AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Regular Paper | Open Access

Recyclable Polypropylene-based Insulation Materials for HVDC Cables: Progress and Perspective

Yao Zhou1Shixun Hu2Chao Yuan1Jun Hu1Qi Li1Jinliang He1( )
State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
Beijing Key Lab of High Voltage & EMC, and State Key Lab of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
Show Author Information

Abstract

Polypropylene (PP)-based recyclable materials have attracted tremendous interest for HVDC cable insulation applications due to their superior electrical properties, e.g., high thermal stability and superior recyclability. Compared with crosslinked polyethylene (XLPE), PP-based materials exhibit the advantages of not only higher working temperatures but also facile and efficient cable manufacturing with reduced costs, which are highly desirable in HVDC cable manufacturing. Considering their promising advantages, PP-based materials have received significant attention from both academia and industry in the field of HVDC cable insulation. In order to adopt PP as a cable insulation material, the mechanical flexibility of PP should be improved. However, regulations of the mechanical properties inevitably influences the electrical properties of PP. So extensive research has been conducted on the regulation of the mechanical and electrical properties of PP. This review summarizes the research progress on recyclable PP-based materials for HVDC cable insulation applications. Particular attention is placed on the electrical property regulations and material structure-property relationships. The challenges that remain to be addressed and the opportunities for future studies on PP-based recyclable HVDC cable insulation materials are also presented.

