Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Line parameters play an important role in the control and management of distribution systems. Currently, phasor measurement unit (PMU) systems and supervisory control and data acquisition (SCADA) systems coexist in distribution systems. Unfortunately, SCADA and PMU measurements usually do not match each other, resulting in inaccurate detection and identification of line parameters based on measurements. To solve this problem, a data-driven method is proposed. SCADA measurements are taken as samples and PMU measurements as the population. A probability parameter identification index (PPII) is derived to detect the whole line parameter based on the probability density function (PDF) parameters of the measurements. For parameter identification, a power-loss PDF with the PMU time stamps and a power-loss chronological PDF are derived via kernel density estimation (KDE) and a conditional PDF. Then, the power-loss samples with the PMU time stamps and chronological correlations are generated by the two PDFs of the power loss via the Metropolis-Hastings (MH) algorithm. Finally, using the power-loss samples and PMU current measurements, the line parameters are identified using the total least squares (TLS) algorithm. Hardware simulations demonstrate the effectiveness of the proposed method for distribution network line parameter detection and identification.
D. Ritzmann, P. S. Wright, W. Holderbaum, and B. Potter, “A method for accurate transmission line impedance parameter estimation,” IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 10, pp. 2204–2213, Oct. 2016.
K. R. Mestav, J. Luengo-Rozas, and L. Tong, “Bayesian state estimation for unobservable distribution systems via deep learning,” IEEE Transactions on Power Systems, vol. 34, no. 6, pp. 4910–4920, Nov. 2019.
A. M. Prostejovsky, O. Gehrke, A. M. Kosek, T. Strasser, and H. W. Bindner, “Distribution line parameter estimation under consideration of measurement tolerances,” IEEE Transactions on Industrial Informatics, vol. 12, no. 2, pp. 726–735, Apr. 2016.
M. Asprou and E. Kyriakides, “Identification and estimation of erroneous transmission line parameters using PMU measurements,” IEEE Transactions on Power Delivery, vol. 32, no. 6, pp. 2510–2519, Dec. 2017.
S. S. Mousavi-Seyedi, F. Aminifar, and S. Afsharnia, “Parameter estimation of multiterminal transmission lines using joint PMU and SCADA data,” IEEE Transactions on Power Delivery, vol. 30, no. 3, pp. 1077–1085, Jun. 2015.
J. S. Li, S. D. Xu, H. Liu, and T. S. Bi, “A high-accuracy and low-complexity phasor estimation method for PMU calibration,” CSEE Journal of Power and Energy Systems, vol. 7, no. 6, pp. 1202–1212, Nov. 2021, doi: 10.17775/CSEEJPES.2020.01180.
M. Asprou, S. Chakrabarti, and E. Kyriakides, “A two-stage state estimator for dynamic monitoring of power systems,” IEEE Systems Journal, vol. 11, no. 3, pp. 1767–1776, Sep. 2017.
S. P. Carullo and C. O. Nwankpa, “Experimental validation of a model for an information-embedded power system,” IEEE Transactions on Power Delivery, vol. 20, no. 3, pp. 1853–1863, Jul. 2005.
J. I. Escudero, J. Luque, and A. Carrasco, “Experimental study on the transmission of measurements by tolerance in SCADA systems,” IEEE Transactions on Power Delivery, vol. 19, no. 2, pp. 590–594, Apr. 2004.
B. A. Alcaide-Moreno, C. R. Fuerte-Esquivel, M. Glavic, and T. Van Cutsem, “Electric power network state tracking from multirate measurements,” IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 1, pp. 33–44, Jan. 2018.
J. Du, S. D. Ma, Y. C. Wu, and H. V. Poor, “Distributed hybrid power state estimation under PMU sampling phase errors,” IEEE Transactions on Signal Processing, vol. 62, no. 16, pp. 4052–4063, Aug. 2014.
J. Zhu and A. Abur, “Improvements in network parameter error identification via synchronized phasors,” IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 44–50, Feb. 2010.
Y. Z. Lin and A. Abur, “Strategic use of synchronized phasor measurements to improve network parameter error detection,” IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 5281–5290, Sep. 2018.
M. R. M. Castillo, J. B. A. London, N. G. Bretas, S. Lefebvre, J. Prvost, and B. Lambert, “Offline detection, identification, and correction of branch parameter errors based on several measurement snapshots,” IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 870–877, May 2011.
