AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Publishing Language: Chinese

Study on quantification performance evaluation of a domestic SPECT/CT system

Nianming JIANG1,2Fan LIU2Li CHENG1Lilei GAO2Hui LIU1( )Yaqiang LIU1( )
Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Beijing Novel Medical Equipment Co., Ltd., Beijing 102206, China
Show Author Information

Abstract

Objective

Single-photon emission computed tomography (SPECT) is still considered a nonquantitative imaging modality because it cannot perform attenuation correction. To acquire a quantitative SPECT image, Beijing Novel Medical Equipment Co., Ltd. developed a domestic SPECT/CT system, Insight NM/CT Pro. It was equipped with dual digital detectors and enabled various scanning geometries. In addition to better spatial resolution, the system can correct attenuation effects in SPECT and realize quantitative reconstruction using CT. In this study, we evaluated the imaging accuracy of this domestic SPECT/CT system and compared it with advanced abroad systems.

Methods

To obtain quantitatively correct results, physical effects, including collimator blurring, object attenuation, scatter, and radionuclide decay, were modeled and corrected in the reconstruction algorithm. Moreover, a large cylindrical phantom was employed to obtain the calibration factor for the system so that we could convert the reconstruction result to a quantitative image in terms of Bq/mL. Then, the performance of CT-based attenuation correction was tested according to testing method for SPECT imaging based on CT-attenuation correction (YY/T 1546—2017). A cylinder phantom with three cylindrical inserts corresponding to air, nonradioactive water, and bone was filled with a radioactive solution for imaging. The biases inside the air, water, and bone regions of the reconstructed image were calculated to evaluate the performance of CT-based attenuation correction. In addition, the quantitative accuracy of the equipment was tested using the Notional Electrical Manufactures Association (NEMA) torso phantom according to performance measurements of Gamma cameras (NEMA NU 1—2018). Six fillable spheres with different diameters were set as targets for recovery evaluation, and the target-to-background concentration ratio was approximately 8∶1. A large volume of interest (VOI) was placed in the background region to calculate the quantitative bias of the reconstruction. VOIs with the same size of six spheres were drawn based on the registered CT to evaluate recovery coefficients of different sizes. Radionuclide technetium-99m and a low-energy, high-resolution collimator with Insight NM/CT Pro were used for all these tests, and the evaluation results were compared with those of the GE Discovery NM/CT 670.

Results

For attenuation accuracy testing, the biases inside the air, water, and bone regions of Insight NM/CT Pro were 7.84%, 8.38%, and 4.66%, respectively, whereas the corresponding biases in GE Discovery NM/CT 670 were 16.64%, 18.01%, and 11.02%, respectively. For quantitative accuracy testing, in GE discovery NM/CT 670, the quantitative recovery coefficients of the hot spheres with diameters of 13, 17, 22, and 28 mm were 31.04%, 51.36%, 59.91%, and 66.39%, respectively, and the background concentration bias was 10.84%. Insight NM/CT Pro achieved higher recovery coefficients and lower bias. The recovery coefficients were 38.22%, 50.98%, 66.55%, and 71.32% for 13, 17, 22, and 28 mm hot rods, respectively, and the bias in the background region was 7.95%.

Conclusions

Phantom studies have demonstrated that the domestic Insight NM/CT Pro imaging system can obtain smaller biases after CT attenuation correction and achieve quantitative images with high accuracy. The reliability of the Insight NM/CT Pro system for quantitative imaging is validated in this study, and its performance is comparable to that of the advanced GE Discovery NM/CT 670 imaging system.

CLC number: R445.6 Document code: A Article ID: 1000-0054(2024)08-1509-07

References

[1]

MARIANI G, BRUSELLI L, KUWERT T, et al. A review on the clinical uses of SPECT/CT[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37(10): 1959-1985.

[2]

BAILEY D L, WILLOWSON K P. An evidence-based review of quantitative SPECT imaging and potential clinical applications[J]. Journal of Nuclear Medicine, 2013, 54(1): 83-89.

[3]

DICKSON J, ROSS J, VÖÖ S. Quantitative SPECT: The time is now[J]. EJNMMI Physics, 2019, 6(1): 4.