References

[1]
X. X. Zhou, Z. X. Lu, Y. M. Liu, and S. Y. Chen, “Development models and key technologies of future grid in China,” Proceedings of the CSEE, vol. 34, no. 29, pp. 49995008, Oct. 2014.
[2]
T. An, G. F. Tang, and W. N. Wang, “Research and application on multi-terminal and DC grids based on VSC-HVDC technology in China,” High Voltage, vol. 2, no. 1, pp. 110, Mar. 2017.
[3]
S. J. Sutton, P. L. Lewin, and S. G. Swingler, “Review of global HVDC subsea cable projects and the application of sea electrodes,” International Journal of Electrical Power & Energy Systems, vol. 87, pp. 121135, May 2017.
[4]
Z. H. Liu, F. X. Zhang, J. Yu, K. L. Gao, and W. M. Ma, “Research on key technologies in ±1100 kV ultra-high voltage DC transmission,” High Voltage, vol. 3, no. 4, pp. 279288, Dec. 2018.
[5]
Z. Y. Liu, Ultra-High Voltage Grid, Beijing: China Economic Publishing House, 2005.
[6]
The State Council, Outline of national medium and long term science and technology development plan, Gazette of the State Council of the People’s Republic of China, pp. 737, Sep. 2006.
[7]
Y. B. Shu and W. J. Chen, “Research and application of UHV power transmission in China,” High Voltage, vol. 3, no. 1, pp. 113, Mar. 2018.
[8]
H. Orton, “Power cable technology review,” High Voltage Engineering, vol. 41, no. 4, pp. 10571067, Apr. 2015.
[9]
K. Johannesson, A. Gustafsson, J. Karlstrand, and M. Jeroense, “HVDC light cables for long distance grid connection,” in European Offshore Wind Conference, 2009, pp. 1416.
[10]
S. S. Torbaghan, H. K. Müller, M. Gibescu, M. Van Der meijden, and M. Roggenkamp, “The legal and economic impacts of implementing a joint feed-in premium support scheme on the development of an offshore grid,” Renewable and Sustainable Energy Reviews, vol. 45, pp. 263277, May 2015.
[11]
X. L. Zhao, Y. Liu, J. W. Wu, J. Y. Xiao, J. M. Hou, J. H. Gao, and L. S. Zhong, “Technical and economic demands of HVDC submarine cable technology for global energy interconnection,” Global Energy Interconnection, vol. 3, no. 2, pp. 120127, Apr. 2020.
[12]
G. Chen, M. Hao, Z. Q. Xu, A. Vaughan, J. Z. Cao, and H. T. Wang, “Review of high voltage direct current cables,” CSEE Journal of Power and Energy Systems, vol. 1, no. 2, pp. 921, Jun. 2015.
[13]
S. H. Xie, M. L. Fu, Y. Yin, J. L. Xue, and M. Hu, “Triple jumps of XLPE insulated HVDC cable development in China: from 160 kV to 200 kV and then to 320 kV,” Southern Power System Technology, vol. 9, no. 10, pp. 512, Oct. 2015.
[14]
Y. Zhou, S. M. Peng, J. Hu, and J. L. He, “Polymeric insulation materials for HVDC cables: development, challenges and future perspective,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 24, no. 3, pp. 13081318, Jun. 2017.
[15]
T. L. Hanley, R. P. Burford, R. J. Fleming, and K.W. Barber, “A general review of polymeric insulation for use in HVDC cables,” IEEE Electrical Insulation Magazine, vol. 19, no. 1, pp. 1324, Jan./Feb. 2003.
[16]
X. R. Chen, Y. Xu, X. L. Cao, and S. M. Gubanski, “Electrical treeing behavior at high temperature in XLPE cable insulation samples,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 22, no. 5, pp. 28412851, Oct. 2015.
[17]
S. T. Li, L. S. Zhong, J. Y. Li, and G. Chen, “A brief history and research progress on solid engineering dielectrics in China,” IEEE Electrical Insulation Magazine, vol. 26, no. 6, pp. 1421, Nov./Dec. 2010.
[18]
X. R. Chen, Y. Xu, X. L. Cao, and S. M. Gubanski, “On the conducting and non-conducting electrical trees in XLPE cable insulation specimens,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 23, no. 1, pp. 95103, Feb. 2016.
[19]
