AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Recent advances in the utilization of copper sulfide compounds for electrochemical CO2 reduction

Yingkang ChenaKejun ChenaJunwei FuaAkira YamaguchidHongmei Lia( )Hao PanbJunhua HucMasahiro Miyauchid( )Min Liua ( )
State Key Laboratory of Powder Metallurgy, Shenzhen Research Institute, School of Physics and Electronics, Central South University, PR China
Department of Periodontics & Oral Mucosal Section, Xiangya Stomatological Hospital, Central South University, 72 Xiangya Road, Changsha, 410008, Hunan, PR China
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, PR China
Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
Show Author Information

Abstract

Converting carbon dioxide (CO2) into value-added chemicals by CO2 reduction has been considered as a potential way to solve the current energy crisis and environmental problem. Among the methods of CO2 reduction, the electrochemical method has been widely used due to its mild reaction condition and high reaction efficiency. In the electrochemical reduction system, the CO2 electrocatalyst is the most important part. Although many CO2 electrocatalysts have been developed, efficient catalysts with high activity, selectivity and stability are still lacking. Copper sulfide compound, as a low-toxicity and emerging material, has broad prospects in the field of CO2 reduction due to its unique structural and electrochemical properties. Much progress has been achieved with copper sulfide nanocrystalline and the field is rapidly developing. This paper summarizes the preparation, recent progress in development, and factors affecting the electrocatalytic CO2 reduction performance with copper sulfide compound as a catalyst. Prospects for future development are also outlined, with the aim of using copper sulfide compound as a highly active and stable electrocatalyst for CO2 reduction.

References

[1]

S. Ma, P.J. Kenis, Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities, Curr. Opin. Chem. Eng. 2 (2) (2013) 191–199.

[2]

M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2, Chem. Rev. 114 (3) (2013) 1709–1742.

[3]

M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science 338 (6107) (2012) 643–647.

[4]
KojimaA.TeshimaK.ShiraiY.MiyasakaT.Organometal halide perovskites as visible-light sensitizers for photovoltaic cellsJ. Am. Chem. Soc.2009131176050605110.1021/ja809598r

A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (17) (2009) 6050–6051.

[5]

M. Gratzel, Photoelectrochemical cells, Nature 414 (6861) (2001) 338–344.

[6]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Graetzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature 499 (7458) (2013) 316–319.

[7]

M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells,, Chem. Rev. 110 (11) (2010) 6446–6473.

[8]

Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals, Am. Mineral. 85 (3–4) (2000) 543–556.

[9]

J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W. Lou, Y. Xie, DefectRich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution, Adv. Mater. 25 (40) (2013) 5807–5813.

[10]

Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions, Chem. Soc. Rev. 44 (8) (2015) 2060–2086.

[11]
WangX.MaedaK.ThomasA.TakanabeK.XinG.CarlssonJ.M.DomenK.AntoniettiM.A metal-free polymeric photocatalyst for hydrogen production from water under visible lightNat. Mater.200981768010.1038/nmat2317

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8 (1) (2009) 76–80.

[12]

N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U.S.A. 103 (43) (2006) 15729–15735.

[13]

A. Liu, K. Liu, H. Zhou, H. Li, X. Qiu, Y. Yang, M. Liu, Solution evaporation processed high quality perovskite films, Sci. Bull. 63 (23) (2018) 1591–1596.

[14]

K. Chen, H. Li, Y. Xu, K. Liu, H. Li, X. Xu, X. Qiu, M. Liu, Untying thioether bond structures enabled by “voltage-scissors” for stable room temperature sodium–sulfur batteries, Nanoscale 11 (13) (2019) 5967–5973.

[15]
LiY.C.WangZ.YuanT.NamD.H.LuoM.WicksJ.ChenB.LiJ.LiF.de ArquerF.P.G.WangY.DinhC.T.VoznyyO.SintonD.SargentE.H.Binding site diversity promotes CO2 electroreduction to ethanolJ. Am. Chem. Soc.2019141218584859110.1021/jacs.9b02945

Y.C. Li, Z. Wang, T. Yuan, D.H. Nam, M. Luo, J. Wicks, B. Chen, J. Li, F. Li, F.P.G. de Arquer, Y. Wang, C.T. Dinh, O. Voznyy, D. Sinton, E.H. Sargent, Binding site diversity promotes CO2 electroreduction to ethanol, J. Am. Chem. Soc. 141 (21) (2019) 8584–8591.

[16]

Z.Q. Liang, T.T. Zhuang, A. Seifitokaldani, J. Li, C.W. Huang, C.S. Tan, Y. Li, P. De Luna, C.T. Dinh, Y. Hu, Q. Xiao, P.L. Hsieh, Y. Wang, F. Li, R. Quintero-Bermudez, Y. Zhou, P. Chen, Y. Pang, S.C. Lo, L.J. Chen, H. Tan, Z. Xu, S. Zhao, D. Sinton, E.H. Sargent, Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2, Nat. Commun. 9 (1) (2018) 3828.

