AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.1 MB)
Submit Manuscript AI Chat Paper
Show Outline
Show full outline
Hide outline
Show full outline
Hide outline
Review | Open Access

Expert opinion on translational research for advanced glioblastoma treatment

Xiaoteng CuiYunfei WangJunhu ZhouQixue WangChunsheng Kang ( )
Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
Show Author Information


Malignant gliomas are known to be one of the most difficult diseases to diagnose and treat because of the infiltrative growth pattern, rapid progression, and poor prognosis. Many antitumor drugs are not ideal for the treatment of gliomas due to the blood-brain barrier. Temozolomide(TMZ) is a DNA alkylating agent that can cross the blood-brain barrier. As the only first-line chemotherapeutic drug for malignant gliomas at present, TMZ is widely utilized to provide a survival benefit; however, some patients are inherently insensitive to TMZ. In addition, patients could develop acquired resistance during TMZ treatment, which limits antitumor efficacy. To clarify the mechanism underlying TMZ resistance, numerous studies have provided multilevel solutions, such as improving the effective concentration of TMZ in tumors and developing novel small molecule drugs. This review discusses the in-depth mechanisms underlying TMZ drug resistance, thus aiming to provide possibilities for the establishment of personalized therapeutic strategies against malignant gliomas and the accelerated development and transformation of new targeted drugs.



Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the united states in 2015-2019. Neuro Oncol. 2022; 24(Suppl 5): v1-95.


Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008; 359: 492-507.


Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021; 23: 1231-51.


Stylli SS. Novel treatment strategies for glioblastoma. Cancers(Basel). 2020; 12: 2883.


Chen C, Xu T, Lu Y, Chen J, Wu S. The efficacy of temozolomide for recurrent glioblastoma multiforme. Eur J Neurol. 2013; 20: 223-30.


Sarkaria JN, Kitange GJ, James CD, Plummer R, Calvert H, Weller M, et al. Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res. 2008; 14: 2900-8.


Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase Ⅲ study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009; 10: 459-66.


Perry JR, Laperriere N, O'Callaghan CJ, Brandes AA, Menten J, Phillips C, et al. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017; 376: 1027-37.


Stevens MF, Hickman JA, Langdon SP, Chubb D, Vickers L, Stone R, et al. Antitumor activity and pharmacokinetics in mice of8-carbamoyl-3-methyl-imidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one(CCRG 81045; M & B 39831), a novel drug with potential as analternative to dacarbazine. Cancer Res. 1987; 47: 5846-52.


Cohen MH, Johnson JR, Pazdur R. Food and drug administration drug approval summary: temozolomide plus radiation therapy for the treatment of newly diagnosed glioblastoma multiforme. Clin Cancer Res. 2005; 11(19 Pt 1): 6767-71.


Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016; 3: 198-210.


Serwer LP, James CD. Challenges in drug delivery to tumors of the central nervous system: an overview of pharmacological and surgical considerations. Adv Drug Deliv Rev. 2012; 64: 590-7.


Knisely JP, Baehring JM. A silver lining on the horizon for glioblastoma. Lancet Oncol. 2009; 10: 434-5.


Huse JT, Holland EC. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer. 2010; 10: 319-31.


Fabian D, Guillermo Prieto Eibl MDP, Alnahhas I, Sebastian N, Giglio P, Puduvalli V, et al. Treatment of glioblastoma (GBM) with the addition of tumor-treating fields (TTF): a review. Cancers(Basel). 2019; 11: 174.


Hu H, Mu Q, Bao Z, Chen Y, Liu Y, Chen J, et al. Mutational landscape of secondary glioblastoma guides met-targeted trial in brain tumor. Cell. 2018; 175: 1665-78.e18.


Diaz RJ, Ali S, Qadir MG, De La Fuente MI, Ivan ME, Komotar RJ. The role of bevacizumab in the treatment of glioblastoma. J Neurooncol. 2017; 133: 455-67.


O'Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al. A single dose of peripherally infused EGFRvⅢ-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017; 9: eaaa0984.


Britten CD, Rowinsky EK, Baker SD, Agarwala SS, Eckardt JR, Barrington R, et al. A phase I and pharmacokinetic study of temozolomide and cisplatin in patients with advanced solid malignancies. Clin Cancer Res. 1999; 5: 1629-37.