J. Y. Li, X. T. Zhao, G. L. Yin, S. T. Li, J. K. Zhao, and B. H. Ouyang, “The effect of accelerated water tree ageing on the properties of XLPE cable insulation,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 5, pp. 15621569, Oct. 2011.
[20]
X. R. Chen, Y. Xu, X. L. Cao, S. J. Dodd, and L. A. Dissado, “Effect of tree channel conductivity on electrical tree shape and breakdown in XLPE cable insulation samples,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 3, pp. 847860, Jun. 2011.
[21]
J. L. He and G. Chen, “Insulation materials for HVDC polymeric cables,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 24, no. 3, pp. 1307, Jun. 2017.
[22]
Z. P. Zhang, J. K. Zhao, W. Zhao, L. S. Zhong, L. X. Hu, W. B. Rao, M. Zheng, and S. X. Meng, “Influence of morphological variations on the AC breakdown of XLPE insulation in submarine cable factory joints,” High Voltage, vol. 5, no. 1, pp. 6975, Feb. 2020.
[23]
A. G. Mazzanti and M. Marzinotto, Extruded Cables for High-Voltage Direct-Current Transmission: Advances in Research and Development, New Jersey: John Wiley & Sons, Inc., 2013.
[24]
N. Hirai, R. Minami, T. Tanaka, and Y. Ohki, “Chemical group in crosslinking byproducts responsible for charge trapping in polyethylene,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 10, no. 2, pp. 320330, Apr. 2003.
[25]
Y. Maeno, N. Hirai, Y. Ohki, T. Tanaka, M. Okashita, and T. Maeno, “Effects of crosslinking byproducts on space charge formation in crosslinked polyethylene,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 12, no. 1, pp. 9097, Feb. 2005.
[26]
S. H. Wang, S. H. Yu, J. Xiang, J. Y. Li, and S. T. Li, “DC breakdown strength of crosslinked polyethylene based nanocomposites at different temperatures,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 27, no. 2, pp. 482488, Apr. 2020.
[27]
X. Y. Huang, “Perspective on emerging materials for high voltage applications,” High Voltage, vol. 5, no. 3, pp. 229230, Feb. 2020.
[28]
Y. Zhou, C. Yuan, Q. Li, Q. Wang, and J. L. He, “Recyclable insulation material for HVDC cables in global energy interconnection,” Global Energy Interconnection, vol. 1, no. 4, pp. 520526, Oct. 2018.
[29]
J. L. He and Y. Zhou, “Progress in eco-friendly high voltage cable insulation materials,” in 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), May 2018, pp. 1116.
[30]
M. Fairhurst, A. Gorwadia, G. Stevens, B. Philpot, J. Thomas, J. Pilgrim, and P. Lewin, “Integrated development and assessment of new thermoplastic high voltage power cable systems,” in CIGRE, 2012, pp. 866874.
[31]
J. L. He, L. Peng, and Y. Zhou, “Research progress of environment-friendly HVDC power cable insulation materials,” High Voltage Engineering, vol. 43, no. 2, pp. 337343, Feb. 2017.
[32]
X. Y. Huang, J. Zhang, P. K. Jiang, and T. Tanaka, “Material progress toward recyclable insulation of power cables. Part 1: Polyethylene-based thermoplastic materials: Dedicated to the 80th birthday of professor Toshikatsu Tanaka,” IEEE Electrical Insulation Magazine, vol. 35, no. 5, pp. 719, Sep./Oct. 2019.
[33]
C. W. Reed, “An assessment of material selection for high voltage DC extruded polymer cables,” IEEE Electrical Insulation Magazine, vol. 33, no. 4, pp. 2226, Jul./Aug. 2017.
[34]
Z. L. Li and B. X. Du, “Polymeric insulation for high-voltage DC extruded cables: challenges and development directions,” IEEE Electrical Insulation Magazine, vol. 34, no. 6, pp. 3043, Nov./Dec. 2018.
[35]
G. C. Montanari, P. H. F. Morshuis, M. Y. Zhou, G. C. Stevens, A. S. Vaughan, Z. Y. Han, and D. Li, “Criteria influencing the selection and design of HV and UHV DC cables in new network applications,” High Voltage, vol. 3, no. 2, pp. 9095, Jun. 2018.
[36]