[17]
HoangT.T.H.VermaS.MaS.C.FisterT.T.TimoshenkoJ.FrenkelA.I.KenisP.J.A.GewirthA.A.Nanoporous copper silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanolJ. Am. Chem. Soc.2018140175791579710.1021/jacs.8b01868

T.T.H. Hoang, S. Verma, S.C. Ma, T.T. Fister, J. Timoshenko, A.I. Frenkel, P.J.A. Kenis, A.A. Gewirth, Nanoporous copper silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol, J. Am. Chem. Soc. 140 (17) (2018) 5791–5797.

[18]

D. Ren, B.S.H. Ang, B.S. Yeo, Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts, ACS Catal. 6 (12) (2016) 8239–8247.

[19]

H. Lee, B.S. Kwak, N.-K. Park, J.-I. Baek, H.-J. Ryu, M. Kang, Assembly of a check-patterned CuSx-TiO2 film with an electron-rich pool and its application for the photoreduction of carbon dioxide to methane, Appl. Surf. Sci. 393 (2017) 385–396.

[20]
ZhaoZ.PengX.LiuX.SunX.ShiJ.HanL.LiG.LuoJ.Efficient and stable electroreduction of CO2 to CH4 on CuS nanosheet arraysJ. Mater. Chem. A2017538202392024310.1039/C7TA05507B

Z. Zhao, X. Peng, X. Liu, X. Sun, J. Shi, L. Han, G. Li, J. Luo, Efficient and stable electroreduction of CO2 to CH4 on CuS nanosheet arrays, J. Mater. Chem. A 5 (38) (2017) 20239–20243.

[21]

J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Product selectivity of photocatalytic CO2 reduction reactions, Mater. Today (2019), https://doi.org/10.1016/j.mattod.2019.06.009.

[22]

J. Fu, K. Liu, K. Jiang, H. Li, P. An, W. Li, N. Zhang, H. Li, X. Xu, H. Zhou, Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO2 to CH4, Adv. Sci. (2019) 1900796.

[23]

M. Liu, L. Piao, L. Zhao, S. Ju, Z. Yan, T. He, C. Zhou, W. Wang, Anatase TiO2 single crystals with exposed {001} and {110} facets: facile synthesis and enhanced photocatalysis, Chem. Commun. 46 (10) (2010) 1664–1666.

[24]

S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons, ACS Nano 4 (3) (2010) 1259–1278.

[25]

M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C.T. Dinh, F. Fan, C. Cao, Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration, Nature 537 (7620) (2016) 382.

[26]

K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces, Energy Environ. Sci. 5 (5) (2012) 7050–7059.

[27]

E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels, Chem. Soc. Rev. 38 (1) (2009) 89–99.

[28]

A.M. Appel, J.E. Bercaw, A.B. Bocarsly, H. Dobbek, D.L. DuBois, M. Dupuis, J.G. Ferry, E. Fujita, R. Hille, P.J.A. Kenis, C.A. Kerfeld, R.H. Morris, C.H.F. Peden, A.R. Portis, S.W. Ragsdale, T.B. Rauchfuss, J.N.H. Reek, L.C. Seefeldt, R.K. Thauer, G.L. Waldrop, Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation, Chem. Rev. 113 (8) (2013) 6621–6658.

[29]

B.D. Moore, S.H. Cheng, D. Sims, J.R. Seemann, The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2, Plant Cell Environ. 22 (6) (1999) 567–582.

[30]
FarquharG.D.von CaemmererS.BerryJ.A.A biochemical model of photosynthetic CO2 assimilation in leaves of C3 speciesPlanta19801491789010.1007/BF00386231

G.D. Farquhar, S. von Caemmerer, J.A. Berry, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta 149 (1) (1980) 78–90.

[31]
ZhouH.LiuK.LiH.CaoM.FuJ.GaoX.HuJ.LiW.PanH.ZhanJ.Recent advances in different-dimension electrocatalysts for carbon dioxide reductionJ. Colloid Interface Sci.2019550174710.1016/j.jcis.2019.04.077

H. Zhou, K. Liu, H. Li, M. Cao, J. Fu, X. Gao, J. Hu, W. Li, H. Pan, J. Zhan, Recent advances in different-dimension electrocatalysts for carbon dioxide reduction, J. Colloid Interface Sci. 550 (2019) 17–47.

[32]
QiaoJ.LiuY.HongF.ZhangJ.A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuelsChem. Soc. Rev.201443263167510.1039/C3CS60323G

J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels, Chem. Soc. Rev. 43 (2) (2014) 631–675.

[33]

X. Liu, J. Xiao, H. Peng, X. Hong, K. Chan, J.K. Norskov, Understanding trends in electrochemical carbon dioxide reduction rates, Nat. Commun. 8 (2017) 15438.

[34]
ZhengY.VasileffA.ZhouX.JiaoY.JaroniecM.QiaoS.Z.Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalystsJ. Am. Chem. Soc.2019141197646765910.1021/jacs.9b02124

Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, S.Z. Qiao, Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts, J. Am. Chem. Soc. 141 (19) (2019) 7646–7659.

[35]

B. Qin, Y. Li, H. Wang, G. Yang, Y. Cao, H. Yu, Q. Zhang, H. Liang, F. Peng, Efficient electrochemical reduction of CO2 into CO promoted by sulfur vacancies, Nano Energy 60 (2019) 43–51.

