Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Pseudomyxoma peritonei (PMP) is an indolent malignant syndrome. The standard treatment for PMP is cytoreductive surgery combined with intraperitoneal hyperthermic chemotherapy (CRS + HIPEC). However, the high recurrence rate and latent clinical symptoms and signs are major obstacles to further improving clinical outcomes. Moreover, patients in advanced stages receive little benefit from CRS + HIPEC due to widespread intraperitoneal metastases. Another challenge in PMP treatment involves the progressive sclerosis of PMP cell-secreted mucus, which is often increased due to activating mutations in the gene coding for guanine nucleotide-binding protein alpha subunit (GNAS). Consequently, the development of other PMP therapies is urgently needed. Several immune-related therapies have shown promise, including the use of bacterium-derived non-specific immunogenic agents, radio-immunotherapeutic agents, and tumor cell-derived neoantigens, but a well-recognized immunotherapy has not been established. In this review the roles of GNAS mutations in the promotion of mucin secretion and disease development are discussed. In addition, the immunologic features of the PMP microenvironment and immune-associated treatments are discussed to summarize the current understanding of key features of the disease and to facilitate the development of immunotherapies.
Mittal R, Chandramohan A, Moran B. Pseudomyxoma peritonei: natural history and treatment. Int J Hyperthermia. 2017; 33: 511-9.
Werth R. Klinische und anatomische untersuchungen zur lehre von den bauchgeschwuelsten und der laparotomie. Arch Gynaecol Obstet. 1884; 24: 100-18.
Frankel E. Uber das sogenannte pseudomyxoma peritonei. Med Wochenschr. 1901; 48: 965-70.
Morera-Ocon FJ, Navarro-Campoy C. History of pseudomyxoma peritonei from its origin to the first decades of the twenty-first century. World J Gastrointest Surg. 2019; 11: 358-64.
Hissong E, Yantiss RK. The frontiers of appendiceal controversies: mucinous neoplasms and pseudomyxoma peritonei. Am J Surg Pathol. 2022; 46: e27-42.
Lin YL, Xu DZ, Li XB, Yan FC, Xu HB, Peng Z, et al. Consensuses and controversies on pseudomyxoma peritonei: a review of the published consensus statements and guidelines. Orphanet J Rare Dis. 2021; 16: 85.
Carr NJ, Cecil TD, Mohamed F, Sobin LH, Sugarbaker PH, González-Moreno S, et al. A consensus for classification and pathologic reporting of pseudomyxoma peritonei and associated appendiceal neoplasia: the results of the Peritoneal Surface Oncology Group International (PSOGI) modified Delphi process. Am J Surg Pathol. 2016; 40: 14-26.
Yang R, Su YD, Ma R, Li Y. Clinical epidemiology of peritoneal metastases in China: the construction of professional peritoneal metastases treatment centers based on the prevalence rate. Eur J Surg Oncol. 2023; 49: 173-8.
Smeenk RM, van Velthuysen ML, Verwaal VJ, Zoetmulder FA. Appendiceal neoplasms and pseudomyxoma peritonei: a population based study. Eur J Surg Oncol. 2008; 34: 196-201.
Patrick-Brown T, Carr NJ, Swanson DM, Larsen S, Mohamed F, Flatmark K. Estimating the prevalence of pseudomyxoma peritonei in Europe using a novel statistical method. Ann Surg Oncol. 2021; 28: 252-7.
Smeenk RM, Verwaal VJ, Zoetmulder FAN. Pseudomyxoma peritonei. Cancer Treat Rev. 2007; 33: 138-45.
Li XB, Ji ZH, Lin YL, Li Y. Research progress of CRS + HIPEC in treatment of pseudomyxoma peritonei. Med Recapitulate. 2019; 25: 915-21.
Li Y, Zhou YF, Liang H, Wang HQ, Hao JH, Zhu ZG, et al. Chinese expert consensus on cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal malignancies. World J Gastroenterol. 2016; 22: 6906-16.