Y. Zhou, J. L. He, J. Hu, X. Y. Huang, and P. K. Jiang, “Evaluation of polypropylene/polyolefin elastomer blends for potential recyclable HVDC cable insulation applications,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 22, no. 2, pp. 673681, Apr. 2015.
[37]
K. Yoshino, X. H. Yin, K. Tada, T. Kawai, M. Hamaguchi, H. Araki, R. Sugimoto, N. Uchikawa, T. Asanuma, M. Kawahigashi, and H. Kato, “Novel properties of new type conducting and insulating polymers and their composites,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 3, no. 3, pp. 331344, Jun. 1996.
[38]
K. Yoshino, A. Ueda, T. Demura, Y. Miyashita, K. Kurahashi, and Y. Matsuda, “Property of syndiotactic polypropylene and its application to insulation of electric power cable-property, manufacturing and characteristics,” in Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (Cat. No.03CH37417), Jun. 2003, pp. 175178.
[39]
C. J. Liu, J. M. Yang, J. Q. Chen, and H. Zhao, “Research on DC dielectric properties of polyethylene with different density,” Insulating Materials, vol. 50, no. 2, pp. 3538, 45, Apr. 2017.
[40]
K. Zhang, L. Z. Li, L. S. Zhong, L. Cao, M. Xu, G. H. Chen, and M. L. Fu, “DC dielectric properties of thermo-plastic polyolefin materials,” in 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Oct. 2016, pp. 470473.
[41]
N. Fanegas, M. A. Gómez, C. Marco, I. Jiménez, and G. Ellis, “Influence of a nucleating agent on the crystallization behaviour of isotactic polypropylene and elastomer blends,” Polymer, vol. 48, no. 18, pp. 53245331, Aug. 2007.
[42]
N. R. Choudhury, T. K. Chaki, and A. K. Bhowmick, “Thermal characterization of thermoplastic elastomeric natural rubber-polypropylene blends,” Thermochimica Acta, vol. 176, pp. 149161, Mar. 1991.
[43]
M. J. Mochane and A. S. Luyt, “Preparation and properties of polystyrene encapsulated paraffin wax as possible phase change material in a polypropylene matrix,” Thermochimic Acta, vol. 544, pp. 6370, Sep. 2012.
[44]
F. F. Wang, H. N. Du, H. Liu, Y. Zhang, X. W. Zhang, and J. Zhang, “The synergistic effects of β-nucleating agent and ethylene octene copolymer on toughening isotactic polypropylene,” Polymer Testing, vol. 45, pp. 111, Aug. 2015.
[45]
B. V. Ceres and J. M. Schultz, “Dependence of electrical breakdown on spherulite size in isotactic polypropylene,” Journal of Applied Polymer Science, vol. 29, no. 12, pp. 41834197, Dec. 1984.
[46]
Y. H. Wu, J. W. Zha, W. K. Li, S. J. Wang, and Z. M. Dang, “A remarkable suppression on space charge in isotactic polypropylene by inducing the β-crystal formation,” Applied Physics Letters, vol. 107, no. 11, pp. 112901, Sep. 2015.
[47]
L. Zhang, Y. X. Zhang, Y. X. Zhou, C. Y. Teng, Z. W. Peng, and S. Spinella, “Crystalline modification and its effects on dielectric breakdown strength and space charge behavior in isotactic polypropylene,” Polymers, vol. 10, no. 4, pp. 406, Apr. 2018.
[48]
L. Zhang, C. Y. Teng, Y. X. Zhou, Z. W. Peng, and Y. X. Zhang, “Direct correlation between charge evolution and crystalline structure in isotactic polypropylene,” in 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), May 2018, pp. 279282.
[49]
C. Y. Li, B. Z. Han, C. C. Zhang, H. Zhang, X. Wang, and H. Zhao, “Review of voltage stabilizer improving the electrical strength of PE/XLPE,” Proceedings of the CSEE, vol. 37, no. 16, pp. 48504864, Aug. 2017.
[50]
X. Y. Huang, Y. Y. Fan, J. Zhang, and P. K. Jiang, “Polypropylene based thermoplastic polymers for potential recyclable HVDC cable insulation applications,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 24, no. 3, pp. 14461456, Jun. 2017.
[51]