H. B. Zhang, Z. W. Diao, and Y. F. Cui, “Identification of power network branch parameters based on state space transformation,” IEEE Access, vol. 7, pp. 91720–91730, Jul. 2019.
O. A. Gashteroodkhani, M. Majidi, and M. Etezadi-Amoli, “A fault data based method for zero-sequence impedance estimation of mutually coupled transmission lines,” IEEE Transactions on Power Delivery, vol. 36, no. 5, pp. 2768–2776, Oct. 2021, doi: 10.1109/TPWRD.2020.3026672.
A. S. Dobakhshari, M. Abdolmaleki, V. Terzija, and S. Azizi, “Online non-iterative estimation of transmission line and transformer parameters by SCADA data,” IEEE Transactions on Power Systems, vol. 36, no. 3, pp. 2632–2641, May 2021, doi: 10.1109/TPWRS.2020.3037997.
A. C. Xue, H. Kong, Y. Z. Lao, Q. Xu, Y. H. Lin, L. Wang, F. Y. Xu, S. Leng, Z. Y. Yuan, and G. E. Wei, “A new robust identification method for transmission line parameters based on ADALINE and IGG method,” IEEE Access, vol. 8, pp. 132960–132969, Jul. 2020.
J. J. Lin, J. Song, and C. Lu, “Synchrophasor data analytics: transmission line parameters online estimation for energy management,” IEEE Transactions on Engineering Management, vol. 69, no. 3, pp. 671–681, Jun. 2022, doi: 10.1109/TEM.2019.2939173.
H. Goklani, G. Gajjar, and S. A. Soman, “Instrument transformer calibration and robust estimation of transmission line parameters using PMU measurements,” IEEE Transactions on Power Systems, vol. 36, no. 3, pp. 1761–1770, May 2021, doi: 10.1109/TPWRS.2020.3036605.
C. Wang, V. A. Centeno, K. D. Jones, and D. T. Yang, “Transmission lines positive sequence parameters estimation and instrument transformers calibration based on PMU measurement error model,” IEEE Access, vol. 7, pp. 145104–145117, Oct. 2019.
M. Asprou, E. Kyriakides, and M. M. Albu, “Uncertainty bounds of transmission line parameters estimated from synchronized measurements,” IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 8, pp. 2808–2818, Aug. 2019.
A. C. Xue, F. Y. Xu, K. E. Martin, H. Y. You, J. S. Xu, L. Wang, and G. E. Wei, “Robust identification method for transmission line parameters that considers PMU phase angle error,” IEEE Access, vol. 8, pp. 86962–86971, May 2020.
A. Momen, Y. Chakhchoukh, and B. K. Johnson, “Series compensated line parameters estimation using synchrophasor measurements,” IEEE Transactions on Power Delivery, vol. 34, no. 6, pp. 2152–2162, Dec. 2019.
V. Milojević, S. Čalija, G. Rietveld, M. V. Ačanski, and D. Colangelo, “Utilization of PMU measurements for three-phase line parameter estimation in power systems,” IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 10, pp. 2453–2462, Oct. 2018.
J. F. Fu, G. B. Song, and B. De Schutter, “Influence of measurement uncertainty on parameter estimation and fault location for transmission lines,” IEEE Transactions on Automation Science and Engineering, vol. 18, no. 1, pp. 337–345, Jan. 2021.
X. Y. Zhao, H. F. Zhou, D. Shi, H. S. Zhao, C. Y. Jing, and C. Jones, “On-line PMU-based transmission line parameter identification,” CSEE Journal of Power and Energy Systems, vol. 1, no. 2, pp. 68–74, Jun. 2015.
A. Wehenkel, A. Mukhopadhyay, J. Y. L. Boudec, and M. Paolone, “Parameter estimation of three-phase untransposed short transmission lines from synchrophasor measurements,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 9, pp. 6143–6154, Sep. 2020.
P. X. Ren, H. Lev-Ari, and A. Abur, “Tracking three-phase untransposed transmission line parameters using synchronized measurements,” IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 4155–4163, Jul. 2018.
C. G. Li, Y. P. Zhang, H. X. Zhang, Q. W. Wu, and V. Terzija, “Measurement-based transmission line parameter estimation with adaptive data selection scheme,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 5764–5773, Nov. 2018.