Li Y, Xu HB, Peng Z, Cui SZ, Wu W, Liang H, et al. Expert consensus of cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy for pseudomyxoma peritonei. Zhonghua Yi Xue Za Zhi. 2019; 99: 1527-35.
Al-Azzawi M, Misdraji J, van Velthuysen MF, Shia J, Taggart MW, Yantiss RK, et al. Acellular mucin in pseudomyxoma peritonei of appendiceal origin: what is adequate sampling for histopathology? J Clin Pathol. 2020; 73: 220-2.
Misdraji J. Mucinous epithelial neoplasms of the appendix and pseudomyxoma peritonei. Mod Pathol. 2015; 28: S67-79.
Deraco M, De Simone M, Rossi CR, Cavaliere F, Di Filippo F, Vaira M, et al. An Italian Multicentric Phase Ⅱ study on peritonectomy and intra peritoneal hyperthermic perfusion (IPHP) to treat patients with pseudomyxoma peritonei. J Exp Clin Cancer Res. 2003; 22: 35-9.
Sugarbaker PH, Kern K, Lack E. Malignant pseudomyxoma peritonei of colonic origin. Natural history and presentation of a curative approach to treatment. Dis Colon Rectum. 1987; 30: 772-9.
Sugarbaker PH. New standard of care for appendiceal epithelial neoplasms and pseudomyxoma peritonei syndrome? Lancet Oncol. 2006; 7: 69-76.
Sugarbaker PH. Comprehensive management of peritoneal surface malignancy using cytoreductive surgery and perioperative intraperitoneal chemotherapy: the Washington Cancer Institute approach. Expert Opin Pharmacother. 2009; 10: 1965-77.
González-Moreno S, Sugarbaker PH. Right hemicolectomy does not confer a survival advantage in patients with mucinous carcinoma of the appendix and peritoneal seeding. Br J Surg. 2004; 91: 304-11.
Li Y, Zhou YF, Liang H, Wang HQ, Hao JH, Zhu ZG, et al. Expert consensus of cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy for peritoneal surface malignancies. Zhonghua Yi Xue Za Zhi. 2015; 42: 198-206.
Lin YL, Zhu JQ, Ma RQ, Meng W, Wang ZY, Li XB, et al. Whole-exome sequencing identifies mutation profile and mutation signature-based clustering associated with prognosis in appendiceal pseudomyxoma peritonei. Mol Cancer Res. 2024; 22: 70-81.
Lin YL, Ma R, Li Y. The biological basis and function of GNAS mutation in pseudomyxoma peritonei: a review. J Cancer Res Clin Oncol. 2020; 146: 2179-88.
Nishikawa G, Sekine S, Ogawa R, Matsubara A, Mori T, Taniguchi H, et al. Frequent GNAS mutations in low-grade appendiceal mucinous neoplasms. Br J Cancer. 2013; 108: 951-8.
Bradbury NA. Protein kinase-A-mediated secretion of mucin from human colonic epithelial cells. J Cell Physiol. 2000; 185: 408-15.
Jarry A, Merlin D, Hopfer U, Laboisse CL. Cyclic AMP-induced mucin exocytosis is independent of Cl- movements in human colonic epithelial cells (HT29-Cl.16E). Biochem J. 1994; 304: 675-8.
Velcich A, Augenlicht LH. Regulated expression of an intestinal mucin gene in HT29 colonic carcinoma cells. J Biol Chem. 1993; 268: 13956-61.
Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL. Secreted mucins in pseudomyxoma peritonei: pathophysiological significance and potential therapeutic prospects. Orphanet J Rare Dis. 2014; 9: 71.
Pillai K, Akhter J, Mekkawy A, Chua TC, Morris DL. Physical and chemical characteristics of mucin secreted by pseudomyxoma peritonei (PMP). Int J Med Sci. 2017; 14: 18-28.
Griffiths B, Matthews DJ, West L, Attwood J, Povey S, Swallow DM, et al. Assignment of the polymorphic intestinal mucin gene (MUC2) to chromosome 11p15. Ann Hum Genet. 1990; 54: 277-85.
