Journal Home > Volume 2 , Issue 1
Background:

Neuroprotection is a modern therapeutic concept that has some useful outcomes discussed in the literature, including for traumatic brain injury (TBI).

Scope and study design:

This was a retrospective case-control study that was approved by the bioethics commission of the Bagdasar-Arseni Teaching Emergency Hospital, Bucharest, Romania. The aim of the study was to comparatively assess neurorestorative, including neurorehabilitative, outcomes obtained with or without Cerebrolysin®.

Materials and methods:

Nineteen cases treated with Cerebrolysin versus 28 who did not receive this drug were included in this study. All cases had a subacute or post-acute status after TBI and were hospitalized (only at their first admission) between January 2005 and December 2010 in the hospital’s NeuroRehabilitation Clinic Division. Epidemiological, clinical, paraclinical, and functional parameters were evaluated, using the: Functional Independence Measure (FIMTM), Glasgow Outcome Score (GOS), and Modified Rankin Scale.

Results:

Patients in the Cerebrolysin group had, on average, higher (although not statistically significant) FIM evolution values (36.53) than the control group (29.64) (P=0.174, 95% confidence interval: −8.0 to 21.8). The effect size assessed on the GOS was 2.1%. Additionally, the mean FIM value at admission of the Cerebrolysin group (45.79) was lower than that of controls (61.50; P=0.076).

Discussion and conclusion:

The clinical/functional evolution, comparatively evaluated in the studied inpatients, and taking into account the small sample and effect sizes – including for GOS – suggest that Cerebrolysin, correctly indicated and administered, may perhaps contribute to some improvement of post-TBI patients’ overall neurorestorative/rehabilitative outcomes; this given the short period (approximately 1 month) over which the medicine’s action was evaluated, the lower FIM mean value at admission in the Cerebrolysin group, and respectively that, for severe central nervous system lesions – including after TBI – and consequent conditions, it cannot yet be concluded that any therapeutic approaches, such as Cerebrolysin, can significantly improve post-injury outcomes.


menu
Abstract
Full text
Outline
About this article

A long-term, complex, unitary appraisal regarding neurorestorative, including neurorehabilitative, outcomes in patients treated with Cerebrolysin®, following traumatic brain injury

Show Author's information Cristina O Daia1,2Monica Haras1,2Tiberiu Spircu1Aurelian Anghelescu1,2Liliana Onose3Alexandru Vlad Ciurea1,2Anca Sanda Mihăescu2Gelu Onose1,2( )
Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
Bagdasar-Arseni Teaching Emergency Hospital, Bucharest, Romania
Metrorex – The Medical Service, Bucharest, Romania

Abstract

Background:

Neuroprotection is a modern therapeutic concept that has some useful outcomes discussed in the literature, including for traumatic brain injury (TBI).

Scope and study design:

This was a retrospective case-control study that was approved by the bioethics commission of the Bagdasar-Arseni Teaching Emergency Hospital, Bucharest, Romania. The aim of the study was to comparatively assess neurorestorative, including neurorehabilitative, outcomes obtained with or without Cerebrolysin®.

Materials and methods:

Nineteen cases treated with Cerebrolysin versus 28 who did not receive this drug were included in this study. All cases had a subacute or post-acute status after TBI and were hospitalized (only at their first admission) between January 2005 and December 2010 in the hospital’s NeuroRehabilitation Clinic Division. Epidemiological, clinical, paraclinical, and functional parameters were evaluated, using the: Functional Independence Measure (FIMTM), Glasgow Outcome Score (GOS), and Modified Rankin Scale.

Results:

Patients in the Cerebrolysin group had, on average, higher (although not statistically significant) FIM evolution values (36.53) than the control group (29.64) (P=0.174, 95% confidence interval: −8.0 to 21.8). The effect size assessed on the GOS was 2.1%. Additionally, the mean FIM value at admission of the Cerebrolysin group (45.79) was lower than that of controls (61.50; P=0.076).

Discussion and conclusion:

The clinical/functional evolution, comparatively evaluated in the studied inpatients, and taking into account the small sample and effect sizes – including for GOS – suggest that Cerebrolysin, correctly indicated and administered, may perhaps contribute to some improvement of post-TBI patients’ overall neurorestorative/rehabilitative outcomes; this given the short period (approximately 1 month) over which the medicine’s action was evaluated, the lower FIM mean value at admission in the Cerebrolysin group, and respectively that, for severe central nervous system lesions – including after TBI – and consequent conditions, it cannot yet be concluded that any therapeutic approaches, such as Cerebrolysin, can significantly improve post-injury outcomes.