J. F. Yu, Y. Weng, and R. Rajagopal, PaToPa: a data-driven parameter and topology joint estimation framework in distribution grids,” IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 4335–4347, Jul. 2018.
J. F. Yu, Y. Weng, and R. Rajagopal, “PaToPaEM: a data-driven parameter and topology joint estimation framework for time-varying system in distribution grids,” IEEE Transactions on Power Systems, vol. 34, no. 3, pp. 1682–1692, May 2019.
A. D. Liu, Y. Li, W. Xie, C. G. Yang, S. R. Wang, and Z. X. Shi, “Estimation method of line parameters in distribution network based on multi-source data and multi-time sections,” Automation of Electric Power Systems, vol. 45, no. 2, pp. 46–54, Jan. 2021.
T. L. Williams, Y. N. Sun, and K. Schneider, “Off-line tracking of series parameters in distribution systems using AMI data,” Electric Power Systems Research, vol. 134, pp. 205–212, May 2016.
W. Jiang and H. B. Tang, “Distribution line parameter estimation considering dynamic operating states with a probabilistic graphical model,” International Journal of Electrical Power & Energy Systems, vol. 121, pp. 106133, Oct. 2020.
R. Dutta, V. S. Patel, S. Chakrabarti, A. Sharma, R. K. Das, and S. Mondal, “Parameter estimation of distribution lines using SCADA measurements,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 9000411, Sep. 2020.
V. C. Cunha, W. Freitas, F. C. L. Trindade, and S. Santoso, “Automated determination of topology and line parameters in low voltage systems using smart meters measurements,” IEEE Transactions on Smart Grid, vol. 11, no. 6, pp. 5028–5038, Nov. 2020.
S. Park, D. Deka, S. Backhaus, and M. Chertkov, “Learning with end-users in distribution grids: topology and parameter estimation,” IEEE Transactions on Control of Network Systems, vol. 7, no. 3, pp. 1428–1440, Sep. 2020.
J. W. Zhang, Y. Wang, Y. Weng, and N. Zhang, “Topology identification and line parameter estimation for non-PMU distribution network: a numerical method,” IEEE Transactions on Smart Grid, vol. 11, no. 5, pp. 4440–4453, Sep. 2020.
P. A. Pegoraro, K. Brady, P. Castello, C. Muscas, and A. von Meier, “Line impedance estimation based on synchrophasor measurements for power distribution systems,” IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 4, pp. 1002–1013, Apr. 2019.
J. P. Sun, M. C. Xia, and Q. F. Chen, “A classification identification method based on phasor measurement for distribution line parameter identification under insufficient measurements conditions,” IEEE Access, vol. 7, pp. 158732–158743, Oct. 2019.
M. Göl and A. Abur, “A hybrid state estimator for systems with limited number of PMUs,” IEEE Transactions on Power Systems, vol. 30, no. 3, pp. 1511–1517, May 2015.
C. S. Ding, Q. Wu, C. T. Hsieh, and M. Pedram, “Stratified random sampling for power estimation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 17, no. 6, pp. 465–471, Jun. 1998.
R. Singh, B. C. Pal, and R. A. Jabr, “Distribution system state estimation through Gaussian mixture model of the load as pseudo-measurement,” IET Generation, Transmission & Distribution, vol. 4, no. 1, pp. 50–59, Jan. 2010.
C. K. Reddy, H. D. Chiang, and B. Rajaratnam, “TRUST-TECH-based expectation maximization for learning finite mixture models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 7, pp. 1146–1157, Jul. 2008.
Q. C. Ding, J. D. Han, X. G. Zhao, and Y. Chen, “Missing-data classification with the extended full-dimensional Gaussian mixture model: applications to EMG-based motion recognition,” IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4994–5005, Aug. 2015.
L. Trailović and L. Y. Pao, “Variance estimation and ranking of target tracking position errors modeled using Gaussian mixture distributions,” Automatica, vol. 41, no. 8, pp. 1433–1438, Aug. 2005.
M. Niknejad, H. Rabbani, and M. Babaie-Zadeh, “Image restoration using Gaussian mixture models with spatially constrained patch clustering,” IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 3624–3636, Nov. 2015.
R. Singh, B. C. Pal, and R. A. Jabr, “Statistical representation of distribution system loads using Gaussian mixture model,” IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 29–37, Feb. 2010.