Dilly AK, Honick BD, Lee YJ, Guo ZS, Zeh HJ, Bartlett DL, et al. Targeting G-protein coupled receptor-related signaling pathway in a murine xenograft model of appendiceal pseudomyxoma peritonei. Oncotarget. 2017; 8: 106888-900.
van Seuningen I, Pigny P, Perrais M, Porchet N, Aubert JP. Transcriptional regulation of the 11p15 mucin genes. Towards new biological tools in human therapy, in inflammatory diseases and cancer? Front Biosci. 2001; 6: D1216-34.
Nikonov AV, Kreibich G. Organization of translocon complexes in ER membranes. Biochem Soc Trans. 2003; 31: 1253-6.
Bansil R, Turner BS. The biology of mucus: composition, synthesis and organization. Adv Drug Deliv Rev. 2018; 124: 3-15.
Asker N, Axelsson MA, Olofsson SO, Hansson GC. Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono- and dimers to the Golgi apparatus. J Biol Chem. 1998; 273: 18857-63.
Perez-Vilar J, Olsen JC, Chua M, Boucher RC. pH-dependent intraluminal organization of mucin granules in live human mucous/goblet cells. J Biol Chem. 2005; 280: 16868-81.
Chen EY, Yang N, Quinton PM, Chin WC. A new role for bicarbonate in mucus formation. Am J Physiol Lung Cell Mol Physiol. 2010; 299: L542-9.
Song C, Chai Z, Chen S, Zhang H, Zhang X, Zhou Y. Intestinal mucus components and secretion mechanisms: what we do and do not know. Exp Mol Med. 2023; 55: 681-691.
Lin YL, Li Y. The biological synthesis and the function of mucin 2 in pseudomyxoma peritonei. Cancer Manag Res. 2021; 13: 7909-17.
Pajic P, Shen S, Qu J, May AJ, Knox S, Ruhl S, et al. A mechanism of gene evolution generating mucin function. Sci Adv. 2022; 8: eabm8757.
Bejarano L, Jordāo MJC, Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 2021; 11: 933-59.
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018; 24: 541-50.
Taki M, Abiko K, Ukita M, Murakami R, Yamanoi K, Yamaguchi K, et al. Tumor immune microenvironment during epithelial-mesenchymal transition. Clin Cancer Res. 2021; 27: 4669-79.
Schoenfeld AJ, Hellmann MD. Acquired resistance to immune checkpoint inhibitors. Cancer Cell. 2020; 37: 443-55.
Vesely MD, Zhang T, Chen L. Resistance mechanisms to anti-PD cancer immunotherapy. Annu Rev Immunol. 2022; 40: 45-74.
Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018; 131: 58-67.
Lucca LE, Dominguez-Villar M. Modulation of regulatory T cell function and stability by co-inhibitory receptors. Nat Rev Immunol. 2020; 20: 680-93.
Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 2014; 5: 75.
Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 2014; 211: 781-90.
Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021; 221: 107753.
Pan Y, Yu Y, Wang X, Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol. 2020; 11: 583084.
Xiang X, Wang J, Lu D, Xu X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther. 2021; 6: 75.
Grizzi F, Cananzi FCM, Battista S, Brambilla T, Qehajaj D, Chiriva-Internati M, et al. Immunohistochemical features of the pseudomyxoma peritonei microenvironment an opportunity for clinicians. Anal Quant Cytol. 2018; 40: 109-15.
Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003; 3: 721-32.
Andersson Y, Fleten KG, Abrahamsen TW, Reed W, Davidson B, Flatmark K. Anti-angiogenic treatment in pseudomyxoma peritonei-still a strong preclinical rationale. Cancers (Basel). 2021; 13: 2819.
Valenzuela-Molina F, Bura FI, Vázquez-Borrego MC, Granados-Rodríguez M, Rufián-Andujar B, Rufián-Peña S, et al. Intraoperative oxygen tension and redox homeostasis in Pseudomyxoma peritonei: a short case series. Front Oncol. 2023; 13: 1076500.
