AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Core-shell structured silk Fibroin/PVDF piezoelectric nanofibers for energy harvesting and self-powered sensing

Siqi Wanga,1Kunming Shia,1Bin ChaiaShichong QiaobZhuoli HuangbPingkai JiangaXingyi Huanga( )
Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
Department of Implantology, Shanghai Ninth Peoples' Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

The development of wearable and portable electronics calls for flexible piezoelectric materials to fabricate self-powered devices. However, a big challenge in piezoelectric material design is to boost the output performance while ensuring its flexibility and biocompatibility. Here, all-organic and core-shell structured silk fibroin (SF)/poly(vinylidene difluoride) (PVDF) piezoelectric nanofibers (NFs) with excellent flexibility are fabricated using a simple electrospinning strategy. The strong intermolecular interaction between SF and PVDF promotes the β-phase nucleation in the core-shell structure, which significantly enhances the output performance. An output of 16.5 ​V was achieved in SF/PVDF NFs, which is more than 6-fold enhancement compared with that of pure PVDF NFs. In addition, the piezoelectric device can sensitively detect the mechanical stimulation from joint bending, demonstrating its great potential in self-powered sensor. Otherwise, the piezoelectric device can be also applied to control the movement of a smart car, successfully, achieving its application in the human-machine interaction.

References

[1]

Z. Zhang, L. Cui, X. Shi, X. Tian, D. Wang, C. Gu, E. Chen, X. Cheng, Y. Xu, Y. Hu, J. Zhang, L. Zhou, H.H. Fong, P. Ma, G. Jiang, X. Sun, B. Zhang, H. Peng, Adv. Mater. 30 (2018), e1800323.

[2]

J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida, M.F. Lin, P.S. Lee, Nat. Commun. 9 (2018) 4280.

[3]

S. Lim, D. Son, J. Kim, Y.B. Lee, J.-K. Song, S. Choi, D.J. Lee, J.H. Kim, M. Lee, T. Hyeon, D.-H. Kim, Adv. Funct. Mater. 25 (2015) 375–383.

[4]

Z. Zhao, C. Yan, Z. Liu, X. Fu, L.M. Peng, Y. Hu, Z. Zheng, Adv. Mater. 28 (2016) 10267–10274.

[5]

S.K. Ghosh, P. Adhikary, S. Jana, A. Biswas, V. Sencadas, S.D. Gupta, B. Tudu, D. Mandal, Nanomater. Energy 36 (2017) 166–175.

[6]

H. Kim, Y.T. Kwon, H.R. Lim, J.H. Kim, Y.S. Kim, W.H. Yeo, Adv. Funct. Mater. (2020) 2005692.

[7]

K. Shi, H. Zou, B. Sun, P. Jiang, J. He, X. Huang, Adv. Funct. Mater. 30 (2019) 1904536.

[8]

J. Li, J. Zhao, J.A. Rogers, Acc. Chem. Res. 52 (2019) 53–62.

[9]

A. Sumboja, J. Liu, W.G. Zheng, Y. Zong, H. Zhang, Z. Liu, Chem. Soc. Rev. 47 (2018) 5919–5945.

[10]

J. Fang, H. Niu, H. Wang, X. Wang, T. Lin, Energy Environ. Sci. 6 (2013) 2196–2202.

[11]

P.X. Gao, J. Song, J. Liu, Z.L. Wang, Adv. Mater. 19 (2007) 67–72.

[12]

S. Siddiqui, H.B. Lee, D.-I. Kim, L.T. Duy, A. Hanif, N.-E. Lee, Adv. Energy Mater. 8 (2018) 1701520.

[13]

S. Lee, T. Kang, W. Lee, M.M. Afandi, J. Ryu, J. Kim, Sci. Rep. 8 (2018) 301.

[14]

Z.L. Wang, J. Song, Science 312 (2006) 242–246.

[15]

B.A. Newman, P. Chen, K.D. Pae, J.I. Scheinbeim, J. Appl. Phys. 51 (1980) 5161–5164.

[16]

K.S. Ramadan, D. Sameoto, S. Evoy, Smart Mater. Struct. 23 (2014), 033001.

[17]

P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39 (2014) 683–706.

[18]

C. Wan, C.R. Bowen, J. Mater. Chem. 5 (2017) 3091–3128.

[19]

H. He, Y. Fu, W. Zang, Q. Wang, L. Xing, Y. Zhang, X. Xue, Nanomater. Energy 31 (2017) 37–48.

[20]

W. Deng, T. Yang, L. Jin, C. Yan, H. Huang, X. Chu, Z. Wang, D. Xiong, G. Tian, Y. Gao, H. Zhang, W. Yang, Nanomater. Energy 55 (2019) 516–525.

[21]

T. Yang, H. Pan, G. Tian, B. Zhang, D. Xiong, Y. Gao, C. Yan, X. Chu, N. Chen, S. Zhong, L. Zhang, W. Deng, W. Yang, Nanomater. Energy 72 (2020) 104706.

