AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Advances in clinical neurorestorative treatments of Parkinson's disease

Yixuan Yina,b,1Dongning Sua,b,1Joyce S.T. LamcTao Fenga,b( )
Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 2B5, BC, Canada

1 YY and DS contributed equally to this work.

Show Author Information

Abstract

Increasing dopamine levels using oral levodopa administration has been the gold standard for treating Parkinson's disease (PD), but motor complications that occur with the progression of PD seriously affect patient quality of life. Neurorestorative treatments have provided new possibilities for PD therapies. This review summarizes the recent clinical progress in several aspects of neurorestorative strategies: cell therapy, bioengineering and tissue engineering therapy, pharmacological therapy, neurostimulation/neuromodulation, and brain–computer interfaces. However, progress has mainly been related to exploratory experimental results, and more evidence is needed to further verify the safety and efficacy of these neurorestorative treatments in PD.

References

1

Morris HR, Spillantini MG, Sue CM, Williams-Gray CH. The pathogenesis of Parkinson's disease. Lancet. 2024;403(10423):293–304. https://doi.org/10.1016/S0140-6736(23)01478-2.

2

Mitchell T, Lehéricy S, Chiu SY, et al. Emerging neuroimaging biomarkers across disease stage in Parkinson disease: a review. JAMA Neurol. 2021;78(10):1262–1272. https://doi.org/10.1001/jamaneurol.2021.1312.

3

Horsager J, Knudsen K, Sommerauer M, et al. Clinical and imaging evidence of brain-first and body-first Parkinson's disease. Neurobiol Dis. 2022;164:105626. https://doi.org/10.1016/j.nbd.2022.105626.

4

Peng C, Trojanowski JQ, Lee VM. Protein transmission in neurodegenerative disease. Nat Rev Neurol. 2020;16:199–212. https://doi.org/10.1038/s41582-020-0333-7.

5

Safarpour D, Sharzehi K, Pfeiffer RF. Gastrointestinal dysfunction in Parkinson's disease. Drugs. 2022;82(2):169–197. https://doi.org/10.1007/s40265-021-01664-1.

6

Torres-Pasillas G, Chi-Castañeda D, Carrillo-Castilla P, et al. Olfactory dysfunction in Parkinson's disease, its functional and neuroanatomical correlates. NeuroSci. 2023;4(2):134–151. https://doi.org/10.3390/neurosci4020013.

7

Weintraub D, Aarsland D, Biundo R, et al. Management of psychiatric and cognitive complications in Parkinson's disease. BMJ. 2022;379:e068718. https://doi.org/10.1136/bmj-2021-068718.

8

Stocchi F, Bravi D, Emmi A, Antonini A. Parkinson disease therapy: current strategies and future research priorities. Nat Rev Neurol. 2024;20(12):695–707. https://doi.org/10.1038/s41582-024-01034-x.

9

Huang HY, Sharma HS, Chen L, et al. Neurorestoratology: new advances in clinical therapy. CNS Neurol Disord: Drug Targets. 2023;22(7):1031–1038. https://doi.org/10.2174/1871527321666220827093805.

10

Adler AF, Cardoso T, Nolbrant S, et al. hESC-derived dopaminergic transplants integrate into basal Ganglia circuitry in a preclinical model of Parkinson's disease. Cell Rep. 2019;28(13):3462–3473.e5. https://doi.org/10.1016/j.celrep.2019.08.058.

11

Haider A, Elghazawy NH, Dawoud A, et al. Translational molecular imaging and drug development in Parkinson's disease. Mol Neurodegener. 2023;18(1):11. https://doi.org/10.1186/s13024-023-00600-z.

12

Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med. 2001;344(10):710–719. https://doi.org/10.1056/nejm200103083441002.

13

Lindvall O, Rehncrona S, Brundin P, et al. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson's disease. A detailed account of methodology and a 6-month follow-up. Arch Neurol. 1989;46(6):615–631. https://doi.org/10.1001/archneur.1989.00520420033021.

14

Warren Olanow C, Goetz CG, Kordower JH, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol. 2003;54(3):403–414. https://doi.org/10.1002/ana.10720.

