AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

K 0.5Na 0.5NbO 𝟑-Based Self-Powered Pressure Sensor

Zhe WangQingtang XueYi YangYi ShuHe TianMin TangYu HuanXiaohui WangJanwen LuoTian-Ling Ren( )
Institute of Microelectronics, Tsinghua University, and Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Center for Biomedical Imaging Research, Tsinghua University, Beijing 100084, China
Show Author Information

Abstract

We report a novel self-powered nanocomposite sensor composed of K 0.5Na 0.5NbO 3 (KNN) nanoparticles (NPs) and multiwalled carbon nanotubes (MW-CNTs). The KNN NPs and MW-CNTs are dispersed in polydimethylsioxane by mechanical agitation to produce a piezoelectric nanocomposite device. The device exhibits an output voltage of approximately 30 V and output current of approximately 15 μA. Furthermore, the device exhibits potential as a self-powered pressure sensor because the output voltage can be tested to detect the pressure applied to the device and does not require other sources.

References

[1]
Panda, P. Review: Environmental friendly lead-free piezoelectric materials, Journal of Materials Science, vol. 44, pp. 5049-5062, 2009.
[2]
Xu, S. Qin, Y. Xu, C. Wei, Y. Yang, R. and Wang, Z. L. Self-powered nanowire devices, Nature Nanotechnology, vol. 5, pp. 366-373, 2010.
[3]
Wang Z. L. and Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, vol. 312, pp. 242-246, 2006.
[4]
Lu, M. P. Song, J. Lu, M. Y. Chen, M. T. Gao, Y. Chen, L. J. and Wang, Z. L. Piezoelectric nanogenerator using p-type ZnO nanowire arrays, Nano Letters, vol. 9, pp. 1223-1227, 2009.
[5]
Lu, X. Zhai, T. Zhang, X. Shen, Y. Yuan, L. Hu, B. Gong, L. Chen, J. Gao, Y. Zhou, J. et al., WO3Cx@ Au@ MnO2 Core-shell nanowires on carbon fabric for high-performance flexible supercapacitors, Advanced Materials, vol. 24, pp. 938-944, 2012.
[6]
Lin, L. Wang, S. Xie, Y. Jing, Q. Niu, S. Hu, Y. and Wang, Z. L. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy, Nano Letters, vol. 13, pp. 2916-2923, 2013.
[7]
Soin, N. Shah, T. H. Anand, S. C. Geng, J. Pornwannachai, W. Mandal, P. Reid, D. Sharma, S. Hadimani, R. L. Bayramol, D. V. and Siores, E. Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications, Energy & Environmental Science, vol. 7, pp. 1670-1679, 2014.
[8]
Lee, K. Y. Kim, D. Lee, J. H. Kim, T. Y. Gupta, M. K. and Kim, S. W. Unidirectional high-power generation via stress-induced dipole alignment from ZnSnO3 nanocubes/polymer hybrid piezoelectric nanogenerator, Advanced Functional Materials, vol. 24, pp. 37-43, 2014.
[9]
Hwang, J. O. Park, J. S. Choi, D. S. Kim, J. Y. Lee, S. H. Lee, K. E. Kim, Y. H. Song, M. H. Yoo, S. and Kim, S. O. Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes, ACS Nano, vol. 6, pp. 159-167, 2011.
[10]
Wang, S. Lin, L. Xie, Y. Jing, Q. Niu, S. and Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism, Nano Letters, vol. 13, pp. 2226-2233, 2013.
[11]
Yang, Y. Zhu, G. Zhang, H. Chen, J. Zhong, X. Lin, Z.-H. Su, Y. Bai, P. Wen, X. and Wang, Z. L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system, ACS Nano, vol. 7, pp. 9461-9468, 2013.
[12]
Han, M. Zhang, X.-S. Meng, B. Liu, W. Tang, W. Sun, X. Wang, W. and Zhang, H. r-Shaped hybrid nanogenerator with enhanced piezoelectricity, ACS Nano, vol. 7, pp. 8554-8560, 2013.
[13]
Xu, S. Yeh, Y.-W. Poirier, G. McAlpine, M. C. Register, R. A. and Yao, N. Flexible piezoelectric PMNCPT nanowire-based nanocomposite and device, Nano Letters, vol. 13, pp. 2393-2398, 2013.
[14]
Lin, L. Xie, Y. Wang, S. Wu, W. Niu, S. Wen, X. and Wang, Z. L. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging, ACS Nano, vol. 7, pp. 8266-8274, 2013.
[15]
Jung, J. H. Lee, M. Hong, J. I. Ding, Y. Chen, C. Y. Chou, L. J. and Lin, Z. L. Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator, ACS Nano, vol. 5, pp. 10041-10046, 2011.
[16]
Chang, C. E. Tran, V. H. Wang, J. B. Fuh, Y. K. and Lin, L. W. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency, Nano Letters, vol. 10, pp. 726-731, 2010.
[17]
Mannsfeld, S. C. B. Tee, B. C. K. Stoltenberg, R. M. Chen, C. V. H. H. Barman, S. Muir, B. V. O. Sokolov, A. N. Reese, C. and Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers, Nature Materials, vol. 9, pp. 859-864, 2010.
[18]
Lin, Y. X. Li, X. M. Xie, D. Feng, T. T. Chen, Y. Song, R. Tian, H. Ren, T. L. Zhong, M. L. Wang, K. L. et al., Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function, Energy & Environmental Science, vol. 6, pp. 108-115, 2013.
[19]
Lin, Z. H. Yang, Y. Wu, J. M. Liu, Y. Zhang, F. and Wang, Z. L. BaTiO3 Nanotubes-based flexible and transparent nanogenerators, Journal of Physical Chemistry Letters, vol. 3, pp. 3599-3604, 2012.
[20]
Jeong, C. K. Park, K. I. Ryu, J. Hwang, G. T. and Lee, K. J. Large-area and flexible lead-free nanocomposite fenerator using alkaline niobate particles and metal nanorod filler, Advanced Functional Materials, vol. 24, pp. 2620-2629, 2014.
Tsinghua Science and Technology
Pages 264-269
Cite this article:
Wang Z, Xue Q, Yang Y, et al. K 0.5Na 0.5NbO 𝟑-Based Self-Powered Pressure Sensor. Tsinghua Science and Technology, 2015, 20(3): 264-269. https://doi.org/10.1109/TST.2015.7128938

646

Views

54

Downloads

0

Crossref

N/A

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 04 March 2015
Accepted: 14 March 2015
Published: 19 June 2015
© The authors 2015
Return