Fuchs RP, Isogawa A, Paulo JA, Onizuka K, Takahashi T, Amunugama R, et al. Crosstalk between repair pathways elicits double-strand breaks in alkylated DNA and implications for the action of temozolomide. Elife. 2021; 10: e69544.


Hirose Y, Berger MS, Pieper RO. p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells. Cancer Res. 2001; 61: 1957-63.


Shen HY, Tang HL, Zheng YH, Feng J, Dong BX, Chen XQ. The PARP1 inhibitor niraparib represses DNA damage repair and synergizes with temozolomide for antimyeloma effects. J Oncol. 2022; 2022: 2800488.


Alonso MM, Gomez-Manzano C, Bekele BN, Yung WKA, Fueyo J. Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter. Cancer Res. 2007; 67: 11499-504.


Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018; 18: 452-64.


Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol. 1999; 39: 361-98.


Munoz JL, Walker ND, Scotto KW, Rameshwar P. Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells. Cancer Lett. 2015; 367: 69-75.


Demeule M, Shedid D, Beaulieu E, Del Maestro RF, Moghrabi A, Ghosn PB, et al. Expression of multidrug-resistance P-glycoprotein(MDR1) in human brain tumors. Int J Cancer. 2001; 93: 62-6.


Yang E, Wang L, Jin W, Liu X, Wang Q, Wu Y, et al. PTRF/Cavin-1enhances chemo-resistance and promotes temozolomide efflux through extracellular vesicles in glioblastoma. Theranostics. 2022; 12: 4330-47.


Roos WP, Batista LF, Naumann SC, Wick W, Weller M, Menck CFM, et al. Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene. 2007; 26: 186-97.


Atkins RJ, Ng W, Stylli SS, Hovens CM, Kaye AH. Repair mechanisms help glioblastoma resist treatment. J Clin Neurosci. 2015; 22: 14-20.


Yip S, Miao J, Cahill DP, Iafrate AJ, Aldape K, Nutt CL, et al. MSH6mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin Cancer Res. 2009; 15: 4622-9.


Erasimus H, Gobin M, Niclou S, Van Dyck E. DNA repair mechanisms and their clinical impact in glioblastoma. Mutat Res Rev Mutat Res. 2016; 769: 19-35.


Zharkov DO. Base excision DNA repair. Cell Mol Life Sci. 2008; 65: 1544-65.


Wu S, Li X, Gao F, de Groot JF, Koul D, Yung WKA. PARP-mediated PARylation of MGMT is critical to promote repair of temozolomide-induced O6-methylguanine DNA damage in glioblastoma. Neuro Oncol. 2021; 23: 920-31.


Sim HW, Galanis E, Khasraw M. PARP inhibitors in glioma: a review of therapeutic opportunities. Cancers (Basel). 2022; 14: 1003.


Choi S, Yu Y, Grimmer MR, Wahl M, Chang SM, Costello JF. Temozolomide-associated hypermutation in gliomas. Neuro Oncol. 2018; 20: 1300-9.


Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, et al. Inactivation of the DNA-repair gene MGMTand the clinical response of gliomas to alkylating agents. N Engl JMed. 2000; 343: 1350-4.


Butler M, Pongor L, Su YT, Xi L, Raffeld M, Quezado M, et al. MGMT status as a clinical biomarker in glioblastoma. Trends Cancer. 2020; 6: 380-91.


Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005; 352: 997-1003.


Friedman HS, McLendon RE, Kerby T, Dugan M, Bigner SH, Henry AJ, et al. DNA mismatch repair and O6-alkylguanineDNA alkyltransferase analysis and response to Temodal in newly diagnosed malignant glioma. J Clin Oncol. 1998; 16: 3851-7.


Wu P, Cai J, Chen Q, Han B, Meng X, Li Y, et al. Lnc-TALCpromotes O6-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with mi R-20b-3p. Nat Commun. 2019; 10: 2045.


Zhao J, Yang S, Cui X, Wang Q, Yang E, Tong F, et al. A novel compound EPIC-0412 reverses temozolomide resistance via inhibiting DNA repair/MGMT in glioblastoma. Neuro Oncol. 2022; noac242.