Kusamura S, Busico A, Conca E, Capone I, Agnelli L, Lorenzini D, et al. A2AR expression and immunosuppressive environment independent of KRAS and GNAS mutations in pseudomyxoma peritonei. Biomedicines. 2023; 11: 2049.
Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, et al. Immunity, hypoxia, and metabolism-the ménage à trois of cancer: implications for immunotherapy. Physiol Rev. 2020; 100: 1-102.
Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P, et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med. 2006; 203: 871-81.
Casazza A, Laoui D, Wenes M, Rizzolio S, Bassani N, Mambretti M, et al. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell. 2013; 24: 695-709.
Semino-Mora C, Liu H, McAvoy T, Nieroda C, Studeman K, Sardi A, et al. Pseudomyxoma peritonei: is disease progression related to microbial agents? A study of bacteria, MUC2 AND MUC5AC expression in disseminated peritoneal adenomucinosis and peritoneal mucinous carcinomatosis. Ann Surg Oncol. 2008; 15: 1414-23.
Sag D, Carling D, Stout RD, Suttles J. Adenosine 5’-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol. 2008; 181: 8633-41.
Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor cells. Nat Rev Cancer. 2013; 13: 739-52.
Li H, Han Y, Guo Q, Zhang M, Cao X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol. 2009; 182: 240-9.
Becher B, Tugues S, Greter M. GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity. 2016; 45: 963-73.
Kong YY, Fuchsberger M, Xiang SD, Apostolopoulos V, Plebanski M. Myeloid derived suppressor cells and their role in diseases. Curr Med Chem. 2013; 20: 1437-44.
Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012; 12: 253-68.
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009; 16: 183-94.
Rangarajan K, Chandrakumaran K, Dayal S, Mohamed F, Moran BJ, Cecil TD. The pre-operative neutrophil-lymphocyte ratio predicts overall and disease-free survival following cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) in patients with pseudomxyoma peritonei of appendiceal origin. Int J Hyperthermia. 2018; 34: 559-63.
Kusamura S, Baratti D, Hutanu I, Gavazzi C, Morelli D, Iusco DR, et al. The role of baseline inflammatory-based scores and serum tumor markers to risk stratify pseudomyxoma peritonei patients treated with cytoreduction (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). Eur J Surg Oncol. 2015; 41: 1097-105.
Chua TC, Chong CH, Liauw W, Zhao J, Morris DL. Inflammatory markers in blood and serum tumor markers predict survival in patients with epithelial appendiceal neoplasms undergoing surgical cytoreduction and intraperitoneal chemotherapy. Ann Surg. 2012; 256: 342-9.
Pesce S, Belgrano V, Greppi M, Carlomagno S, Squillario M, Barla A, et al. Different features of tumor-associated NK cells in patients with low-grade or high-grade peritoneal carcinomatosis. Front Immunol. 2019; 10: 1963.
Bao S, Darvishi M, H Amin A, Al-Haideri MT, Patra I, Kashikova K, et al. CXC chemokine receptor 4 (CXCR4) blockade in cancer treatment. J Cancer Res Clin Oncol. 2023; 149: 7945-68.
Isella C, Vaira M, Robella M, Bellomo SE, Picco G, Borsano A, et al. Improved outcome prediction for appendiceal pseudomyxoma peritonei by integration of cancer cell and stromal transcriptional profiles. Cancers (Basel). 2020; 12: 1495.
Lohani K, Shetty S, Sharma P, Govindarajan V, Thomas P, Loggie B. Pseudomyxoma peritonei: inflammatory responses in the peritoneal microenvironment. Ann Surg Oncol. 2014; 21: 1441-7.
Yoon CH, Kim MJ, Lee H, Kim RK, Lim EJ, Yoo KC, et al. PTTG1 oncogene promotes tumor malignancy via epithelial to mesenchymal transition and expansion of cancer stem cell population. J Biol Chem. 2012; 287: 19516-27.
