci. 2010;30(32):10918–10926.
70.
Polanía R, Paulus W, Nitsche MA. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp. 2012;33(10):2499–2508.
71.
Cerletti U. L’elettroshock. Riv Sper Freniatr Med Leg Alien Ment. 1940;64:209–310.
72.
Wallace BA, Ashkan K, Benabid AL. Deep brain stimulation for the treatment of chronic, intractable pain. Neurosurg Clin N Am. 2004; 15(3):343–357, vii.
73.
Minassian K, Jilge B, Rattay F, et al. Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials. Spinal Cord. 2004;42:401–416.
74.
von Wild K, Rabischong P, Brunelli G, Benichou M, Krishnan K. Computer added locomotion by implanted electrical stimulation in paraplegic patients (SUAW). Acta Neurochir Suppl. 2002;79: 99–104.
75.
Knotkova H, Cruciani RA. Non-invasive transcranial direct current stimulation for the study and treatment of neuropathic pain. Methods Mol Biol. 2010;617:505–515.
76.
Delgado JM, Hamlin H, Chapman WP. Technique of intracranial electrode implacement for recording and stimulation and its possible therapeutic value in psychotic patients. Confin Neurol. 1952;12(5–6):315–319.
77.
Bekhtereva NP, Grachev KV, Orlova AN, Iatsuksl. [Utilization of multiple electrodes implanted in the subcortical structure of the human brain for the treatment of hyperkinesis]. Zh Nevropatol Psikhiatr Im S S Korsakova. 1963;63:3–8. Russian.
78.
Dowling J. Deep brain stimulation: current and emerging indications. Mo Med. 2008;105(5):424–428.
79.
Coffey RJ. Deep brain stimulation devices: a brief technical history and review. Artif Organs. 2009;33(3):208–220.
80.
Polson MJ, Barker AT, Freeston IL. Stimulation of nerve trunks with time-varying magnetic fields. Med Biol Eng Comput. 1982;20(2):243–244.
81.
Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of the human motor cortex. Lancet. 1985;1(8437):1106–1107.
82.
Strafella AP, Ko JH, Monchi O. Therapeutic application of transcranial magnetic stimulation in Parkinson’s disease: the contribution of expectation. Neuroimage. 2006;31(4):1666–1672.
83.
Di Lazzaro V, Dileone M, Pilato F, et al. Repetitive transcranial magnetic stimulation for ALS. A preliminary controlled study. Neurosci Lett. 2006;408(2):135–140.
84.
Pape TL, Rosenow J, Lewis G. Transcranial magnetic stimulation: a possible treatment for TBI. J Head Trauma Rehabil. 2006;21(5):437–451.
85.
Lefaucheur JP. Stroke recovery can be enhanced by using repetitive transcranial magnetic stimulation (rTMS). Neurophysiol Clin. 2006;36(3):105–115.
86.
Zhang X, Mei Y, Liu C, Yu S. Effect of transcranial magnetic stimulation on the expression of c-Fos and brain-derived neurotrophic factor of the cerebral cortex in rats with cerebral infarct. J Huazhong Univ Sci Technolog Med Sci. 2007;27(4):415–418.
87.
Lefaucheur JP. The use of repetitive transcranial magnetic stimulation (rTMS) in chronic neuropathic pain. Neurophysiol Clin. 2006; 36(3):117–124.
88.
Tyvaert L, Houdayer E, Devanne H, Monaca C, Cassim F, Derambure P. The effect of repetitive transcranial magnetic stimulation on dystonia: a clinical and pathophysiological approach. Neurophysiol Clin. 2006; 36(3):135–143.
89.
Fregni F, Otachi PT, Do Valle A, et al. A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy. Ann Neurol. 2006;60(4):447–455.
90.
Nashold BS, Friedman H, Glenn JF, Grimes JH, Barry WF, Avery R. Electromicturition in paraplegia: implantation of a spinal neuroprosthesis. Proc Veterans Adm Spinal Cord Inj Conf. 1971;18:161–165.
91.
Collinger JL, Wodlinger B, Downey JE, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381(9866):557–564.
92.
Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006;442(7099):164–171.
93.
Onose G, Grozea C, Anghelescu A, et al. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up. Spinal Cord. 2012;50(8):599–608.
94.
Simeral JD, Kim SP, Black MJ, Donoghue JP, Hochberg LR. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J Neural Eng. 2011;8(2):025027.
95.
Cohen S, Levi-Montalcini R, Hamburger V. A nerve growth-stimulating factor isolated from sarcom as 37 and 180. Proc Natl Acad Sci U S A. 1954;40(10):1014–1018.
96.
Cohen S, Levi-Montalcini R. Purification and properties of a nerve growth-promoting factor isolated from mouse sarcoma 180. Cancer Res. 1957;17(1):15–20.
97.
Levi-Montalcini R, Hamburger V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J Exp Zool. 1951;116(2):321–361.
98.
Olson L, Backlund EO, Ebendal T, et al. Intraputaminal infusion of nerve growth factor to support adrenal medullary autografts in Parkinson’s disease. One-year follow-up of first clinical trial. Arch Neurol. 1991;48(4):373–381.
99.
Young W, DeCrescito V, Flamm ES, Blight AR, Gruner JA. Pharmacological therapy of acute spinal cord injury: studies of high dose methylprednisolone and naloxone. Clin Neurosurg. 1988;34: 675–697.
100.