[36]

S. Jin, What else can photoelectrochemical solar energy conversion do besides water splitting and CO2 reduction? ACS Energy Lett. 3 (10) (2018) 2610–2612.

[37]

G. Centi, S. Perathoner, CO2-based energy vectors for the storage of solar energy, Greenh. Gases 1 (1) (2011) 21–35.

[38]

Y. Song, W. Chen, C. Zhao, S. Li, W. Wei, Y. Sun, Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol, Angew. Chem. Int. Ed. 56 (36) (2017) 10840–10844.

[39]

B. Kumar, M. Asadi, D. Pisasale, S. Sinha-Ray, B.A. Rosen, R. Haasch, J. Abiade, A.L. Yarin, A. Salehi-Khojin, Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction, Nat. Commun. 4 (2013) 2819.

[40]

J. Wu, R.M. Yadav, M. Liu, P.P. Sharma, C.S. Tiwary, L. Ma, X. Zou, X.-D. Zhou, B.I. Yakobson, J. Lou, Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes, ACS Nano 9 (5) (2015) 5364–5371.

[41]
MuttaqienF.HamamotoY.InagakiK.MorikawaY.Dissociative adsorption of CO2 on flat, stepped, and kinked Cu surfacesJ. Chem. Phys.2014141303470210.1063/1.4887362

F. Muttaqien, Y. Hamamoto, K. Inagaki, Y. Morikawa, Dissociative adsorption of CO2 on flat, stepped, and kinked Cu surfaces, J. Chem. Phys. 141 (3) (2014) 034702.

[42]

M. Ma, K. Djanashvili, W.A. Smith, Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires, Phys. Chem. Chem. Phys. 17 (32) (2015) 20861–20867.

[43]

J. Wang, Z. Li, C. Dong, Y. Feng, J. Yang, H. Liu, X. Du, Silver/copper interface for relay electroreduction of carbon dioxide to ethylene, ACS Appl. Mater. Interfaces 11 (3) (2019) 2763–2767.

[44]

D. Raciti, Y. Wang, J.H. Park, C. Wang, Three-dimensional hierarchical copper-based nanostructures as advanced electrocatalysts for CO2 reduction, ACS Appl. Mater. Interfaces 1 (6) (2018) 2392–2398.

[45]
ZhuW.ZhangY.-J.ZhangH.LvH.LiQ.MichalskyR.PetersonA.A.SunS.Active and selective conversion of CO2 to CO on ultrathin Au nanowiresJ. Am. Chem. Soc.201413646161321613510.1021/ja5095099

W. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A.A. Peterson, S. Sun, Active and selective conversion of CO2 to CO on ultrathin Au nanowires, J. Am. Chem. Soc. 136 (46) (2014) 16132–16135.

[46]

M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C.T. Dinh, F. Fan, C. Cao, F.P.G. de Arquer, T.S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S.O. Kelley, E.H. Sargent, Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration, Nature 537 (7620) (2016) 382–386.

[47]
MistryH.ReskeR.ZengZ.ZhaoZ.-J.GreeleyJ.StrasserP.Roldan CuenyaB.Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticlesJ. Am. Chem. Soc.201413647164731647610.1021/ja508879j

H. Mistry, R. Reske, Z. Zeng, Z.-J. Zhao, J. Greeley, P. Strasser, B. Roldan Cuenya, Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles, J. Am. Chem. Soc. 136 (47) (2014) 16473–16476.

[48]

M. Asadi, K. Kim, C. Liu, A.V. Addepalli, P. Abbasi, P. Yasaei, P. Phillips, A. Behranginia, J.M. Cerrato, R. Haasch, P. Zapol, B. Kumar, R.F. Klie, J. Abiade, L.A. Curtiss, A. Salehi-Khojin, Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid, Science 353 (6298) (2016) 467–470.

[49]
AzumaM.HashimotoK.HiramotoM.WatanabeM.SakataT.Carbon dioxide reduction at low temperature on various metal electrodesJ. Electroanal. Chem. Interfacial Electrochem.1989260244144510.1016/0022-0728(89)87158-X

M. Azuma, K. Hashimoto, M. Hiramoto, M. Watanabe, T. Sakata, Carbon dioxide reduction at low temperature on various metal electrodes, J. Electroanal. Chem. Interfacial Electrochem. 260 (2) (1989) 441–445.

[50]
HaraK.KudoA.SakataT.Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyteJ. Electroanal. Chem.19953911–2141147

K. Hara, A. Kudo, T. Sakata, Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte, J. Electroanal. Chem. 391 (1–2) (1995) 141–147.

10.1016/0022-0728(95)03935-A
[51]

S. Kaneco, Y. Ueno, H. Katsumata, T. Suzuki, K. Ohta, Electrochemical reduction of CO2 in copper particle-suspended methanol, Chem. Eng. J. 119 (2–3) (2006) 107–112.

[52]
GattrellM.GuptaN.CoA.A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copperJ. Electroanal. Chem.2006594111910.1016/j.jelechem.2006.05.013

M. Gattrell, N. Gupta, A. Co, A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper, J. Electroanal. Chem. 594 (1) (2006) 1–19.