15

Greene PE, Fahn S, Eidelberg D, et al. Persistent dyskinesias in patients with fetal tissue transplantation for Parkinson disease. NPJ Parkinsons Dis. 2021;7(1):38. https://doi.org/10.1038/s41531-021-00183-w.

16

Wenker SD, Pitossi FJ. Cell therapy for Parkinson's disease is coming of age: current challenges and future prospects with a focus on immunomodulation. Gene Ther. 2020;27(1/2):6–14. https://doi.org/10.1038/s41434-019-0077-4.

17

Cooper DC, Gaston R, Eckhoff D, et al. Xenotransplantation—the current status and prospects. Br Med Bull. 2018;125(1):5–14. https://doi.org/10.1093/bmb/ldx043.

18

Luo XM, Lin H, Wang W, et al. Recovery of neurological functions in non-human primate model of Parkinson's disease by transplantation of encapsulated neonatal porcine choroid plexus cells. J Parkinsons Dis. 2013;3(3):275–291. https://doi.org/10.3233/jpd-130214.

19

Snow B, Mulroy E, Bok A, et al. A phase Ⅱb, randomised, double-blind, placebo-controlled, dose-ranging investigation of the safety and efficacy of NTCELL® [immunoprotected (alginate-encapsulated) porcine choroid plexus cells for xenotransplantation] in patients with Parkinson's disease. Park Relat Disord. 2019;61:88–93. https://doi.org/10.1016/j.parkreldis.2018.11.015.

20

Madrazo I, Drucker-Colín R, Díaz V, et al. Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson's disease. N Engl J Med. 1987;316(14):831–834. https://doi.org/10.1056/NEJM198704023161402.

21

Stover NP, Bakay RA.E, Subramanian T, et al. Intrastriatal implantation of human retinal pigment epithelial cells attached to microcarriers in advanced Parkinson disease. Arch Neurol. 2005;62(12):1833–1837. https://doi.org/10.1001/archneur.62.12.1833.

22

Stoddard SL, Ahlskog JE, Kelly PJ, et al. Decreased adrenal medullary catecholamines in adrenal transplanted parkinsonian patients compared to nephrectomy patients. Exp Neurol. 1989;104(3):218–222. https://doi.org/10.1016/0014-4886(89)90032-0.

23

Editor B. Morphofunctional and neurochemical aspects of the mammalian carotid body. Biomed Rev. 2024;34:207. https://doi.org/10.14748/bmr.v34.9631.

24

Henchcliffe C, Sarva H. Restoring function to dopaminergic neurons: progress in the development of cell-based therapies for Parkinson's disease. CNS Drugs. 2020;34(6):559–577. https://doi.org/10.1007/s40263-020-00727-3.

25

Wang Q, Chen FY, Ling ZM, et al. The effect of Schwann cells/Schwann cell-like cells on cell therapy for peripheral neuropathy. Front Cell Neurosci. 2022;16:836931. https://doi.org/10.3389/fncel.2022.836931.

26

van Horne CG, Quintero JE, Slevin JT, et al. Peripheral nerve grafts implanted into the substantia nigra in patients with Parkinson's disease during deep brain stimulation surgery: 1-year follow-up study of safety, feasibility, and clinical outcome. J Neurosurg. 2018;129(6):1550–1561. https://doi.org/10.3171/2017.8.jns163222.

27

Rahimi Darehbagh R, Seyedoshohadaei SA, Ramezani R, et al. Stem cell therapies for neurological disorders: current progress, challenges, and future perspectives. Eur J Med Res. 2024;29(1):386. https://doi.org/10.1186/s40001-024-01987-1.

28

Vizoso FJ, Costa LA, Eiro N. New era of mesenchymal stem cell-based medicine: basis, challenges and prospects. Rev Clin Esp. 2023;223(10):619–628. https://doi.org/10.1016/j.rceng.2023.11.002.

29

Malekpour K, Hazrati A, Soudi S, et al. Mechanisms behind therapeutic potentials of mesenchymal stem cell mitochondria transfer/delivery. J Contr Release. 2023;354:755–769. https://doi.org/10.1016/j.jconrel.2023.01.059.