Keywords: neuroprotection, brain trauma, Functional Independence Measure (FIM)

References(27)

1.
Teasdale GM, Bannan PE. Neuroprotection in head injury. In: Reilly P, Bullock R, editors. Head Injury. London: Chapman and Hall; 1997:423–438.
2.
Boake C, Francisco GE, Ivanhoe CB, Kothari S. Brain injury rehabilitation. In: Braddom RL, editor. Physical Medicine and Rehabilitation. Toronto: Saunders Company; 2000:1073–1116.
3.
Dawodu ST. Traumatic brain injury (TBI) – definition, epidemiology, pathophysiology [webpage on the Internet]. Medscape [updated March 6, 2013]. Available from: http://emedicine.medscape.com/article/326510. Accessed February 7, 2014.
4.
Kochanek PM, Clark RSB, Jenkins LW. TBI: pathobiology. In: Zasler ND, Katz DI, Zafonte RD, editors. Brain Injury Medicine: Principles and Practice. New York, NY: Demos Medical Publishing, LLC; 2007:81–96.
5.
Jia Z, Zhu H, Li J, Wang X, Misra H, Li Y. Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord. 2012;50(4):264–274.
6.
Youdim MB, Buccafusco JJ. Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci. 2005;26(1):27–35.
7.
Muresanu D, Buzoianu A, Florian SI, von Wild T. Towards a roadmap in brain protection and recovery. J Cell Mol Med. 2012;16(12):2861–2871.
8.
Hall ED, Springer JE. Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx. 2004;1:80–100.
9.
Onose G, Daia-Chendreanu C, Haras M, Ciurea AV, Anghelescu A. Traumatic brain injury: current endeavors and trends for neuroprotection and related recovery. Romanian Neurosurgery. 2011;18(1):11–30.
10.
Onose G, Mureşanu DF, Ciurea AV, et al. Neuroprotective and consequent neurorehabilitative clinical outcomes, in patients treated with the pleiotropic drug Cerebrolysin. J Med Life. 2009;2(4):350–361.
11.
Onose G, Haras M, Anghelescu A, et al. Integrative emphases on intimate, intrinsic propensity/pathological processes – causes of self recovery limits and also, subtle related targets for neuroprotectionl pleiotropicity/multimodal actions, by accessible therapeutic approaches – in spinal cord injuries. J Med Life. 2010;3(3):262–274.
12.
Muresanu D. Neuroplasticity and neurorecovery. In: Bornstein NM, editor. Stroke: Practical Guide for Clinicians. Basel: Karger Medical and Scientific Publishers; 2009:37–49.
DOI
13.
The Nobel Prize in Physiology or Medicine 1986 [webpage on the Internet]. Nobel Media; 2014. Available from: http://www.nobelprize.org/nobel_prizes/medicine/laureates/1986. Accessed February 7, 2014.
14.
Korsching S. The neurotrophic factor concept: a reexamination. J Neurosci. 1993;13(7):2739–2748.
15.
Deister C, Schmidt CE. Optimizing neurotrophic factor combinations for neurite outgrowth. J Neural Eng. 2006;3(2):172–179.
16.
Tatebayashi Y, Lee MH, Li L, Iqbal K, Grundke-Iqbal I. The dentate gyrus neurogenesis: a therapeutic target for Alzheimer’s disease. Acta Neuropathol. 2003;105:225–232.
17.
Schauer E, Wronski R, Patockova J, et al. Neuroprotection of cerebrolysin in tissue cultures models of brain ischemia: post lesion application indicates a wide therapeutic window. J Neural Transm. 2006;113:855–868.
18.
Damulin IV. [Neuroplasticity: main mechanisms and their clinical significance]. Zh Nevrol Psikhiatr Im S S Korsakova. 2009;109(4):4–8. Russian.
19.
Jianu DC, Muresanu DF, Bajenaru O, et al. Cerebrolysin adjuvant treatment in Broca’s aphasics following first acute ischemic stroke of the left middle cerebral artery. J Med Life. 2010;3(3):297–307.
20.
Muresanu D. Neuromodulation with pleiotropic and multimodal drugs – future approaches to treatment of neurological disorders. Acta Neurochir Suppl. 2010;106:291–294.
21.
Teasdale G, Jennette B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1972;304(7872):81–84. Available from: http://www.bt.cdc.gov/masscasualties/pdf/glasgow-coma-scale.pdf.
22.
Modified Rankin Scale (MRS). Internet Stroke Center. Available from: http://www.strokecenter.org/wp-content/uploads/2011/08/modified_rankin.pdf. Accessed February 7, 2014.
DOI
23.
Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet. 1975;1(7905):480–484.
24.
Armitage P, Berry G, Matthews JNS. Statistical Methods in Medical Research. 4th ed. Oxford: Blackwell Science; 2002;134–137.
DOI
25.
IBM SPSS Statistics [webpage on the Internet]. Bucharest: IBM Romania. Available from: http://www-01.ibm.com/software/ro/analytics/spss/products/statistics/. Accessed February 7, 2014. Romanian.
26.
Fleishman A. Significant P-values in small samples [webpage on the Internet]. Marlborough, MA: Allen Fleishman Biostatistics Inc.; 2012. Available from: http://allenfleishmanbiostatistics.com/Articles/2012/01/13-p-values-in-small-samples/. Accessed February 7, 2014.
27.
Granger C, Black T, Braun S. Quality and outcome measures for medical rehabilitation. In: Braddom RL. editor. Physical Medicine and Rehabilitation. 3rd ed. Philadelphia, PA: Saunders; 2007:159.
Publication history
Copyright
Rights and permissions

Publication history

Published: 26 June 2014
Issue date: December 2014

Copyright

© 2014 The Author(s).

Rights and permissions

© 2014 Daia et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Return