[53]

Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Adsorption of CO accompanied with simultaneous charge transfer on copper single crystal electrodes related with electrochemical reduction of CO2 to hydrocarbons, Surf. Sci. 335 (1995) 258–263.

[54]
HoriY.TakahashiI.KogaO.HoshiN.Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodesJ. Mol. Catal. A Chem.20031991–23947

Y. Hori, I. Takahashi, O. Koga, N. Hoshi, Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes, J. Mol. Catal. A Chem. 199 (1–2) (2003) 39–47.

10.1016/S1381-1169(03)00016-5
[55]
ReskeR.MistryH.BehafaridF.Roldan CuenyaB.StrasserP.Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticlesJ. Am. Chem. Soc.2014136196978698610.1021/ja500328k

R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles, J. Am. Chem. Soc. 136 (19) (2014) 6978–6986.

[56]

J. Chen, S.K. Iyemperumal, T. Fenton, A. Carl, R. Grimm, G. Li, N.A. Deskins, Synergy between defects, photoexcited electrons, and supported single atom catalysts for CO2 reduction, ACS Catal. 8 (11) (2018) 10464–10478.

[57]

W. Tang, A.A. Peterson, A.S. Varela, Z.P. Jovanov, L. Bech, W.J. Durand, S. Dahl, J.K. Nørskov, I. Chorkendorff, The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction, Phys. Chem. Chem. Phys. 14 (1) (2012) 76–81.

[58]

M. Ma, K. Djanashvili, W.A. Smith, Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays, Angew. Chem. Int. Ed. 55 (23) (2016) 6680–6684.

[59]

Y. Li, F. Cui, M.B. Ross, D. Kim, Y. Sun, P. Yang, Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires, Nano Lett. 17 (2) (2017) 1312–1317.

[60]
LiC.W.KananM.W.CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O filmsJ. Am. Chem. Soc.2012134177231723410.1021/ja3010978

C.W. Li, M.W. Kanan, CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films, J. Am. Chem. Soc. 134 (17) (2012) 7231–7234.

[61]
ChengT.XiaoH.Goddard 3rdW.A.Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu(100) surface at 298 K from quantum mechanics free energy calculations with explicit waterJ. Am. Chem. Soc.201613842138021380510.1021/jacs.6b08534

T. Cheng, H. Xiao, W.A. Goddard 3rd, Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu(100) surface at 298 K from quantum mechanics free energy calculations with explicit water, J. Am. Chem. Soc. 138 (42) (2016) 13802–13805.

[62]
LiQ.FuJ.ZhuW.ChenZ.ShenB.WuL.XiZ.WangT.LuG.ZhuJ.J.SunS.Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structureJ. Am. Chem. Soc.2017139124290429310.1021/jacs.7b00261

Q. Li, J. Fu, W. Zhu, Z. Chen, B. Shen, L. Wu, Z. Xi, T. Wang, G. Lu, J.J. Zhu, S. Sun, Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure, J. Am. Chem. Soc. 139 (12) (2017) 4290–4293.

[63]

Q. Guo, Q. Zhang, H. Wang, Z. Liu, Z. Zhao, Core-shell structured ZnO@Cu-Zn–Al layered double hydroxides with enhanced photocatalytic efficiency for CO2 reduction, Catal. Commun. 77 (2016) 118–122.

[64]
ManiP.SrivastavaR.StrasserP.Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodesJ. Phys. Chem. C200811272770277810.1021/jp0776412

P. Mani, R. Srivastava, P. Strasser, Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes, J. Phys. Chem. C 112 (7) (2008) 2770–2778.

[65]
HoangT.T.VermaS.MaS.FisterT.T.TimoshenkoJ.FrenkelA.I.KenisP.J.GewirthA.A.Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanolJ. Am. Chem. Soc.2018140175791579710.1021/jacs.8b01868

T.T. Hoang, S. Verma, S. Ma, T.T. Fister, J. Timoshenko, A.I. Frenkel, P.J. Kenis, A.A. Gewirth, Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol, J. Am. Chem. Soc. 140 (17) (2018) 5791–5797.

[66]

X. Zheng, Y. Ji, J. Tang, J. Wang, B. Liu, H.-G. Steinrück, K. Lim, Y. Li, M.F. Toney, K. Chan, Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials, Nat. Catal. 2 (1) (2019) 55.

[67]

C.W. Li, J. Ciston, M.W. Kanan, Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper, Nature 508 (7497) (2014) 504.

[68]

T.-T. Zhuang, Z.-Q. Liang, A. Seifitokaldani, Y. Li, P. De Luna, T. Burdyny, F. Che, F. Meng, Y. Min, R. Quintero-Bermudez, C.T. Dinh, Y. Pang, M. Zhong, B. Zhang, J. Li, P.-N. Chen, X.-L. Zheng, H. Liang, W.-N. Ge, B.-J. Ye, D. Sinton, S.-H. Yu, E.H. Sargent, Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi–carbon alcohols, Nat. Catal. 1 (6) (2018) 421–428.