Chai R, Li G, Liu Y, Zhang K, Zhao Z, Wu F, et al. Predictive value of MGMT promoter methylation on the survival of TMZ treated IDH-mutant glioblastoma. Cancer Biol Med. 2021; 18: 272-82.


Rosch L, Herter S, Najafi S, Ridinger J, Peterziel H, Cinatl J, et al. ERBB and P-glycoprotein inhibitors break resistance in relapsed neuroblastoma models through P-glycoprotein. Mol Oncol. 2023; 17: 37-58.


Hanna C, Kurian KM, Williams K, Watts C, Jackson A, Carruthers R, et al. Pharmacokinetics, safety, and tolerability of olaparib and temozolomide for recurrent glioblastoma: results of the phase IOPARATIC trial. Neuro Oncol. 2020; 22: 1840-50.


Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013; 155: 462-77.


Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010; 17: 98-110.


Wang Z, Bao Z, Yan W, You G, Wang Y, Li X, et al. Isocitrate dehydrogenase 1 (IDH1) mutation-specific micro RNA signature predicts favorable prognosis in glioblastoma patients with IDH1wild type. J Exp Clin Cancer Res. 2013; 32: 59.


Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, et al. Glioma groups based on 1p/19q, IDH, and TERTpromoter mutations in tumors. N Engl J Med. 2015; 372: 2499-508.


Subbiah V, Puzanov I, Blay JY, Chau I, Lockhart AC, Raje NS, et al. Pan-cancer efficacy of vemurafenib in BRAFv600-mutant nonmelanoma cancers. Cancer Discov. 2020; 10: 657-63.


Reifenberger G, Hentschel B, Felsberg J, Schackert G, Simon M, Schnell O, et al. Predictive impact of MGMT promoter methylation in glioblastoma of the elderly. Int J Cancer. 2012; 131: 1342-50.


Mo Z, Xin J, Chai R, Woo PYM, Chan DTM, Wang J. Epidemiological characteristics and genetic alterations in adult diffuse glioma in East Asian populations. Cancer Biol Med. 2022; 19: 1440-59.


Newick K, O'Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med. 2017; 68: 139-52.


Reck M, Remon J, Hellmann MD. First-line immunotherapy for non-small-cell lung cancer. J Clin Oncol. 2022; 40: 586-97.


Carlino MS, Larkin J, Long GV. Immune checkpoint inhibitors in melanoma. Lancet. 2021; 398: 1002-14.


Lee EQ. Immune checkpoint inhibitors in GBM. J Neurooncol. 2021; 155: 1-11.


Popovici-Muller J, Lemieux RM, Artin E, Saunders JO, Salituro FG, Travins J, et al. Discovery of AG-120 (ivosidenib): a first-in-class mutant IDH1 inhibitor for the treatment of IDH1 mutant cancers. ACS Med Chem Lett. 2018; 9: 300-5.


Konteatis Z, Artin E, Nicolay B, Straley K, Padyana AK, Jin L, et al. Vorasidenib (AG-881): a first-in-class, brain-penetrant dual inhibitor of mutant IDH1 and 2 for treatment of glioma. ACS Med Chem Lett. 2020; 11: 101-7.


Tong L, Li J, Li Q, Wang X, Medikonda R, Zhao T, et al. ACT001reduces the expression of PD-L1 by inhibiting the phosphorylation of STAT3 in glioblastoma. Theranostics. 2020; 10: 5943-56.


Wang Q, Liu X, Zhou J, Yang C, Wang G, Tan Y, et al. The CRISPR-Cas13a gene-editing system induces collateral cleavage of RNA in glioma cells. Adv Sci (Weinh). 2019; 6: 1901299.


Seliger C, Luber C, Gerken M, Schaertl J, Proescholdt M, Riemenschneider MJ, et al. Use of metformin and survival of patients with high-grade glioma. Int J Cancer. 2019; 144: 273-80.


Ding C, Yi X, Wu X, Bu X, Wang D, Wu Z, et al. Exosome-mediated transfer of circ RNA Circ NFIX enhances temozolomide resistance in glioma. Cancer Lett. 2020; 479: 1-12.