Kuracha MR, Thomas P, Loggie BW, Govindarajan V. Patient-derived xenograft mouse models of pseudomyxoma peritonei recapitulate the human inflammatory tumor microenvironment. Cancer Med. 2016; 5: 711-9.
Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014; 124: 1853-67.
Shi X, Yang J, Deng S, Xu H, Wu D, Zeng Q, et al. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol. 2022; 15: 135.
Watabe T, Takahashi K, Pietras K, Yoshimatsu Y. Roles of TGF-β signals in tumor microenvironment via regulation of the formation and plasticity of vascular system. Semin Cancer Biol. 2023; 92: 130-8.
Otegbeye F, Ojo E, Moreton S, Mackowski N, Lee DA, de Lima M, et al. Inhibiting TGF-beta signaling preserves the function of highly activated, in vitro expanded natural killer cells in AML and colon cancer models. PLoS One. 2018; 13: e0191358.
Mamessier E, Sylvain A, Thibult ML, Houvenaeghel G, Jacquemier J, Castellano R, et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest. 2011; 121: 3609-22.
Moesta AK, Li XY, Smyth MJ. Targeting CD39 in cancer. Nat Rev Immunol. 2020; 20: 739-55.
Ghalamfarsa G, Kazemi MH, Raoofi Mohseni S, Masjedi A, Hojjat-Farsangi M, Azizi G, et al. CD73 as a potential opportunity for cancer immunotherapy. Expert Opin Ther Targets. 2019; 23: 127-42.
Xia C, Yin S, To KKW, Fu L. CD39/CD73/A2AR pathway and cancer immunotherapy. Mol Cancer. 2023; 22: 44.
Wang Y, Wang Y, Ren Y, Zhang Q, Yi P, Cheng C. Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Semin Cancer Biol. 2022; 86: 542-65.
Li L, Huang L, Ye H, Song SP, Bajwa A, Lee SJ, et al. Dendritic cells tolerized with adenosine A₂AR agonist attenuate acute kidney injury. J Clin Invest. 2012; 122: 3931-42.
Cekic C, Linden J. Purinergic regulation of the immune system. Nat Rev Immunol. 2016; 16: 177-92.
Zelenay S, van der Veen AG, Böttcher JP, Snelgrove KJ, Rogers N, Acton SE, et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell. 2015; 162: 1257-70.
Mahic M, Yaqub S, Johansson CC, Taskén K, Aandahl EM. FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol. 2006; 177: 246-54.
Snijdewint FG, Kaliński P, Wierenga EA, Bos JD, Kapsenberg ML. Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. J Immunol. 1993; 150: 5321-9.
Gatalica Z, Loggie B. COX-2 expression in pseudomyxoma peritonei. Cancer Lett. 2006; 244: 86-90.
Li Y, Fang M, Zhang J, Wang J, Song Y, Shi J, et al. Hydrogel dual delivered celecoxib and anti-PD-1 synergistically improve antitumor immunity. Oncoimmunology. 2016; 5: e1074374.
Choudry HA, Mavanur A, O’Malley ME, Zeh HJ, Guo Z, Bartlett DL. Chronic anti-inflammatory drug therapy inhibits gel-forming mucin production in a murine xenograft model of human pseudomyxoma peritonei. Ann Surg Oncol. 2012; 19: 1402-9.
Spratt JS, Adcock RA, Muskovin M, Sherrill W, McKeown J. Clinical delivery system for intraperitoneal hyperthermic chemotherapy. Cancer Res. 1980; 40: 256-60.
Foster JM, Sleightholm R, Patel A, Shostrom V, Hall B, Neilsen B, et al. Morbidity and mortality rates following cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy compared with other high-risk surgical oncology procedures. JAMA Netw Open. 2019; 2: e186847.
Chua TC, Moran BJ, Sugarbaker PH, Levine EA, Glehen O, Gilly FN, et al. Early- and long-term outcome data of patients with pseudomyxoma peritonei from appendiceal origin treated by a strategy of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J Clin Oncol. 2012; 30: 2449-56.