P. F. Meng, Y. Zhou, C, Yuan, Q. Li, J. P. Liu, H. M. Wang, J. Hu, and J. L. He, “Comparisons of different polypropylene copolymers as potential recyclable HVDC cable insulation materials,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 26, no. 3, pp. 674680, Jun. 2019.
[52]
W. Zhang, M. Xu, G. Chen, S. Hou, M. L. Fu, and W. K. Li, “Structure and properties of isotactic polypropylene and ethylene-propylene copolymer,” High Voltage Engineering, vol. 43, no. 11, pp. 36343644, Nov. 2017.
[53]
I. L. Hosier, L. Cozzarini, A. S. Vaughan, and S. G. Swingler, “Propylene based systems for high voltage cable insulation applications,” Journal of Physics: Conference Series, vol. 183, no. 1, pp. 012015, Apr. 2009.
[54]
B. Dang, J. L. He, J. Hu, and Y. Zhou “Large improvement in trap level and space charge distribution of polypropylene by enhancing the crystalline-amorphous interface effect in blends,” Polymer International, vol. 65, no. 4, pp. 371379, Apr. 2016.
[55]
Y. Gao, J. Li, Y. Li, Y. Q. Yuan, S. H. Huang, and B. X. Du, “Effect of elastomer type on electrical and mechanical properties of polypropylene/elastomer blends,” in 2017 International Symposium on Electrical Insulating Materials (ISEIM), Sep. 2017, pp. 574577.
[56]
Y. Zhou, B. Dang, H. M. Wang, J. P. Liu, Q. Li, J. Hu, and J. L. He, “Polypropylene-based ternary nanocomposites for recyclable high-voltage direct-current cable insulation,” Composites Science and Technology, vol. 165, pp. 168174, Sep. 2018.
[57]
S. Vervoort, J. den Doelder, E. Tocha, J. Genoyer, K. L. Walton, Y. Hu, J. Munro, and K. Jeltsch, “Compatibilization of polypropylene–polyethylene blends,” Polymer Engineering and Science, vol. 58, no. 4, pp. 460465, Apr. 2018.
[58]
K. Yang, Y. Liu, Z. M. Yan, Y. Tian, Y. T. Liu, Z. H. Jing, J. Y. Li, and S. T. Li, “Enhanced morphology-dependent tensile property and breakdown strength of impact polypropylene copolymer for cable insulation,” Materials, vol. 13, no. 18, pp. 3935, Sep. 2020.
[59]
M. Ikeda and Y. Shimizu, “Electrical insulating resin material, electrical insulating material, and electric wire and cable using same,” U.S. Patent 6 479 590, Nov. 12, 2002.
[60]
S. H. Lee, J. K. Park, J. H. Han, and K. S. Suh, “Space charge and electrical conduction in maleic anhydride-grafted polyethylene,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 2, no. 6, pp. 11321139, Dec. 1995.
[61]
X. R. Chen, A. Paramane, H. Y. Liu, J. Tie, Z. J. Wei, and Y. Tanaka, “Enhancement of service life and electrical insulation properties of polymeric cables with the optimum content of aromatic voltage stabilizer,” Polymer Engineering and Science, vol. 60, no. 4, pp. 717731, Apr. 2020.
[62]
N. Yoshifuji, T. Niwa, T. Takahashi, and H. Miyata, “Development of the new polymer insulating materials for HVDC cable,” IEEE Transactions on Power Delivery, vol. 7, no. 3, pp. 10531059, Jul. 1992.
[63]
X. R. Chen, L. W. Yu, C. Dai, A. Paramane, H. Y. Liu, Z. J. Wei, and Y. Tanaka, “Enhancement of insulating properties of polyethylene blends by delocalization type voltage stabilizers,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 26, no. 6, pp. 20412049, Dec. 2019.
[64]
Y. Zhou, J. Hu, B. Dang, and J. L. He, “Mechanism of highly improved electrical properties in polypropylene by chemical modification of grafting maleic anhydride,” Journal of Physics D: Applied Physics, vol. 49, no. 41, pp. 415301, Sep. 2016.
[65]
H. Yuan, Y. Zhou, Y. J. Zhu, S. X. Hu, C. Yuan, W. B. Song, Q. Shao, Q. Zhang, J. Hu, Q. Li, and J. L. He, “Origins and effects of deep traps in functional group grafted polymeric dielectric materials,” Journal of Physics D: Applied Physics, vol. 53, no. 47, pp. 475301, Nov. 2020.
[66]