[69]

M. Edelmannová, K.-Y. Lin, J.C. Wu, I. Troppová, L. Čapek, K. Kočí, Photocatalytic hydrogenation and reduction of CO2 over CuO/TiO2 photocatalysts, Appl. Surf. Sci. 454 (2018) 313–318.

[70]
YanoH.TanakaT.NakayamaM.OguraK.Selective electrochemical reduction of CO2 to ethylene at a three-phase interface on copper (Ⅰ) halide-confined Cu-mesh electrodes in acidic solutions of potassium halidesJ. Electroanal. Chem.2004565228729310.1016/j.jelechem.2003.10.021

H. Yano, T. Tanaka, M. Nakayama, K. Ogura, Selective electrochemical reduction of CO2 to ethylene at a three-phase interface on copper (Ⅰ) halide-confined Cumesh electrodes in acidic solutions of potassium halides, J. Electroanal. Chem. 565 (2) (2004) 287–293.

[71]

Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang, P. De Luna, H. Yuan, J. Li, Z. Wang, H. Xie, Dopant-induced electron localization drives CO2 reduction to C-2 hydrocarbons, Nat. Commun. 10 (9) (2018) 974.

[72]

Z. Li, L. Mi, W. Chen, H. Hou, C. Liu, H. Wang, Z. Zheng, C. Shen, Three-dimensional CuS hierarchical architectures as recyclable catalysts for dye decolorization, CrystEngComm 14 (11) (2012) 3965–3971.

[73]
HansenH.A.VarleyJ.B.PetersonA.A.NørskovJ.K.Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to COJ. Phys. Chem. Lett.20134338839210.1021/jz3021155

H.A. Hansen, J.B. Varley, A.A. Peterson, J.K. Nørskov, Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO, J. Phys. Chem. Lett. 4 (3) (2013) 388–392.

[74]

L. Sun, Employing ZnS as a capping material for PbS quantum dots and bulk heterojunction solar cells, Sci. China Mater. 59 (10) (2016) 817–824.

[75]

L. Sun, Q. Wang, PbS quantum dots capped with amorphous ZnS for bulk heterojunction solar cells: the solvent effect, ACS Appl. Mater. Interfaces 6 (16) (2014) 14239–14246.

[76]
ShenC.SunL.KohZ.Y.WangQ.Cuprous sulfide counter electrodes prepared by ion exchange for high-efficiency quantum dot-sensitized solar cellsJ. Mater. Chem. A2014282807281310.1039/c3ta14520d

C. Shen, L. Sun, Z.Y. Koh, Q. Wang, Cuprous sulfide counter electrodes prepared by ion exchange for high-efficiency quantum dot-sensitized solar cells, J. Mater. Chem. A 2 (8) (2014) 2807–2813.

[77]

L. Sun, Z.Y. Koh, Q. Wang, PbS quantum dots embedded in a ZnS dielectric matrix for bulk heterojunction solar cell applications, Adv. Mater. 25 (33) (2013) 4598–4604.

[78]

X.L. Yu, C.B. Cao, H.S. Zhu, Q.S. Li, C.L. Liu, Q.H. Gong, Nanometer-sized copper sulfide hollow spheres with strong optical-limiting properties, Adv. Funct. Mater. 17 (8) (2007) 1397–1401.

[79]

Y. Lou, A.C. Samia, J. Cowen, K. Banger, X. Chen, H. Lee, C. Burda, Evaluation of the photoinduced electron relaxation dynamics of Cu1.8S quantum dots, Phys. Chem. Chem. Phys. 5 (6) (2003) 1091–1095.

[80]

Y. Wu, C. Wadia, W. Ma, B. Sadtler, A.P. Alivisatos, Synthesis and photovoltaic application of copper (Ⅰ) sulfide nanocrystals, Nano Lett. 8 (8) (2008) 2551–2555.

[81]

H. Lee, S.W. Yoon, E.J. Kim, J. Park, In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials, Nano Lett. 7 (3) (2007) 778–784.

[82]

X. Zhao, J. Huang, Y. Wang, C. Xiang, D. Sun, L. Wu, X. Tang, K. Sun, Z. Zang, L. Sun, Interdigitated CuS/TiO2 nanotube bulk heterojunctions achieved via ion exchange, Electrochim. Acta 199 (2016) 180–186.

[83]
ChenY.DavoisneC.TarasconJ.-M.GuéryC.Growth of single-crystal copper sulfide thin films via electrodeposition in ionic liquid media for lithium ion batteriesJ. Mater. Chem.201222125295529910.1039/c2jm16692e

Y. Chen, C. Davoisne, J.-M. Tarascon, C. Guéry, Growth of single-crystal copper sulfide thin films via electrodeposition in ionic liquid media for lithium ion batteries, J. Mater. Chem. 22 (12) (2012) 5295–5299.

[84]

Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, J. Hu, Hydrophilic flower-like CuS superstructures as an efficient 980 nm laserdriven photothermal agent for ablation of cancer cells, Adv. Mater. 23 (31) (2011) 3542–3547.

[85]

G. Ku, M. Zhou, S. Song, Q. Huang, J. Hazle, C. Li, Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm, ACS Nano 6 (8) (2012) 7489–7496.