30

Li JY, Zhao JW, Chen LM, et al. α-Synuclein induces Th17 differentiation and impairs the function and stability of Tregs by promoting RORC transcription in Parkinson's disease. Brain Behav Immun. 2023;108:32–44. https://doi.org/10.1016/j.bbi.2022.10.023.

31

Nguyen NT, Phan HT, Le PM, et al. Safety and efficacy of autologous adipose tissue-derived stem cell transplantation in aging-related low-grade inflammation patients: a single-group, open-label, phase Ⅰ clinical trial. Trials. 2024;25(1):309. https://doi.org/10.1186/s13063-024-08128-3.

32

Gilbert EA.B, Lakshman N, Lau KS.K, et al. Regulating endogenous neural stem cell activation to promote spinal cord injury repair. Cells. 2022;11(5):846. https://doi.org/10.3390/cells11050846.

33

Monti DA, Zabrecky G, Kremens D, et al. N-acetyl cysteine may support dopamine neurons in Parkinson's disease: preliminary clinical and cell line data. PLoS One. 2016;11(6):e0157602. https://doi.org/10.1371/journal.pone.0157602.

34

Zhuo Y, Li WS, Lu W, et al. TGF-β1 mediates hypoxia-preconditioned olfactory mucosa mesenchymal stem cells improved neural functional recovery in Parkinson's disease models and patients. Mil Med Res. 2024;11(1):48. https://doi.org/10.1186/s40779-024-00550-7.

35

Jiang SZ, Wang H, Yang CX, et al. Phase 1 study of safety and preliminary efficacy of intranasal transplantation of human neural stem cells (ANGE-S003) in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2024;95(12):1102–1111. https://doi.org/10.1136/jnnp-2023-332921.

36

Schweitzer JS, Song B, Herrington TM, et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson's disease. N Engl J Med. 2020;382(20):1926–1932. https://doi.org/10.1056/NEJMoa1915872.

37

Park S, Park CW, Eom JH, et al. Preclinical and dose-ranging assessment of hESC-derived dopaminergic progenitors for a clinical trial on Parkinson's disease. Cell Stem Cell. 2024;31(2):278–279. https://doi.org/10.1016/j.stem.2024.01.006.

38

Kirkeby A, Nelander J, Hoban DB, et al. Preclinical quality, safety, and efficacy of a human embryonic stem cell-derived product for the treatment of Parkinson's disease, STEM-PD. Cell Stem Cell. 2023;30(10):1299–1314.e9. https://doi.org/10.1016/j.stem.2023.08.014.

39

Hiramatsu S, Morizane A, Kikuchi T, et al. Cryopreservation of induced pluripotent stem cell-derived dopaminergic neurospheres for clinical application. J Parkinsons Dis. 2022;12(3):871–884. https://doi.org/10.3233/JPD-212934.

40

Tiklová K, Nolbrant S, Fiorenzano A, et al. Single cell transcriptomics identifies stem cell-derived graft composition in a model of Parkinson's disease. Nat Commun. 2020;11(1):2434. https://doi.org/10.1038/s41467-020-16225-5.

41

Alam A, Thelin EP, Tajsic T, et al. Cellular infiltration in traumatic brain injury. J Neuroinflammation. 2020;17(1):328. https://doi.org/10.1186/s12974-020-02005-x.

42

Park TY, Jeon J, Lee N, et al. Co-transplantation of autologous Treg cells in a cell therapy for Parkinson's disease. Nature. 2023;619(7970):606–615. https://doi.org/10.1038/s41586-023-06300-4.

43

Xue J, Wu Y, Bao Y, et al. Clinical considerations in Parkinson's disease cell therapy. Cell Transplant. 2023;83:101792. https://doi.org/10.1016/j.arr.2022.101792.

44

Kumagai S, Nakajima T, Muramatsu SI. Intraparenchymal delivery of adeno-associated virus vectors for the gene therapy of neurological diseases. Expet Opin Biol Ther. 2024;24(8):773–785. https://doi.org/10.1080/14712598.2024.2386339.

