Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The unexpected scaling phenomena have resulted in significant damages to the oil and gas industries, leading to issues such as heat exchanger failures and pipeline clogging. It is of practical and fundamental importance to understand the scaling mechanisms and develop efficient anti-scaling strategies. However, the underlying surface interaction mechanisms of scalants (e.g., calcite) with various substrates are still not fully understood. In this work, the colloidal probe atomic force microscopy (AFM) technique has been applied to directly quantify the surface forces between calcite particles and different metallic substrates, including carbon steel (CR1018), low alloy steel (4140), stainless steel (SS304) and tungsten carbide, under different water chemistries (i.e., salinity and pH). Measured force profiles revealed that the attractive van der Waals (VDW) interaction contributed to the attachment of the calcium carbonate particles on substrate surfaces, while the repulsive electric double layer (EDL) interactions could inhibit the attachment behaviors. High salinity and acidic pH conditions of aqueous solutions could weaken the EDL repulsion and promote the attachment behavior. The adhesion of calcite particles with CR1018 and 4140 substrates was much stronger than that with SS304 and tungsten carbide substrates. The bulk scaling tests in aqueous solutions from an industrial oil production process showed that much more severe scaling behaviors of calcite was detected on CR1018 and 4140 than those on SS304 and tungsten carbide, which agreed with surface force measurement results. Besides, high salinity and acidic pH can significantly enhance the scaling phenomena. This work provides fundamental insights into the scaling mechanisms of calcite at the nanoscale with practical implications for the selection of suitable anti-scaling materials in petroleum industries.
Abild-Pedersen, F., Greeley, J., Studt, F., et al., 2007. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99 (1), 16105. https://doi.org/10.1103/PhysRevLett.99.016105.
Amjad, Z., 1988. Calcium sulfate dihydrate (gypsum) scale formation on heat exchanger surfaces: the influence of scale inhibitors. J. Colloid Interface Sci. 123 (2), 523-536. https://doi.org/10.1016/0021-9797(88)90274-3.
Andritsos, N., Karabelas, A., 1999. The influence of particulates on CaCO3 scale formation. J. Heat Tran. 121 (1), 225-227. https://doi.org/10.1115/1.2825951.
Andritsos, N., Karabelas, A., 2003. Calcium carbonate scaling in a plate heat exchanger in the presence of particles. Int. J. Heat Mass Tran. 46 (24), 4613-4627. https://doi.org/10.1016/S0017-9310(03)00308-9.
Baesso, R.C., da Costa, A.C.A., Lutterbach, M.T.S., et al., 2023. Biodegradability assessment of scale inhibitors from oil industry. Petrol. Sci. Technol. 41 (10), 1131-1145. https://doi.org/10.1080/10916466.2022.2075011.
Bargir, S., Dunn, S., Jefferson, B., et al., 2009. The use of contact angle measurements to estimate the adhesion propensity of calcium carbonate to solid substrates in water. Appl. Surf. Sci. 255 (9), 4873-4879. https://doi.org/10.1016/j.apsusc.2008.12.017.
Bousselmi, L., Fiaud, C., Tribollet, B., et al., 1999. Impedance spectroscopic study of a steel electrode in condition of scaling and corrosion: interphase model. Electrochim. Acta 44 (24), 4357-4363. https://doi.org/10.1016/S0013-4686(99)00151-6.
Burakowski, T., Wierzchon, T., 1998. Surface Engineering of Metals: Principles, Equipment, Technologies. CRC press.
Burt, R., 1995. The transformation of the non-ferrous metals industries in the seventeenth and eighteenth centuries. Econ. Hist. Rev., 23-45. https://doi.org/10.2307/2597869.
Butt, F., Rahman, F., Baduruthamal, U., 1997. Evaluation of SHMP and advanced scale inhibitors for control of CaSO4, SrSO4, and CaCO3 scales in RO desalination. Desalination 109 (3), 323-332. https://doi.org/10.1016/S0011-9164(97)00078-7.
Calle-Vallejo, F., Martínez, J., García-Lastra, J.M., et al., 2012. Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces. Phys. Rev. Lett. 108 (11), 116103. https://doi.org/10.1103/PhysRevLett.108.116103.