[86]

Y. Deng, Y. Huang, D. Ren, A.D. Handoko, Z.W. Seh, P. Hirunsit, B.S. Yeo, On the role of sulfur for the selective electrochemical reduction of CO2 to formate on CuSx catalysts, ACS Appl. Mater. Interfaces 10 (34) (2018) 28572–28581.

[87]
Garcia-MuelasR.DattilaF.ShinagawaT.MartinA.J.Perez-RamirezJ.LopezN.Origin of the selective electroreduction of carbon dioxide to formate by chalcogen modified copperJ. Phys. Chem. Lett.20189247153715910.1021/acs.jpclett.8b03212

R. Garcia-Muelas, F. Dattila, T. Shinagawa, A.J. Martin, J. Perez-Ramirez, N. Lopez, Origin of the selective electroreduction of carbon dioxide to formate by chalcogen modified copper, J. Phys. Chem. Lett. 9 (24) (2018) 7153–7159.

[88]

M. Brelle, C. Torres-Martinez, J. McNulty, R. Mehra, J. Zhang, Synthesis and characterization of CuxS nanoparticles: nature of the infrared band and charge-carrier dynamics, Pure Appl. Chem. 72 (1–2) (2000) 101–117.

[89]

V.I. Klimov, V.A. Karavanskii, Mechanisms for optical nonlinearities and ultrafast carrier dynamics in CuxS nanocrystals, Phys. Rev. B 54 (11) (1996) 8087.

[90]

A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science 271 (5251) (1996) 933–937.

[91]

C. Murray, C. Kagan, M. Bawendi, Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices, Science 270 (5240) (1995) 1335–1338.

[92]
XieY.RiedingerA.PratoM.CasuA.GenoveseA.GuardiaP.SottiniS.SangregorioC.MisztaK.GhoshS.Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ionsJ. Am. Chem. Soc.201313546176301763710.1021/ja409754v

Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions, J. Am. Chem. Soc. 135 (46) (2013) 17630–17637.

[93]

R.J. Goble, The relationship between crystal structure, bonding and cell dimensions in the copper sulfides, Can. Mineral. 23 (1) (1985) 61–76.

[94]
LiX.HuC.KangX.LenQ.XiY.ZhangK.LiuH.Introducing kalium into copper sulfide for the enhancement of thermoelectric propertiesJ. Mater. Chem. A2013144137211372610.1039/c3ta12706k

X. Li, C. Hu, X. Kang, Q. Len, Y. Xi, K. Zhang, H. Liu, Introducing kalium into copper sulfide for the enhancement of thermoelectric properties, J. Mater. Chem. A 1 (44) (2013) 13721–13726.

[95]

F. Di Benedetto, M. Borgheresi, A. Caneschi, G. Chastanet, C. Cipriani, D. Gatteschi, G. Pratesi, M. Romanelli, R. Sessoli, First evidence of natural superconductivity: covellite, Eur. J. Mineral. 18 (3) (2006) 283–287.

[96]

Y. Jiang, X. Li, S. Yu, L. Jia, X. Zhao, C. Wang, Reduced graphene oxide-modified carbon nanotube/polyimide film supported MoS2 nanoparticles for electrocatalytic hydrogen evolution, Adv. Funct. Mater. 25 (18) (2015) 2693–2700.

[97]

J. Zhang, H. Feng, J. Yang, Q. Qin, H. Fan, C. Wei, W. Zheng, Solvothermal synthesis of three-dimensional hierarchical CuS microspheres from a Cu-based ionic liquid precursor for high-performance asymmetric supercapacitors, ACS Appl. Mater. Interfaces 7 (39) (2015) 21735–21744.

[98]
HuX.-S.ShenY.XuL.-H.WangL.-M.XingY.-J.Preparation of flower-like CuS by solvothermal method and its photodegradation and UV protectionJ. Alloy. Comp.201667428929410.1016/j.jallcom.2016.03.047

X.-S. Hu, Y. Shen, L.-H. Xu, L.-M. Wang, Y.-J. Xing, Preparation of flower-like CuS by solvothermal method and its photodegradation and UV protection, J. Alloy. Comp. 674 (2016) 289–294.

[99]

M. Saranya, R. Ramachandran, E.J.J. Samuel, S.K. Jeong, A.N. Grace, Enhanced visible light photocatalytic reduction of organic pollutant and electrochemical properties of CuS catalyst, Powder Technol. 279 (2015) 209–220.

[100]

J. Lim, W.K. Bae, J. Kwak, S. Lee, C. Lee, K. Char, Perspective on synthesis, device structures, and printing processes for quantum dot displays, Opt. Mater. Express 2 (5) (2012) 594–628.

[101]

X. Li, Y. Li, F. Xie, W. Li, W. Li, M. Chen, Y. Zhao, Preparation of monodispersed CuS nanocrystals in an oleic acid/paraffin system, RSC Adv. 5 (103) (2015) 84465–84470.

[102]
ChenL.ChenY.-B.WuL.-M.Synthesis of uniform Cu2S nanowires from copper-thiolate polymer precursors by a solventless thermolytic methodJ. Am. Chem. Soc.200412650163341633510.1021/ja045074f

L. Chen, Y.-B. Chen, L.-M. Wu, Synthesis of uniform Cu2S nanowires from copper-thiolate polymer precursors by a solventless thermolytic method, J. Am. Chem. Soc. 126 (50) (2004) 16334–16335.