45

Frohlich J, Chaldakov GN, Vinciguerra M. Cardio- and neurometabolic adipobiology: consequences and implications for therapy. Int J Mol Sci. 2021;22(8):4137. https://doi.org/10.3390/ijms22084137.

46

Pakarinen E, Lindholm P. CDNF and MANF in the brain dopamine system and their potential as treatment for Parkinson's disease. Front Psychiatr. 2023;14:1188697. https://doi.org/10.3389/fpsyt.2023.1188697.

47

Heiss JD, Lungu C, Hammoud DA, et al. Trial of magnetic resonance–guided putaminal gene therapy for advanced Parkinson's disease. Mov Disord. 2019;34(7):1073–1078. https://doi.org/10.1002/mds.27724.

48

Chu YP, Bartus RT, Manfredsson FP, et al. Long-term post-mortem studies following neurturin gene therapy in patients with advanced Parkinson's disease. Brain. 2020;143(3):960–975. https://doi.org/10.1093/brain/awaa020.

49

Björklund A. GDNF therapy: can we make it work? J Parkinsons Dis. 2021;11(3):1019–1022. https://doi.org/10.3233/JPD-212706.

50

Huotarinen A, Penttinen AM, Bäck S, et al. Combination of CDNF and deep brain stimulation decreases neurological deficits in late-stage model Parkinson's disease. Neuroscience. 2018;374:250–263. https://doi.org/10.1016/j.neuroscience.2018.01.052.

51

Emborg ME, Carbon M, Holden JE, et al. Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cerebr Blood Flow Metabol. 2007;27(3):501–509. https://doi.org/10.1038/sj.jcbfm.9600364.

52

LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson's disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011;10(4):309–319. https://doi.org/10.1016/S1474-4422(11)70039-4.

53

Kim J, Chang MY. Gene therapy for Parkinson's disease using midbrain developmental genes to regulate dopaminergic neuronal maintenance. Int J Mol Sci. 2024;25(20):12369. https://doi.org/10.3390/ijms252212369.

54

Nutt JG, Curtze C, Hiller A, et al. Aromatic L-amino acid decarboxylase gene therapy enhances levodopa response in Parkinson's disease. Mov Disord. 2020;35(5):851–858. https://doi.org/10.1002/mds.27993.

55

Huttunen HJ, Booms S, Sjögren M, et al. Intraputamenal cerebral dopamine neurotrophic factor in Parkinson's disease: a randomized, double-blind, multicenter phase 1 trial. Mov Disord. 2023;38(7):1209–1222. https://doi.org/10.1002/mds.29426.

56

Kantor B, Bailey RM, Wimberly K, et al. Methods for gene transfer to the central nervous system. Adv Genet. 2014;87:125–197. https://doi.org/10.1016/B978-0-12-800149-3.00003-2.

57

Ingusci S, Verlengia G, Soukupova M, et al. Gene therapy tools for brain diseases. Front Pharmacol. 2019;10:724. https://doi.org/10.3389/fphar.2019.00724.

58

Gao J, Gunasekar S, Xia ZJ, et al. Gene therapy for CNS disorders: modalities, delivery and translational challenges. Nat Rev Neurosci. 2024;25:553–572. https://doi.org/10.1038/s41583-024-00829-7.

59

Hammond SL, Leek AN, Richman EH, et al. Cellular selectivity of AAV serotypes for gene delivery in neurons and astrocytes by neonatal intracerebroventricular injection. PLoS One. 2017;12(12):e0188830. https://doi.org/10.1371/journal.pone.0188830.

60

Taghian T, Marosfoi MG, Puri AS, et al. A safe and reliable technique for CNS delivery of AAV vectors in the cisterna Magna. Mol Ther. 2020;28(2):411–421. https://doi.org/10.1016/j.ymthe.2019.11.012.

61

Xie JB, Shen ZY, Anraku Y, et al. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials. 2019;224:119491. https://doi.org/10.1016/j.biomaterials.2019.119491.