Li Z, Meng X, Wu P, Zha C, Han B, Li L, et al. Glioblastoma cellderived lnc RNA-containing exosomes induce microglia to produce complement C5, promoting chemotherapy resistance. Cancer Immunol Res. 2021; 9: 1383-99.


Wei QT, Liu BY, Ji HY, Lan YF, Tang WH, Zhou J, et al. Exosomemediated transfer of MIF confers temozolomide resistance by regulating TIMP3/PI3k/AKT axis in gliomas. Mol Ther Oncolytics. 2021; 22: 114-28.


Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y. Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res. 2019; 38: 166.


Lin K, Gueble SE, Sundaram RK, Huseman ED, Bindra RS, Herzon SB. Mechanism-based design of agents that selectively target drugresistant glioma. Science. 2022; 377: 502-11.


Tomaszewski W, Sanchez-Perez L, Gajewski TF, Sampson JH. Brain tumor microenvironment and host state: implications for immunotherapy. Clin Cancer Res. 2019; 25: 4202-10.


Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014; 344: 1396-401.


Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019; 178: 835-49.e21.


Muller S, Kohanbash G, Liu SJ, Alvarado B, Carrera D, Bhaduri A, et al. Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol. 2017; 18: 234.


Chen Z, Feng X, Herting CJ, Garcia VA, Nie K, Pong WW, et al. Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res. 2017; 77: 2266-78.


Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol. 2014; 6: a021857.


Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, KantariMimoun C, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci U S A. 2018; 115: E4041-50.


Fang Y, He Y, Wu C, Zhang M, Gu Z, Zhang J, et al. Magnetismmediated targeting hyperthermia-immunotherapy in “cold” tumor with CSF1R inhibitor. Theranostics. 2021; 11: 6860-72.


Rao R, Han R, Ogurek S, Xue C, Wu LM, Zhang L, et al. Glioblastoma genetic drivers dictate the function of tumorassociated macrophages/microglia and responses to CSF1Rinhibition. Neuro Oncol. 2022; 24: 584-97.


Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells?Cell Stem Cell. 2015; 16: 225-38.


Vlashi E, Pajonk F. Cancer stem cells, cancer cell plasticity and radiation therapy. Semin Cancer Biol. 2015; 31: 28-35.


Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev. 2015; 29: 1203-17.


Boyd NH, Tran AN, Bernstock JD, Etminan T, Jones AB, Gillespie GY, et al. Glioma stem cells and their roles within the hypoxic tumor microenvironment. Theranostics. 2021; 11: 665-83.


Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009; 15: 501-13.


Torres A, Erices JI, Sanchez F, Ehrenfeld P, Turchi L, Virolle T, et al. Extracellular adenosine promotes cell migration/invasion of glioblastoma stem-like cells through A3 adenosine receptor activation under hypoxia. Cancer Lett. 2019; 446: 112-22.


Gargiulo G. Next-generation in vivo modeling of human cancers. Front Oncol. 2018; 8: 429.


Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000; 25: 55-7.


Rahme GJ, Luikart BW, Cheng C, Israel MA. A recombinant lentiviral PDGF-driven mouse model of proneural glioblastoma. Neuro Oncol. 2018; 20: 332-42.


Golebiewska A, Hau AC, Oudin A, Stieber D, Yabo YA, Baus V, et al. Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology. Acta Neuropathol. 2020; 140: 919-49.


Goranci-Buzhala G, Mariappan A, Gabriel E, Ramani A, RicciVitiani L, Buccarelli M, et al. Rapid and efficient invasion assay of glioblastoma in human brain organoids. Cell Rep. 2020; 31: 107738.


Tang M, Xie Q, Gimple RC, Zhong Z, Tam T, Tian J, et al. Threedimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Res. 2020; 30: 833-53.

Cancer Biology & Medicine
Pages 344-352
Cite this article:
Cui X, Wang Y, Zhou J, et al. Expert opinion on translational research for advanced glioblastoma treatment. Cancer Biology & Medicine, 2023, 20(5): 344-352.








Web of Science




Received: 13 January 2023
Accepted: 22 March 2023
Published: 05 June 2023
©2023 Cancer Biology & Medicine.

Creative Commons Attribution-NonCommercial 4.0 International License