Chen, S., Zheng, J., Li, L., et al., 2005. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. J. Am. Chem. Soc. 127 (41), 14473-14478. https://doi.org/10.1021/ja054169u.
Chesters, S.P., 2009. Innovations in the inhibition and cleaning of reverse osmosis membrane scaling and fouling. Desalination 238 (1–3), 22-29. https://doi.org/10.1016/j.desal.2008.01.031.
Cho, Y., Fan, C., Choi, B.-G., 1998. Use of electronic anti-fouling technology with filtration to prevent fouling in a heat exchanger. Int. J. Heat Mass Tran. 41 (19), 2961-2966. https://doi.org/10.1016/S0017-9310(98)00011-8.
Cumpson, P.J., Zhdan, P., Hedley, J., 2004. Calibration of AFM cantilever stiffness: a microfabricated array of reflective springs. Ultramicroscopy 100 (3–4), 241-251. https://doi.org/10.1016/j.ultramic.2003.10.005.
Dixon, D.V., Stoyanov, S.R., Xu, Y., et al., 2020. Challenges in developing polymer flocculants to improve bitumen quality in non-aqueous extraction processes: an experimental study. Petrol. Sci. 17, 811-821. https://doi.org/10.1007/s12182-019-00414-z.
Dong, S., Berelson, W.M., Adkins, J.F., et al., 2020. An atomic force microscopy study of calcite dissolution in seawater. Geochem. Cosmochim. Acta 283, 40-53. https://doi.org/10.1016/j.gca.2020.05.031.
Forrest, E., Schulze, R., Liu, C., et al., 2015. Influence of surface contamination on the wettability of heat transfer surfaces. Int. J. Heat Mass Tran. 91, 311-317. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.112.
Förster, M., Augustin, W., Bohnet, M., 1999. Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation. Chem. Eng. Process: Process Intensif. 38 (4–6), 449-461. https://doi.org/10.1016/S0255-2701(99)00042-2.
Froes, F., 1994. Advanced metals for aerospace and automotive use. Mater. Sci. Eng., A 184 (2), 119-133. https://doi.org/10.1016/0921-5093(94)91026-X.
Graham, G., Boak, L., Sorbie, K., 2003. The influence of formation calcium and magnesium on the effectiveness of generically different barium sulphate oilfield scale inhibitors. SPE Prod. Facil. 18 (1), 28-44. https://doi.org/10.2118/81825-PA.
Hasson, D., Avriel, M., Resnick, W., et al., 1968. Mechanism of calcium carbonate scale deposition on heat-transfer surfaces. Ind. Eng. Chem. Fundam. 7 (1), 59-65. https://doi.org/10.1021/i160025a011.
Hasson, D., Bramson, D., Limoni-Relis, B., et al., 1997. Influence of the flow system on the inhibitory action of CaCO3 scale prevention additives. Desalination 108 (1–3), 67-79. https://doi.org/10.1016/S0011-9164(97)00010-6.
Hasson, D., Shemer, H., Sher, A., 2011. State of the art of friendly “green” scale control inhibitors: a review article. Ind. Eng. Chem. Res. 50 (12), 7601-7607. https://doi.org/10.1021/ie200370v.
Hutter, J.L., Bechhoefer, J., 1993. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64 (7), 1868-1873. https://doi.org/10.1063/1.1143970.
Israelachvili, J.N., 2011. Intermolecular and Surface Forces. Academic press.
Jain, P.K., El-Sayed, M.A., 2007. Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells. J. Phys. Chem. C 111 (47), 17451-17454. https://doi.org/10.1021/jp0773177.
Kalin, M., Polajnar, M., 2014. The wetting of steel, DLC coatings, ceramics and polymers with oils and water: the importance and correlations of surface energy, surface tension, contact angle and spreading. Appl. Surf. Sci. 293, 97-108. https://doi.org/10.1016/j.apsusc.2013.12.109.
Kelland, M.A., 2011. Effect of various cations on the formation of calcium carbonate and barium sulfate scale with and without scale inhibitors. Ind. Eng. Chem. Res. 50 (9), 5852-5861. https://doi.org/10.1021/ie2003494.
