AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Editorial | Open Access

Unraveling the nexus between cellular senescence and malignant transformation: a paradigm shift in cancer research

Xiaoyu Song1,2,*Xiyan Liu1,2,*Qiqiang Guo1,2Hongde Xu1,2 ( )Liu Cao1,2 ( )
The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang 110122, China
Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang 110122, China

*These authors contributed equally to this work.

Show Author Information

References

1

Li X, Xu H, Xu C, Lin M, Song X, Yi F, et al. The yin-yang of DNA damage response: roles in tumorigenesis and cellular senescence. Int J Mol Sci. 2013; 14: 2431-48.

2

Cao L, Kim S, Xiao C, Wang RH, Coumoul X, Wang X, et al. ATM-Chk2-p53 activation prevents tumorigenesis at an expense of organ homeostasis upon BRCA1 deficiency. EMBO J. 2006; 25: 2167-77.

3

Cao L, Li W, Kim S, Brodie SG, Deng CX. Senescence, aging, and malignant transformation mediated by p53 in mice lacking the BRCA1 full-length isoform. Genes Dev. 2003; 17: 201-13.

4

Colucci M, Zumerle S, Bressan S, Gianfanti F, Troiani M, Valdata A, et al. Retinoic acid receptor activation reprograms senescence response and enhances anti-tumor activity of natural killer cells. Cancer Cell. 2024; 42: 646-61.e9.

5

Chibaya L, Murphy KC, DeMarco KD, Gopalan S, Liu H, Parikh CN, et al. EZH2 inhibition remodels the inflammatory senescence-associated secretory phenotype to potentiate pancreatic cancer immune surveillance. Nature Cancer. 2023; 4: 872-92.

6

Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008; 133: 1006-18.

7

Lawrenson K, Grun B, Benjamin E, Jacobs IJ, Dafou D, Gayther SA. Senescent fibroblasts promote neoplastic transformation of partially transformed ovarian epithelial cells in a three-dimensional model of early stage ovarian cancer. Neoplasia (New York, NY). 2010; 12: 317-25.

8

Han L, Long Q, Li S, Xu Q, Zhang B, Dou X, et al. Senescent stromal cells promote cancer resistance through SIRT1 loss-potentiated overproduction of small extracellular vesicles. Cancer Res. 2020; 80: 3383-98.

9

Guccini I, Revandkar A, D’Ambrosio M, Colucci M, Pasquini E, Mosole S, et al. Senescence reprogramming by TIMP1 deficiency promotes prostate cancer metastasis. Cancer Cell. 2021; 39: 68-82.e9.

10

Jeon HM, Kim JY, Cho HJ, Lee WJ, Nguyen D, Kim SS, et al. Tissue factor is a critical regulator of radiation therapy-induced glioblastoma remodeling. Cancer Cell. 2023; 41: 1480-97.e9.

11

Yamagishi R, Kamachi F, Nakamura M, Yamazaki S, Kamiya T, Takasugi M, et al. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Sci Immunol. 2022; 7: eabl7209.

12

Hwang HJ, Lee YR, Kang D, Lee HC, Seo HR, Ryu JK, et al. Endothelial cells under therapy-induced senescence secrete CXCL11, which increases aggressiveness of breast cancer cells. Cancer Lett. 2020; 490: 100-10.

13

Kim SS, Cao L, Li C, Xu X, Huber LJ, Chodosh LA, et al. Uterus hyperplasia and increased carcinogen-induced tumorigenesis in mice carrying a targeted mutation of the Chk2 phosphorylation site in BRCA1. Mol Cell Biol. 2004; 24: 9498-507.

14

Yizhak K, Aguet F, Kim J, Hess JM, Kübler K, Grimsby J, et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science (New York, N.Y.). 2019; 364: eaaw0726.

15

Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013; 14: R115.

16

Cheng Y, Cao L. Autophagy and tumor cell death. Adv Exp Med Biol. 2020; 1207: 339-49.

17

Liu J, Lu S, Zheng L, Guo Q, Cao L, Xiao Y, et al. ATM-CHK2-TRIM32 axis regulates ATG7 ubiquitination to initiate autophagy under oxidative stress. Cell Rep. 2023; 42: 113402.

18

Guo QQ, Wang SS, Zhang SS, Xu HD, Li XM, Guan Y, et al. ATM-CHK2-Beclin 1 axis promotes autophagy to maintain ROS homeostasis under oxidative stress. EMBO J. 2020; 39: e103111.

19

Guo R, Wang SS, Jiang XY, Zhang Y, Guo Y, Cui HY, et al. CHK2 promotes metabolic stress-induced autophagy through ULK1 phosphorylation. Antioxidants (Basel, Switzerland). 2022; 11: 1166.

20

Chen Y, Wu J, Zhai L, Zhang T, Yin H, Gao H, et al. Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell. 2024; 187: 294-311.e21.

21

Meng H, Cao Y, Qin J, Song X, Zhang Q, Shi Y, et al. DNA methylation, its mediators and genome integrity. Int J Biol Sci. 2015; 11: 604-17.

22

Yi F, Zhang Y, Wang Z, Wang Z, Li Z, Zhou T, et al. The deacetylation-phosphorylation regulation of SIRT2-SMC1A axis as a mechanism of antimitotic catastrophe in early tumorigenesis. Sci Adv. 2021; 7: eabe5518.

23

Xiao C, Sharp JA, Kawahara M, Davalos AR, Difilippantonio MJ, Hu Y, et al. The XIST noncoding RNA functions independently of BRCA1 in X inactivation. Cell. 2007; 128: 977-89.

24

Xu Q, Long Q, Zhu D, Fu D, Zhang B, Han L, et al. Targeting amphiregulin (AREG) derived from senescent stromal cells diminishes cancer resistance and averts programmed cell death 1 ligand (PD-L1)-mediated immunosuppression. Aging Cell. 2019; 18: e13027.

25

Jiang X, Loayza-Puch F. Roles of eIF5A in the immunosurveillance of cellular senescence. Cancer Biol Med. 2022; 19: 1523-7.

26

Haston S, Gonzalez-Gualda E, Morsli S, Ge J, Reen V, Calderwood A, et al. Clearance of senescent macrophages ameliorates tumorigenesis in KRAS-driven lung cancer. Cancer Cell. 2023; 41: 1242-60.e6.

27

Fan G, Yu B, Tang L, Zhu R, Chen J, Zhu Y, et al. TSPAN8(+) myofibroblastic cancer-associated fibroblasts promote chemoresistance in patients with breast cancer. Sci Transl Med. 2024; 16: eadj5705.

28

Saleh T, Bloukh S, Carpenter VJ, Alwohoush E, Bakeer J, Darwish S, et al. Therapy-induced senescence: an “old” friend becomes the enemy. Cancers. 2020; 12: 822.

29

Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V, et al. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood. 2009; 113: 3503-11.

30

Ruscetti M, Morris JPt, Mezzadra R, Russell J, Leibold J, Romesser PB, et al. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer. Cell. 2020; 181: 424-41.e21.

Cancer Biology & Medicine
Pages 541-546
Cite this article:
Song X, Liu X, Guo Q, et al. Unraveling the nexus between cellular senescence and malignant transformation: a paradigm shift in cancer research. Cancer Biology & Medicine, 2024, 21(7): 541-546. https://doi.org/10.20892/j.issn.2095-3941.2024.0157

103

Views

10

Downloads

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 28 April 2024
Accepted: 04 June 2024
Published: 25 July 2024
©2024 The Authors.

Creative Commons Attribution-NonCommercial 4.0 International License

Return