[103]

J.E. Millstone, W. Wei, M.R. Jones, H. Yoo, C.A. Mirkin, Iodide ions control seed-mediated growth of anisotropic gold nanoparticles, Nano Lett. 8 (8) (2008) 2526–2529.

[104]

H. Zhu, J. Wang, D. Wu, Fast synthesis, formation mechanism, and control of shell thickness of CuS hollow spheres, Inorg. Chem. 48 (15) (2009) 7099–7104.

[105]

S. Sun, X. Song, C. Kong, S. Liang, B. Ding, Z. Yang, Unique polyhedral 26-facet CuS hollow architectures decorated with nanotwinned, mesostructural and single crystalline shells, CrystEngComm 13 (20) (2011) 6200–6205.

[106]
WangF.DongH.PanJ.LiJ.LiQ.XuD.One-step electrochemical deposition of hierarchical CuS nanostructures on conductive substrates as robust, high-performance counter electrodes for quantum-dot-sensitized solar cellsJ. Phys. Chem. C201411834195891959810.1021/jp505737u

F. Wang, H. Dong, J. Pan, J. Li, Q. Li, D. Xu, One-step electrochemical deposition of hierarchical CuS nanostructures on conductive substrates as robust, high-performance counter electrodes for quantum-dot-sensitized solar cells, J. Phys. Chem. C 118 (34) (2014) 19589–19598.

[107]

N.J. Freymeyer, P.D. Cunningham, E.C. Jones, B.J. Golden, A.M. Wiltrout, K.E. Plass, Influence of solvent reducing ability on copper sulfide crystal phase, Cryst. Growth Des. 13 (9) (2013) 4059–4065.

[108]

C.S. Kim, S.H. Choi, J.H. Bang, New insight into copper sulfide electrocatalysts for quantum dot-sensitized solar cells: composition-dependent electrocatalytic activity and stability, ACS Appl. Mater. Interfaces 6 (24) (2014) 22078–22087.

[109]

T.-Y. Ding, M.-S. Wang, S.-P. Guo, G.-C. Guo, J.-S. Huang, CuS nanoflowers prepared by a polyol route and their photocatalytic property, Mater. Lett. 62 (30) (2008) 4529–4531.

[110]
YuanJ.WangY.Photoelectrochemical reduction of carbon dioxide to methanol at CuS/CuO/CuInS2 thin film photocathodesJ. Electrochem. Soc.201716413E475E47910.1149/2.1301713jes

J. Yuan, Y. Wang, Photoelectrochemical reduction of carbon dioxide to methanol at CuS/CuO/CuInS2 thin film photocathodes, J. Electrochem. Soc. 164 (13) (2017) E475–E479.

[111]

L. Wang, X. Liu, Y. Dang, H. Xie, Q. Zhao, L. Ye, Enhanced solar induced photo-thermal synergistic catalytic CO2 conversion by photothermal material decorated TiO2, Solid State Sci. 89 (2019) 67–73.

[112]

K. Cho, S.-H. Han, M.P. Suh, Copper-organic framework fabricated with CuS nanoparticles: synthesis, electrical conductivity, and electrocatalytic activities for oxygen reduction reaction, Angew. Chem. Int. Ed. 55 (49) (2016) 15301–15305.

[113]

Q. Wang, G. Yun, Y. Bai, N. An, Y. Chen, R. Wang, Z. Lei, W. Shangguan, CuS, NiS as co-catalyst for enhanced photocatalytic hydrogen evolution over TiO2, Int. J. Hydrogen Energy 39 (25) (2014) 13421–13428.

[114]
HongY.ZhangJ.HuangF.ZhangJ.WangX.WuZ.LinZ.YuJ.Enhanced visible light photocatalytic hydrogen production activity of CuS/ZnS nanoflower spheresJ. Mater. Chem. A2015326139131391910.1039/C5TA02500A

Y. Hong, J. Zhang, F. Huang, J. Zhang, X. Wang, Z. Wu, Z. Lin, J. Yu, Enhanced visible light photocatalytic hydrogen production activity of CuS/ZnS nanoflower spheres, J. Mater. Chem. A 3 (26) (2015) 13913–13919.

[115]

Q. Wang, N. An, Y. Bai, H. Hang, J. Li, X. Lu, Y. Liu, F. Wang, Z. Li, Z. Lei, High photocatalytic hydrogen production from methanol aqueous solution using the photocatalysts CuS/TiO2, Int. J. Hydrogen Energy 38 (25) (2013) 10739–10745.

[116]

L. An, P. Zhou, J. Yin, H. Liu, F. Chen, H. Liu, Y. Du, P. Xi, Phase transformation fabrication of a Cu2S nanoplate as an efficient catalyst for water oxidation with glycine, Inorg. Chem. 54 (7) (2015) 3281–3289.

[117]

H. Ren, W. Xu, S. Zhu, Z. Cui, X. Yang, A. Inoue, Synthesis and properties of nanoporous Ag2S/CuS catalyst for hydrogen evolution reaction, Electrochim. Acta 190 (2016) 221–228.