J. W. Zha, Y. H. Wu, S. J. Wang, D. H. Wu, H. D. Yan, and Z. M. Dang, “Improvement of space charge suppression of polypropylene for potential application in HVDC cables,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 23, no. 4, pp. 23372343, Aug. 2016.
[67]
Y. Cao, P. C. Irwin, and K. Younsi, “The future of nanodielectrics in the electrical power industry,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 5, pp. 797807, Oct. 2004.
[68]
J. L. He, S. M. Peng, Y. Zhou, Y. Yang, and J. Hu, “Interface properties of polymer nanocomposites,” Proceedings of the CSEE, vol. 36, no. 24, pp. 65966605, Jan. 2017.
[69]
E. David and M. Fréchette, “Polymer nanocomposites-major conclusions and achievements reached so far,” IEEE Electrical Insulation Magazine, vol. 29, no. 6, pp. 2936, Nov. 2013.
[70]
T. Tanaka, “Dielectric nanocomposites with insulating properties,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 12, no. 5, pp. 914928, Oct. 2005.
[71]
S. L. Zhong, Z. M. Dang, W. Y. Zhou, and H. W. Cai, “Past and future on nanodielectrics,” IET Nanodielectrics, vol. 1, no. 1, pp. 4147, Apr. 2018.
[72]
Y. Zhou and Q. Wang, “Advanced polymer dielectrics for high temperature capacitive energy storage,” Journal of Applied Physics, vol. 127, no. 24, pp. 240902, Jun. 2020.
[73]
X. H. Duan, W. H. Siew, M. Given, J. Liggat, and J. L. He, “Effect of different surface treatment agents on the physical chemistry and electrical properties of polyethylene nano-alumina nanocomposites,” High Voltage, vol. 5, no. 4, pp. 397402, Aug. 2020.
[74]
M. S. Babu, R. Sarathi, N. J. Vasa, and T. Imai, “Investigation on space charge and charge trap characteristics of gamma-irradiated epoxy micro-nano composites,” High Voltage, vol. 5, no. 2, pp. 191201, Apr. 2020.
[75]
S. M. Peng, B. Dang, Y. Zhou, J. Hu, and J. L. He, “Functionalized TiO2 nanoparticles tune the aggregation structure and trapping property of polyethylene nanocomposites,” The Journal of Physical Chemistry C, vol. 120, no. 43, pp 2475424761, Nov. 2016.
[76]
G. C. Li, X. G. Zhou, X. J. Li, Y. H. Wei, C. C. Hao, S. T. Li, and Q. Q. Lei, “DC breakdown characteristics of XLPE/BNNS nanocomposites considering BN nanosheet concentration, space charge and temperature,” High Voltage, vol. 5, no. 3, pp. 280286, Jun. 2020.
[77]
S. M. Peng, J. L. He, J. Hu, X. Y. Huang, and P. K. Jiang, “Influence of functionalized MgO nanoparticles on electrical properties of polyethylene nanocomposites,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 22, no. 3, pp. 15121519, Jun. 2015.
[78]
B. Dang, J. L. He, J. Hu, and Y. Zhou, “Tailored sPP/Silica nanocomposite for ecofriendly insulation of extruded HVDC cable,” Journal of Nanomaterials, vol. 2015, pp. 686248, Nov. 2015.
[79]
Y. Zhou, J. Hu, B. Dang, and J. L. He, “Titanium oxide nanoparticle increases shallow traps to suppress space charge accumulation in polypropylene dielectrics,” RSC Advances, vol. 6, no. 54, pp. 4872048727, Jun. 2016.
[80]
Y. Zhou, J. Hu, X. Chen, F. Yu, and J. L. He, “Thermoplastic polypropylene/aluminum nitride nanocomposites with enhanced thermal conductivity and low dielectric loss,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 23, no. 5, pp. 27682776, Oct. 2016.
[81]
S. X. Hu, W. Wang, B. Dang, Y. Zhou, C. Yuan, J. Hu, Q. Li, and J. L. He, “Thermal properties and space charge behavior of thermally aged polypropylene/elastomer blends nanocomposite,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 27, no. 2, pp. 521527, Apr. 2020.
[82]
B. Dang, Q. Li, Y. Zhou, J. Hu, and J. L. He, “Suppression of elevated temperature space charge accumulation in polypropylene/elastomer blends by deep traps induced by surface-modified ZnO nanoparticles,” Composites Science and Technology, vol. 153, pp. 103110, Dec. 2017.