Ketrane, R., Saidani, B., Gil, O., et al., 2009. Efficiency of five scale inhibitors on calcium carbonate precipitation from hard water: effect of temperature and concentration. Desalination 249 (3), 1397-1404. https://doi.org/10.1016/j.desal.2009.06.013.
Keysar, S., Semiat, R., Hasson, D., et al., 1994. Effect of surface roughness on the morphology of calcite crystallizing on mild steel. J. Colloid Interface Sci. 162 (2), 311-319. https://doi.org/10.1006/jcis.1994.1044.
Khormali, A., Petrakov, D.G., 2016. Laboratory investigation of a new scale inhibitor for preventing calcium carbonate precipitation in oil reservoirs and production equipment. Pet. Sci. 13, 320-327. https://doi.org/10.1007/s12182-016-0085-6.
Lang, N., Kohn, W., 1970. Theory of metal surfaces: charge density and surface energy. Phys. Rev. B 1 (12), 4555. https://doi.org/10.1103/PhysRevB.1.4555.
Li, A., Chang, J., Shui, T., et al., 2023. Probing interaction forces associated with calcite scaling in aqueous solutions by atomic force microscopy. J. Colloid Interface Sci. 633, 764-774. https://doi.org/10.1016/j.jcis.2022.11.114.
Li, A., Zhang, H., Liu, Q., et al., 2022. Effects of chemical inhibitors on the scaling behaviors of calcite and the associated surface interaction mechanisms. J. Colloid Interface Sci. 618, 507-517. https://doi.org/10.1016/j.jcis.2022.03.105.
MacAdam, J., Parsons, S.A., 2004. Calcium carbonate scale formation and control. Rev. Environ. Sci. Biotechnol. 3 (2), 159-169. https://doi.org/10.1007/s11157-004-3849-1.
Mady, M.F., Abdelaal, A.T., Kelland, M.A., et al., 2023a. Flexible, linear, and systematically expanded tetraphosphonate bolaamphiphiles and their inhibition performance against calcite and barite scale formation. Energy Fuels 37 (13), 9176-9184. https://doi.org/10.1021/acs.energyfuels.3c01428.
Mady, M.F., Abdelaal, A.T., Moschona, A., et al., 2023b. Systematic molecular-size variants in diphosphonate inhibitors for oilfield scale management. Energy Fuels 37 (6), 4365-4376. https://doi.org/10.1021/acs.energyfuels.2c04277.
Mohammed, I., Isah, A., Al Shehri, D., et al., 2022. Effect of sulfate-based scales on calcite mineral surface chemistry: insights from zeta-potential experiments and their implications on wettability. ACS Omega 7 (32), 28571-28587. https://doi.org/10.1021/acsomega.2c03403.
Mpelwa, M., Tang, S.-F., 2019. State of the art of synthetic threshold scale inhibitors for mineral scaling in the petroleum industry: a review. Pet. Sci. 16, 830-849. https://doi.org/10.1007/s12182-019-0299-5.
Müller-Steinhagen, H., Malayeri, M.R., Watkinson, A.P., 2011. Heat exchanger fouling: mitigation and cleaning strategies. Heat Tran. Eng. 32 (3–4), 189-196. https://doi.org/10.1080/01457632.2010.503108.
Pandey, B., Natarajan, K., 2015. Microbiology for Minerals, Metals, Materials and the Environment. CRC Press.
Saifelnasr, A., Bakheit, M., Kamal, K., et al., 2013. Calcium carbonate scale formation, prediction and treatment (case study gumry oilfield-pdoc). Int. Lett. Chem. Phys. Astron. 12 https://doi.org/10.18052/www.scipress.com/ILCPA.17.47.
Santander, C., Liu, J., Tan, X., et al., 2020. Destabilization of bitumen-coated fine solids in oil through water-assisted flocculation using biomolecules extracted from guar beans. Pet. Sci. 17, 1726-1736. https://doi.org/10.1007/s12182-020-00491-5.
Shakkthivel, P., Vasudevan, T., 2006. Acrylic acid-diphenylamine sulphonic acid copolymer threshold inhibitor for sulphate and carbonate scales in cooling water systems. Desalination 197 (1–3), 179-189. https://doi.org/10.1016/j.desal.2005.12.023.