J. J. Qi, J. H. Wang, and K. Sun, “Efficient estimation of component interactions for cascading failure analysis by EM algorithm,” IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3153–3161, May 2018.
P. Zeephongsekul, C. L. Jayasinghe, L. Fiondella, and V. Nagaraju, “Maximum-likelihood estimation of parameters of NHPP software reliability models using expectation conditional maximization algorithm,” IEEE Transactions on Reliability, vol. 65, no. 3, pp. 1571–1583, Sep. 2016.
G. E. Constante-Flores and M. S. Illindala, “Data-driven probabilistic power flow analysis for a distribution system with renewable energy sources using Monte Carlo simulation,” IEEE Transactions on Industry Applications, vol. 55, no. 1, pp. 174–181, Jan./Feb. 2019.
Z. Y. Ren, W. Yan, X. Zhao, W. Y. Li, and J. Yu, “Chronological probability model of photovoltaic generation,” IEEE Transactions on Power Systems, vol. 29, no. 3, pp. 1077–1088, May 2014.
H. Nosratabadi, M. Mohammadi, and A. Kargarian, “Nonparametric probabilistic unbalanced power flow with adaptive kernel density estimator,” IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 3292–3300, May 2019.
J. Bian, H. Wang, L. M. Wang, G. Q. Li, and Z. H. Wang, “Probabilistic optimal power flow of an AC/DC system with a multiport current flow controller,” CSEE Journal of Power and Energy Systems, vol. 7, no. 4, pp. 744–752, Jul. 2021.
S. Y. Huang, C. J. Ye, S. Liu, W. Zhang, Y. Ding, R. Y. Hu, and J. B. Li, “Data-driven reliability assessment of an electric vehicle penetrated grid utilizing the diffusion estimator and slice sampling,” CSEE Journal of Power and Energy Systems, vol. 9, no. 5, pp. 1845–1853, Sep. 2023.
B. Khorramdel, C. Y. Chung, N. Safari, and G. C. D. Price, “A fuzzy adaptive probabilistic wind power prediction framework using diffusion kernel density estimators,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 7109–7121, Nov. 2018.
Z. Y. Ren, K. Wang, W. Y. Li, L. M. Jin, and Y. Dai, “Probabilistic power flow analysis of power systems incorporating tidal current generation,” IEEE Transactions on Sustainable Energy, vol. 8, no. 3, pp. 1195–1203, Jul. 2017.
N. Soleimanpour and M. Mohammadi, “Probabilistic load flow by using nonparametric density estimators,” IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 3747–3755, Nov. 2013.
M. L. Little, S. F. Rabbi, K. Pope, and J. E. Quaicoe, “Unified probabilistic modeling of wind reserves for demand response and frequency regulation in islanded microgrids,” IEEE Transactions on Industry Applications, vol. 54, no. 6, pp. 5671–5681, Nov./Dec. 2018.
B. W. Silverman, Density Estimation for Statistics and Data Analysis, New York: Chapman and Hall, 1986.
W. Härdle, M. Müller, S. Sperlich, and A. Werwatz, Nonparametric and Semiparametric Models, Berlin: Springer, 2004.
C. Lemieux, Monte Carlo and Quasi-Monte Carlo Sampling, New York: Springer, 2009.
L. Cheng, Z. Z. Lu, and L. G. Zhang, “Application of Rejection Sampling based methodology to variance based parametric sensitivity analysis,” Reliability Engineering & System Safety, vol. 142, pp. 9–18, Oct. 2015.
W. Hörmann, J. Leydold, and G. Derflinger, Automatic Nonuniform Random Variate Generation, Berlin: Springer, 2004.
W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov Chain Monte Carlo in Practice, London: Chapman & Hall, 1996.
Z. Wang and C. Ling, “on the geometric ergodicity of metropolis-Hastings algorithms for lattice Gaussian sampling,” IEEE Transactions on Information Theory, vol. 64, no. 2, pp. 738–751, Feb. 2018.
Z. Wang and C. Ling, “Lattice Gaussian sampling by Markov chain Monte Carlo: bounded distance decoding and trapdoor sampling,” IEEE Transactions on Information Theory, vol. 65, no. 6, pp. 3630–3645, Jun. 2019.
202
Views
13
Downloads
6
Crossref
8
Web of Science
11
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).