[4]
D'ASSELER Y. SPECT/CT and image quality[M]// GLAUDEMANS A, MEDEMA J, VAN ZANTEN A, et al. Quality in nuclear medicine. Cham: Springer, 2017: 179-192.
[5]

LJUNGBERG M, PRETORIUS P H. SPECT/CT: An update on technological developments and clinical applications[J]. The British Journal of Radiology, 2018, 91(1081): 20160402.

[6]

ZEINTL J, VIJA A H, YAHIL A, et al. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction[J]. Journal of Nuclear Medicine, 2010, 51(6): 921-928.

[7]
WIECZOREK H. SPECT image quality and quantification[C]// 2006 IEEE Nuclear Science Symposium Conference Record. San Diego, USA: IEEE, 2006: 2854-2858.
[8]

SHCHERBININ S, CELLER A, BELHOCINE T, et al. Accuracy of quantitative reconstructions in SPECT/CT imaging[J]. Physics in Medicine & Biology, 2008, 53(17): 4595-4604.

[9]
CHENG L, LIU F, GAO L L, et al. An integrated framework of projection and attenuation correction for quantitative SPECT/CT reconstruction[C]// 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference. Piscataway, USA: IEEE, 2021: 1-3.
[10]

HJELLSTRÖM M, ISAKSSON M. Medical gamma cameras in radiological emergency preparedness: Determination of calibration factors and MDA for the GE Discovery NM/CT 670 Pro[J]. Journal of Radiological Protection, 2023, 43(1): 011516.

[11]
Professional Standard of the People's Republic of China. Testing method for SPECT imaging based on CT-attenuation correction: YY/T 1546—2017[S]. Beijing: China Food and Drug Administration, 2017. (in Chinese)
[12]
Notional Electrical Manufactures Association. Performance measurements of Gamma cameras: NEMA NU 1—2018[S]. Washington, D C: Notional Electrical Manufactures Association, 2018.
[13]

RITT P, VIJA H, HORNEGGER J, et al. Absolute quantification in SPECT[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38(S1): 69-77.

[14]

DEWARAJA Y K, LJUNGBERG M, GREEN A J, et al. MIRD pamphlet No. 24: Guidelines for quantitative 131I SPECT in dosimetry applications[J]. Journal of Nuclear Medicine, 2013, 54(12): 2182-2188.

[15]

PETERS S M B, VAN DER WERF N R, SEGBERS M, et al. Towards standardization of absolute SPECT/CT quantification: A multi-center and multi-vendor phantom study[J]. EJNMMI Physics, 2019, 6(1): 29.

[16]
RITT P, KUWERT T. Quantitative SPECT/CT: Technique and clinical applications[M]// SCHOBER O, KIESSLING F, DEBUS J. Molecular imaging in oncology. Cham: Springer, 2020: 565-590.
[17]
LIU F, GAO L L, CHENG L, et al. Quantitative reconstruction method for nuclear medicine image: CN114119796A[P]. 2021-11-23. (in Chinese)
[18]

SHCHERBININ S, CELLER A. Assessment of the severity of partial volume effects and the performance of two template-based correction methods in a SPECT/CT phantom experiment[J]. Physics in Medicine & Biology, 2011, 56(16): 5355-5371.

Journal of Tsinghua University (Science and Technology)
Pages 1509-1515

{{item.num}}

Comments on this article

Go to comment

< Back to all reports

Review Status: {{reviewData.commendedNum}} Commended , {{reviewData.revisionRequiredNum}} Revision Required , {{reviewData.notCommendedNum}} Not Commended Under Peer Review

Review Comment

Close
Close
Cite this article:
JIANG N, LIU F, CHENG L, et al. Study on quantification performance evaluation of a domestic SPECT/CT system. Journal of Tsinghua University (Science and Technology), 2024, 64(8): 1509-1515. https://doi.org/10.16511/j.cnki.qhdxxb.2023.26.051

318

Views

17

Downloads

0

Crossref

1

Scopus

1

CSCD

Altmetrics

Received: 21 June 2023
Published: 15 August 2024
© Journal of Tsinghua University (Science and Technology). All rights reserved.