Adams S, Othus M, Patel SP, Miller KD, Chugh R, Schuetze SM, et al. A multicenter phase Ⅱ trial of ipilimumab and nivolumab in unresectable or metastatic metaplastic breast cancer: cohort 36 of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART, SWOG S1609). Clin Cancer Res. 2022; 28: 271-8.
Patel SP, Guadarrama E, Chae YK, Dennis MJ, Powers BC, Liao CY, et al. SWOG 1609 cohort 48: anti-CTLA-4 and anti-PD-1 for advanced gallbladder cancer. Cancer. 2024; https://doi.org/10.1002/cncr.35243.
Wagner MJ, Othus M, Patel SP, Ryan C, Sangal A, Powers B, et al. Multicenter phase Ⅱ trial (SWOG S1609, cohort 51) of ipilimumab and nivolumab in metastatic or unresectable angiosarcoma: a substudy of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART). J Immunother Cancer. 2021; 9: e002990.
Patel SP, Mayerson E, Chae YK, Strosberg J, Wang J, Konda B, et al. A phase Ⅱ basket trial of Dual Anti-CTLA-4 and Anti-PD-1 Blockade in Rare Tumors (DART) SWOG S1609: high-grade neuroendocrine neoplasm cohort. Cancer. 2021; 127: 3194-201.
Tano T, Okamoto M, Kan S, Nakashiro K, Shimodaira S, Yamashita N, et al. Growth inhibition and apoptosis by an active component of OK-432, a streptococcal agent, via Toll-like receptor 4 in human head and neck cancer cell lines. Oral Oncol. 2012; 48: 678-85.
Fujimoto T, Duda RB, Szilvasi A, Chen X, Mai M, O’Donnell MA. Streptococcal preparation OK-432 is a potent inducer of IL-12 and a T helper cell 1 dominant state. J Immunol. 1997; 158: 5619-26.
Fukuma K, Matsuura K, Shibata S, Nakahara K, Fujisaki S, Maeyama M. Pseudomyxoma peritonei: effect of chronic continuous immunotherapy with a streptococcal preparation, OK-432 after surgery. Acta Obstet Gynecol Scand. 1986; 65: 133-7.
Tsukagoshi S, Sakurai Y, Sato H, Akiba TSS. Tumor-inhibitory effect of a streptococcal preparation (NSC-B116209). Cancer Chemother Rep. 1972; 56: 9-17.
Li X, Bukawa H, Hirota M, Tsuyuki Y, Omura S, Fujita K. Novel OK-432-conjugated tumor vaccines induce tumor-specific immunity against murine tongue cancer. J Dent Res. 2003; 82: 636-40.
Wilder RB, DeNardo GL, DeNardo SJ. Radioimmunotherapy: recent results and future directions. J Clin Oncol. 1996; 14: 1383-400.
Wei S, Li C, Li M, Xiong Y, Jiang Y, Sun H, et al. Radioactive iodine-125 in tumor therapy: advances and future directions. Front Oncol. 2021; 11: 717180.
Kairemo KJ, Jekunen AP, Bondestam S, Korppi-Tommola ET, Savolainen S, Paavonen T. Detection of pseudomyxoma peritonei by radioimmunohistochemistry and radioimmunoscintigraphy. Cancer Biother Radiopharm. 1996; 11: 325-34.
Laitinen JO, Kairemo KJ, Jekunen AP, Korppi-Tommola T, Tenhunen M. The effect of three dimensional activity distribution on the dose planning of radioimmunotherapy for patients with advanced intraperitoneal pseudomyxoma. Cancer. 1997; 80: 2545-52.
Laitinen JO, Tenhunen M, Kairemo KJ. Absorbed dose estimates for 131I-labelled monoclonal antibody therapy in patients with intraperitoneal pseudomyxoma. Nucl Med Commun. 2000; 21: 355-60.
Guadagni F, Roselli M, Amato T, Cosimelli M, Perri P, Casale V, et al. CA 72-4 measurement of tumor-associated glycoprotein 72 (TAG-72) as a serum marker in the management of gastric carcinoma. Cancer Res. 1992; 52: 1222-7.