[22]

Y. Fu, H. He, T. Zhao, Y. Dai, W. Han, J. Ma, L. Xing, Y. Zhang, X. Xue, Nano-Micro Lett. 10 (2018) 76.

[23]

W. Han, L. Zhang, H. He, H. Liu, L. Xing, X. Xue, Nanotechnology 29 (2018) 255501.

[24]

K. Shi, B. Sun, X. Huang, P. Jiang, Nanomater. Energy 52 (2018) 153–162.

[25]

Z. Zhou, Z. Zhang, Q. Zhang, H. Yang, Y. Zhu, Y. Wang, L. Chen, ACS Appl. Mater. Interfaces 12 (2020) 1567–1576.

[26]

K. Shi, B. Chai, H. Zou, P. Shen, B. Sun, P. Jiang, Z. Shi, X. Huang, Nanomater. Energy 80 (2021) 105515.

[27]

S.H. Wankhade, S. Tiwari, A. Gaur, P. Maiti, Energy Rep. 6 (2020) 358–364.

[28]

E. Kabir, M. Khatun, L. Nasrin, M.J. Raihan, M. Rahman, J. Phys. D Appl. Phys. 50 (2017) 163002.

[29]

M.M. Abolhasani, K. Shirvanimoghaddam, M. Naebe, Compos. Sci. Technol. 138 (2017) 49–56.

[30]

J. Yan, M. Liu, Y.G. Jeong, W. Kang, L. Li, Y. Zhao, N. Deng, B. Cheng, G. Yang, Nanomater. Energy 56 (2019) 662–692.

[31]

K. Maity, S. Garain, K. Henkel, D. Schmeißer, D. Mandal, ACS Appl. Polym. Mater. 2 (2020) 862–878.

[32]

C. Vepari, D.L. Kaplan, Prog. Polym. Sci. 32 (2007) 991–1007.

[33]

Y. Sang, M. Li, J. Liu, Y. Yao, Z. Ding, L. Wang, L. Xiao, Q. Lu, X. Fu, D.L. Kaplan, ACS Appl. Mater. Interfaces 10 (2018) 9290–9300.

[34]

L.-D. Koh, Y. Cheng, C.-P. Teng, Y.-W. Khin, X.-J. Loh, S.-Y. Tee, M. Low, E. Ye, H.-D. Yu, Y.-W. Zhang, M.-Y. Han, Prog. Polym. Sci. 46 (2015) 86–110.

[35]

A.C. Patil, Z. Xiong, N.V. Thakor, Small Methods 4 (2020) 2000274.

[36]

B. Zhu, H. Wang, W.R. Leow, Y. Cai, X.J. Loh, M.Y. Han, X. Chen, Adv. Mater. 28 (2016) 4250–4265.

[37]

H.-J. Kim, J.-H. Kim, K.-W. Jun, J.-H. Kim, W.-C. Seung, O.H. Kwon, J.-Y. Park, S.-W. Kim, I.-K. Oh, Adv. Energy Mater. 6 (2016) 1502329.

[38]

Q. Wang, S. Ling, X. Liang, H. Wang, H. Lu, Y. Zhang, Adv. Funct. Mater. 29 (2019) 1808695.

[39]

C. Wang, K. Xia, Y. Zhang, D.L. Kaplan, Acc. Chem. Res. 52 (2019) 2916–2927.

[40]

M. Zhang, M. Zhao, M. Jian, C. Wang, A. Yu, Z. Yin, X. Liang, H. Wang, K. Xia, X. Liang, J. Zhai, Y. Zhang, Matter 1 (2019) 168–179.

[41]

Y. Zhu, P. Jiang, X. Huang, Compos. Sci. Technol. 179 (2019) 115–124.

[42]

B. Mohammadi, A.A. Yousefi, S.M. Bellah, Polym. Test. 26 (2007) 42–50.

[43]

S. Bodkhe, G. Turcot, F.P. Gosselin, D. Therriault, ACS Appl. Mater. Interfaces 9 (2017) 20833–20842.

[44]

T. Yucel, P. Cebe, D.L. Kaplan, Adv. Funct. Mater. 21 (2011) 779–785.

[45]

X. Lu, H. Qu, M. Skorobogatiy, ACS Nano 11 (2017) 2103–2114.

[46]

W. Zeng, X.-M. Tao, S. Chen, S. Shang, H.L.W. Chan, S.H. Choy, Energy Environ. Sci. 6 (2013) 2631–2638.

[47]

J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao, S. Park, Adv. Mater. 31 (2019), e1904765.

Nano Materials Science
Pages 126-132
Cite this article:
Wang S, Shi K, Chai B, et al. Core-shell structured silk Fibroin/PVDF piezoelectric nanofibers for energy harvesting and self-powered sensing. Nano Materials Science, 2022, 4(2): 126-132. https://doi.org/10.1016/j.nanoms.2021.07.008

485

Views

19

Downloads

30

Crossref

38

Web of Science

37

Scopus

0

CSCD

Altmetrics

Revised: 07 July 2021
Accepted: 25 May 2021
Published: 07 August 2021
© 2021 Chongqing University.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return