[118]
WangC.XieZ.deKrafftK.E.LinW.Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysisJ. Am. Chem. Soc.201113334134451345410.1021/ja203564w

C. Wang, Z. Xie, K.E. deKrafft, W. Lin, Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis, J. Am. Chem. Soc. 133 (34) (2011) 13445–13454.

[119]

Y. Li, W.-N. Wang, Z. Zhan, M.-H. Woo, C.-Y. Wu, P. Biswas, Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts, Appl. Catal. B Environ. 100 (1–2) (2010) 386–392.

[120]

Y. Lum, J.W. Ager, Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction, Nat. Catal. 2 (1) (2018) 86–93.

[121]

X. Zhao, Y. Jin, C. Xiang, J. Jin, M. Ding, S. Wu, C. Jia, L. Sun, Conformal filling of TiO2 nanotubes with dense MxSy films for 3D heterojunctions: the anion effect, ChemElectroChem 6 (4) (2019) 1177–1182.

[122]
IkeueK.YamashitaH.AnpoM.TakewakiT.Photocatalytic reduction of CO2 with H2O on Ti-beta zeolite photocatalysts: effect of the hydrophobic and hydrophilic propertiesJ. Phys. Chem. B2001105358350835510.1021/jp010885g

K. Ikeue, H. Yamashita, M. Anpo, T. Takewaki, Photocatalytic reduction of CO2 with H2O on Ti-beta zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties, J. Phys. Chem. B 105 (35) (2001) 8350–8355.

[123]

Q.-G. ZHU, X.-F. SUN, X.-C. KANG, J. MA, Q.-L. QIAN, B.-X. HAN, Cu2S on Cu foam as highly efficient electrocatalyst for reduction of CO2 to formic acid, Acta Phys. - Chim. Sin. 32 (1) (2016) 261–266.

[124]

P. Shao, S. Ci, L. Yi, P. Cai, P. Huang, C. Cao, Z. Wen, Hollow CuS microcube electrocatalysts for CO2 reduction reaction, Chemelectrochem 4 (10) (2017) 2593–2598.

[125]

Y. Huang, Y. Deng, A.D. Handoko, G.K.L. Goh, B.S. Yeo, Rational design of sulfur-doped copper catalysts for the selective electroreduction of carbon dioxide to formate, ChemSusChem 11 (1) (2018) 320–326.

[126]

T. Shinagawa, G.O. Larrazábal, A.J. Martín, F. Krumeich, J. Pérez-Ramírez, Sulfur-modified copper catalysts for the electrochemical reduction of carbon dioxide to formate, ACS Catal. 8 (2) (2018) 837–844.

[127]

A.W. Kahsay, K.B. Ibrahim, M.-C. Tsai, M.K. Birhanu, S.A. Chala, W.-N. Su, B.-J. Hwang, Selective and low overpotential electrochemical CO2 reduction to formate on CuS decorated CuO heterostructure, Catal. Lett. 149 (3) (2019) 860–869.

[128]
YuanJ.WangP.HaoC.YuG.Photoelectrochemical reduction of carbon dioxide at CuInS2/graphene hybrid thin film electrodeElectrochim. Acta20161931610.1016/j.electacta.2016.02.037

J. Yuan, P. Wang, C. Hao, G. Yu, Photoelectrochemical reduction of carbon dioxide at CuInS2/graphene hybrid thin film electrode, Electrochim. Acta 193 (2016) 1–6.

[129]

J. Yuan, C. Hao, Solar-driven photoelectrochemical reduction of carbon dioxide to methanol at CuInS2 thin film photocathode, Sol. Energy Mater. Sol. Cells 108 (2013) 170–174.

[130]

J. Yuan, L. Zheng, C. Hao, Role of pyridine in photoelectrochemical reduction of CO2 to methanol at a CuInS2 thin film electrode, RSC Adv. 4 (74) (2014) 39435–39438.

[131]
PhillipsK.R.KatayamaY.HwangJ.Shao-HornY.Sulfide-derived copper for electrochemical conversion of CO2 to formic acidJ. Phys. Chem. Lett.20189154407441210.1021/acs.jpclett.8b01601

K.R. Phillips, Y. Katayama, J. Hwang, Y. Shao-Horn, Sulfide-derived copper for electrochemical conversion of CO2 to formic acid, J. Phys. Chem. Lett. 9 (15) (2018) 4407–4412.

[132]

H. Xiao, W.A. Goddard 3rd, T. Cheng, Y. Liu, Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO-2, Proc. Natl. Acad. Sci. U. S. A. 114 (26) (2017) 6685–6688.

Nano Materials Science
Pages 235-247
Cite this article:
Chen Y, Chen K, Fu J, et al. Recent advances in the utilization of copper sulfide compounds for electrochemical CO2 reduction. Nano Materials Science, 2020, 2(3): 235-247. https://doi.org/10.1016/j.nanoms.2019.10.006

635

Views

13

Downloads

61

Crossref

62

Web of Science

64

Scopus

0

CSCD

Altmetrics

Received: 05 August 2019
Accepted: 08 October 2019
Published: 25 October 2019
© 2019 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return