Rosenberg MB, Friedmann T, Robertson RC, et al. Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science. 1988;242(4885):1575–1578.
101.
Emerich DF, Winn SR, Hantraye PM, et al. Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington’s disease. Nature. 1997;386(6623):395–399.
102.
Bloch J, Bachoud-Lévi AC, Déglon N, et al. Neuroprotective gene therapy for Huntington’s disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study. Hum Gene Ther. 2004;15(10):968–975.
103.
Tuszynski MH, Thal L, Pay M, et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med. 2005;11(5):551–555.
104.
Freeman LW, Wright TW. Experimental observations of concussion and contusion of the spinal cord. Ann Surg. 1953;137(4):433–443.
105.
Tachibana S, Okada K, Ohwada T, Yada K. [Posterior longitudinal myelotomy as a surgical treatment of acute cervical spinal cord injury]. No Shinkei Geka. 1984;12(2):183–188. Japanese.
106.
Carlsson CA, Sundin T. Reconstruction of efferent pathways to the urinary bladder in a paraplegic child. Rev Surg. 1967;24(1):73–76.
107.
Carlsson CA, Sundin T. Reconstruction of afferent and efferent nervous pathways to the urinary bladder in two paraplegic patients. Spine (Phila Pa 1976). 1980;5(1):37–41.
108.
Brackett EG. Rehabilitation of diseased and injured soldiers to the war. Am J Public Health (N Y). 1918;8(1):11–13.
109.
Ueda S. [Rehabilitation in neural diseases, with emphasis on apoplexy]. Sogo Igaku. 1963;20:107–120. Japanese.
110.
Luzhetskaia TA, Gorbunov FE, Knyshenko VI. [Neurorehabilitation]. Med Sestra. 1974;33(10):15–20. Russian.
111.
Huang H. Progress in cellular neurorestoratology: a brief introduction to the IANR supplement Issue. Cell Transplant. 2013;22 Suppl 1:S1–S3.
112.
Liu CN, Chambers WW. Intraspinal sprouting of dorsal root axons; development of new collaterals and preterminals following partial denervation of the spinal cord in the cat. AMA Arch Neurol Psychiatry. 1958;79(1):46–61.
113.
Bechtereva NP, Zontov VV. The relationship between certain forms of potentials and the variations in brain excitability (based on EEG, recorded during photic stimuli triggered by rhythmic brain potentials). Electroencephalogr Clin Neurophysiol. 1962;14:320–330.
114.
Raisman G. Neuronal plasticity in the septal nuclei of the adult rat. Brain Res. 1969;14(1):25–48.
115.
Bornstein MB, Raine CS. Experimental allergic encephalomyelitis: demyelination, remyelination and sclerosis in cultured mammalian CNS tissue. Trans Am Neurol Assoc. 1969;94:46–47.
116.
Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124(3):319–335.
117.
Young W, Flamm ES. Effect of high-dose corticosteroid therapy on blood flow, evoked potentials, and extracellular calcium in experimental spinal injury. J Neurosurg. 1982;57(5):667–673.
118.
Bechtereva NP, Bondartchuk AN, Smirnov VM, Meliutcheva LA, Shandurina AN. Method of electrostimulation of the deep brain structures in treatment of some chronic diseases. Confin Neurol. 1975; 37(1–3):136–140.
119.
Bendel O, Bueters T, von Euler M, Ove Ogren S, Sandin J, von Euler G. Reappearance of hippocampal CA1 neurons after ischemia is associated with recovery of learning and memory. J Cereb Blood Flow Metab. 2005;25(12):1586–1595.
120.
Croll RP, Baker MW. Axonal regeneration and sprouting following injury to the cerebral-buccal connective in the snail Achatina fulica. J Comp Neurol. 1990;300(2):273–286.
121.
Honmou O, Felts PA, Waxman SG, Kocsis JD. Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells. J Neurosci. 1996;16(10):3199–3208.
122.
Naftchi NE. Functional restoration of the traumatically injured spinal cord in cats by clonidine. Science. 1982;217(4564):1042–1044.
123.
Palladini G, Caronti B, Pozzessere G, et al. Treatment with cyclosporine A promotes axonal regeneration in rats submitted to transverse section of the spinal cord – II – Recovery of function. J Hirnforsch. 1996;31(1):145–153.
124.
Karussis D, Karageorgiou C, Vaknin-Dembinsky A, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67(10):1187–1194.
125.
Toft A, Scott DT, Barnett SC, Riddell JS. Electrophysiological evidence that olfactory cell transplants improve function after spinal cord injury. Brain. 2007;130(Pt 4):970–984.
126.
Yamamoto M, Raisman G, Li D, Li Y. Transplanted olfactory mucosal cells restore paw reaching function without regeneration of severed corticospinal tract fibres across the lesion. Brain Res. 2009;1303: 26–31.
127.
Huang H, Sharma HS. Neurorestoratology: one of the most promising new disciplines at the forefront of neuroscience and medicine. J Neurorestoratol. 2013;1:37–41.
Publication history
Copyright
Rights and permissions

Publication history

Published: 11 February 2015
Issue date: December 2015

Copyright

© 2015 The Author(s).

Rights and permissions

© 2015 Huang et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Return