Boudousq V, Ricaud S, Garambois V, Bascoul-Mollevi C, Boutaleb S, Busson M, et al. Brief intraperitoneal radioimmunotherapy of small peritoneal carcinomatosis using high activities of noninternalizing 125I-labeled monoclonal antibodies. J Nucl Med. 2010; 51: 1748-55.
Rondon A, Schmitt S, Briat A, Ty N, Maigne L, Quintana M, et al. Pretargeted radioimmunotherapy and SPECT imaging of peritoneal carcinomatosis using bioorthogonal click chemistry: probe selection and first proof-of-concept. Theranostics. 2019; 9: 6706-18.
Jain M, Gupta S, Kaur S, Ponnusamy MP, Batra SK. Emerging trends for radioimmunotherapy in solid tumors. Cancer Biother Radiopharm. 2013; 28: 639-50.
Deshayes E, Kraeber-Bodéré F, Vuillez JP, Bardiès M, Teulon I, Pouget JP. Tandem myeloablative 131I-rituximab radioimmunotherapy and high-dose chemotherapy in refractory/relapsed non-Hodgkin lymphoma patients. Immunotherapy. 2013; 5: 1283-6.
Eskian M, Khorasanizadeh M, Isidori A, Rezaei N. Radioimmunotherapy-based conditioning regimen prior to autologous stem cell transplantation in non-Hodgkin lymphoma. Int J Hematol Oncol. 2018; 7: Ijh01.
Adamik J, Butterfield LH. What’s next for cancer vaccines. Sci Transl Med. 2022; 14: eabo4632.
Peng M, Mo Y, Wang Y, Wu P, Zhang Y, Xiong F, et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer. 2019; 18: 128.
Graham JB, Graham R. Pseudomyxoma peritonei treated with autogenous vaccine. Clin Obstet Gynecol. 1969; 12: 955-7.
Flatmark K, Torgunrud A, Fleten KG, Davidson B, Juul HV, Mensali N, et al. Peptide vaccine targeting mutated GNAS: a potential novel treatment for pseudomyxoma peritonei. J Immunother Cancer. 2021; 9: e003109.
Nummela P, Saarinen L, Thiel A, Järvinen P, Lehtonen R, Lepistö A, et al. Genomic profile of pseudomyxoma peritonei analyzed using next-generation sequencing and immunohistochemistry. Int J Cancer. 2014; 136: E282-9.
Lin YL, Zhang J, Yan FC, Jiang X, Ma R, Yang ZR, et al. Establishment of patient-derived xenograft model of peritoneal mucinous carcinomatosis with signet ring cells and in vivo study on the efficacy and toxicity of intraperitoneal injection of 5-fluorouracil. Cancer Med. 2020; 9: 1104-14.
Weitz J, Montecillo Gulay KC, Hurtado de Mendoza T, Tiriac H, Baumgartner J, Kelly K, et al. Culture and imaging of ex vivo organotypic pseudomyxoma peritonei tumor slices from resected human tumor specimens. J Vis Exp. 2022; 190: e64620. https://doi.org/10.3791/64620.
Alakus H, Babicky ML, Ghosh P, Yost S, Jepsen K, Dai Y, et al. Genome-wide mutational landscape of mucinous carcinomatosis peritonei of appendiceal origin. Genome Med. 2014; 6: 43.
Pillai K, Akhter J, Chua TC, Morris DL. Potential mucolytic agents for mucinous ascites from pseudomyxoma peritonei. Invest New Drugs. 2012; 30: 2080-6.
Wen HK, Valle SJ, Morris DL. Bromelain and acetylcysteine (BromAc(®)): a novel approach to the treatment of mucinous tumours. Am J Cancer Res. 2023; 13: 1522-32.
Pillai K, Akhter J, Chua TC, Morris DL. A formulation for in situ lysis of mucin secreted in pseudomyxoma peritonei. Int J Cancer. 2014; 134: 478-86.
Creative Commons Attribution-NonCommercial 4.0 International License