[83]
Y. Yang, J. L. He, Q. Li, L. Gao, J. Hu, R. Zeng, J. Qin, S. X. Wang, and Q. Wang, “Self-healing of electrical damage in polymers using superparamagnetic nanoparticles,” Nature Nanotechnology, vol. 14, no. 2, pp. 151155, Feb. 2019.
[84]
Y. Zhou, B. Dang, J. Hu, X. Chen, F. Yu, and J. L. He, “Effect of magnesium oxide nanoparticles on tailoring the properties of polypropylene,” Proceedings of the CSEE, vol. 36, no. 24, pp. 66196626, Jan. 2017.
[85]
Y. Zhou, J. L. He, J. Hu, and B. Dang, “Surface-modified MgO nanoparticle enhances the mechanical and direct-current electrical characteristics of polypropylene/polyolefin elastomer nanodielectrics,” Journal of Applied Polymer Science, vol. 133, no. 1, Jan. 2016.
[86]
Y. Zhou, C. Yuan, C. Y. Li, P. F. Meng, J. Hu, Q. Li, and J. L. He, “Temperature dependent electrical properties of thermoplastic polypropylene nanocomposites for HVDC cable insulation,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 26, no. 5, pp. 25962604, Oct. 2019.
[87]
Y. Zhou, J. Hu, B. Dang, and J. L. He, “Effect of different nanoparticles on tuning electrical properties of polypropylene nanocomposites,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 24, no. 3, pp. 13801389, Jun. 2017.
[88]
J. C. Diao, X. Y. Huang, Q. C. Jia, F. Liu, and P. K. Jiang, “Thermoplastic isotactic polypropylene/ethylene-octene polyolefin copolymer nanocomposite for recyclable HVDC cable insulation,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 24, no. 3, pp. 14161429, Jun. 2017.
[89]
T. Krentz, M. M. Khani, M. Bell, B. C. Benicewicz, J. K. Nelson, S. Zhao, H. Hillborg, and L. S. Schadler, “Morphologically dependent alternating-current and direct-current breakdown strength in silica-polypropylene nanocomposites,” Journal of Applied Polymer Science, vol. 134, no. 1, Jan. 2017.
[90]
S. X. Hu, Y. Zhou, C. Yuan, W. Wang, J. Hu, Q. Li, and J. L. He, “Surface-modification effect of MgO nanoparticles on the electrical properties of polypropylene nanocomposite,” High Voltage, vol. 5, no. 3, pp. 249255, Jun. 2020.
[91]
Y. Zhou, C. Yuan, S. J. Wang, Y. J. Zhu, S. Cheng, X. Yang, Y. Yang, J. Hu, J. L. He, and Q. Li, “Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage,” Energy Storage Materials, vol. 28, pp. 255263, Jun. 2020.
[92]
B. Dang, J. Hu, Y. Zhou, and J. L. He, “Remarkably improved electrical insulating performances of lightweight polypropylene nanocomposites with fullerene,” Journal of Physics D: Applied Physics, vol. 50, no. 45, 455303, Nov. 2017.
[93]
Y. Yang, J. Hu, and J. L. He, “Mesoporous nano-silica serves as the degradation inhibitor in polymer dielectrics,” Scientific Reports, vol. 6, no. 1, pp. 28749, Jun. 2016.
[94]
T. Tanaka, M. Kozako, N. Fuse, and Y. Ohki, “Proposal of a multi-core model for polymer nanocomposite dielectrics,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 12, no. 4, pp. 669681, Aug. 2005.
[95]
T. Takada, Y. Hayase, Y. Tanaka, and T. Okamoto, “Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 15, no. 1, pp. 152160, Feb. 2008.
CSEE Journal of Power and Energy Systems
Pages 2208-2220
Cite this article:
Zhou Y, Hu S, Yuan C, et al. Recyclable Polypropylene-based Insulation Materials for HVDC Cables: Progress and Perspective. CSEE Journal of Power and Energy Systems, 2024, 10(5): 2208-2220. https://doi.org/10.17775/CSEEJPES.2020.04740

177

Views

20

Downloads

12

Crossref

N/A

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 04 September 2020
Revised: 03 November 2020
Accepted: 27 November 2020
Published: 21 December 2020
© 2020 CSEE.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return