Sheikholeslami, R., Watkinson, A., 1986. Scaling of plain and externally finned heat exchanger tubes. J. Heat Tran. 108 (1), 147-152. https://doi.org/10.1115/1.3246879.
Shi, C., Zhang, L., Xie, L., et al., 2016. Interaction mechanism of oil-in-water emulsions with asphaltenes determined using droplet probe AFM. Langmuir 32 (10), 2302-2310. https://doi.org/10.1021/acs.langmuir.5b04392.
Tang, Y., Yang, W., Yin, X., et al., 2008. Investigation of CaCO3 scale inhibition by PAA, ATMP and PAPEMP. Desalination 228 (1–3), 55-60. https://doi.org/10.1016/j.desal.2007.08.006.
Teng, K.H., Kazi, S.N., Amiri, A., et al., 2017. Calcium carbonate fouling on double-pipe heat exchanger with different heat exchanging surfaces. Powder Technol. 315, 216-226. https://doi.org/10.1016/j.powtec.2017.03.057.
Upadhyaya, G.S., 2001. Materials science of cemented carbides—an overview. Mater. Des. 22 (6), 483-489. https://doi.org/10.1016/S0261-3069(01)00007-3.
Vitos, L., Ruban, A., Skriver, H.L., et al., 1998. The surface energy of metals. Surf. Sci. 411 (1–2), 186-202. https://doi.org/10.1016/S0039-6028(98)00363-X.
Wang, Y., Babchin, J., Chernyi, L., et al., 1997. Rapid onset of calcium carbonate crystallization under the influence of a magnetic field. Water Res. 31 (2), 346-350. https://doi.org/10.1016/S0043-1354(96)00243-6.
Watkinson, A., Louis, L., Brent, R., 1974. Scaling of enhanced heat exchanger tubes. Can. J. Chem. Eng. 52 (5), 558-562. https://doi.org/10.1002/cjce.5450520503.
Watkinson, A., Martinez, O., 1975. Scaling of heat exchanger tubes by calcium carbonate. J. Heat Tran. 97 (4), 504-508. https://doi.org/10.1115/1.3450419.
Wu, W., Giese, R.J., Van Oss, C., 1995. Evaluation of the Lifshitz-van der Waals/acid-base approach to determine surface tension components. Langmuir 11 (1), 379-382. https://doi.org/10.1021/la00001a064.
Xie, L., Shi, C., Wang, J., et al., 2015. Probing the interaction between air bubble and sphalerite mineral surface using atomic force microscope. Langmuir 31 (8), 2438-2446. https://doi.org/10.1021/la5048084.
Yang, Q., Liu, Y., Gu, A., et al., 2001. Investigation of calcium carbonate scaling inhibition and scale morphology by AFM. J. Colloid Interface Sci. 240 (2), 608-621. https://doi.org/10.1006/jcis.2001.7669.
Zhao, Q., Wang, X., 2005. Heat transfer surfaces coated with fluorinated diamond-like carbon films to minimize scale formation. Surf. Coating. Technol. 192 (1), 77-80. https://doi.org/10.1016/j.surfcoat.2004.02.030.
Zhou, M., Gu, Y., Yi, R., et al., 2020. Synthesis and property study of ter-copolymer P (MA-AMPS-HPA) scale inhibitor. J. Polym. Res. 27, 1-12. https://doi.org/10.1007/s10965-020-02270-7.
Zhu, M.L., Qian, H.J., Fan, W.H., et al., 2022. Surface lurking and interfacial ion release strategy for fabricating a superhydrophobic coating with scaling inhibition. Pet. Sci. 19 (6), 3068-3079. https://doi.org/10.1016/j.petsci.2022.07.005.
Zhu, M.L., Qian, H.J., Yuan, R.X., et al., 2021. EDTA interfacial chelation Ca2+ incorporates superhydrophobic coating for scaling inhibition of CaCO3 in petroleum industry. Pet. Sci. 18, 951-961. https://doi.org/10.1007/s12182-021-00558-x.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).