62

Arjomandnejad M, Dasgupta I, Flotte TR, et al. Immunogenicity of recombinant adeno-associated virus (AAV) vectors for gene transfer. BioDrugs. 2023;37(3):311–329. https://doi.org/10.1007/s40259-023-00585-7.

63

Palfi S, Gurruchaga JM, Lepetit H, et al. Long-term follow-up of a phase Ⅰ/Ⅱ study of ProSavin, a lentiviral vector gene therapy for Parkinson's disease. Hum Gene Ther Clin Dev. 2018;29(3):148–155. https://doi.org/10.1089/humc.2018.081.

64

Wu D, Chen Q, Chen X, et al. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Targeted Ther. 2023;8(1):217. https://doi.org/10.1038/s41392-023-01481-w.

65

Ye DZ, Chukwu C, Yang YH, et al. Adeno-associated virus vector delivery to the brain: technology advancements and clinical applications. Adv Drug Deliv Rev. 2024;211:115363. https://doi.org/10.1016/j.addr.2024.115363.

66

Bartus RT, Baumann TL, Siffert J, et al. Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology. 2013;80(18):1698–1701. https://doi.org/10.1212/wnl.0b13e3182904faa.

67

Christine CW, Bankiewicz KS, Van Laar AD, et al. Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for Parkinson's disease. Ann Neurol. 2019;85(5):704–714. https://doi.org/10.1002/ana.25450.

68

Xhima K, Nabbouh F, Hynynen K, et al. Noninvasive delivery of an α-synuclein gene silencing vector with magnetic resonance-guided focused ultrasound. Mov Disord. 2018;33(10):1567–1579. https://doi.org/10.1002/mds.101.

69

Kofoed RH, Simpson EM, Hynynen K, et al. Sonoselective delivery using ultrasound and microbubbles combined with intravenous rAAV9 CLDN5-GFP does not increase endothelial gene expression. Gene Ther. 2023;30(12):807–811. https://doi.org/10.1038/s41434-023-00389-y.

70

Kopp KO, Glotfelty EJ, Li YZ, et al. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: implications for neurodegenerative disease treatment. Pharmacol Res. 2022;186:106550. https://doi.org/10.1016/j.phrs.2022.106550.

71

Bassil F, Delamarre A, Canron MH, et al. Impaired brain insulin signalling in Parkinson's disease. Appl Neurobiol. 2022;48(1):e12760. https://doi.org/10.1111/nan.12760.

72

Li YZ, Tweedie D, Mattson MP, et al. Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. J Neurochem. 2010;113(6):1621–1631. https://doi.org/10.1111/j.1471-4159.2010.06731.x.

73

Oeseburg H, de Boer RA, Buikema H, et al. Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A. Arterioscler Thromb Vasc Biol. 2010;30(7):1407–1414. https://doi.org/10.1161/ATVBAHA.110.206425.

74

Athauda D, Maclagan K, Skene SS, et al. Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10103):1664–1675. https://doi.org/10.1016/s140-6736(17)31585-4.

75

Xu ZF, Lei YS, Qin H, et al. Sigma-1 receptor in retina: neuroprotective effects and potential mechanisms. Int J Mol Sci. 2022;23(14):7572. https://doi.org/10.3390/ijms23147572.

76

Rousseaux CG, Greene SF. Sigma receptors [σRs]: biology in normal and diseased states. J Recept Signal Transduct Res. 2016;36(4):327–388. https://doi.org/10.3109/10799893.2015.1015737.

77

Siddiqui T, Bhatt LK. Targeting sigma-1 receptor: a promising strategy in the treatment of Parkinson's disease. Neurochem Res. 2023;48(10):2925–2935. https://doi.org/10.1007/s11064-023-03960-6.

78

Fauser M, Ricken M, Markert F, et al. Subthalamic nucleus deep brain stimulation induces sustained neurorestoration in the mesolimbic dopaminergic system in a Parkinson's disease model. Neurobiol Dis. 2021;156:105404. https://doi.org/10.1016/j.nbd.2021.105404.

79

Krishna V, Fishman PS, Eisenberg HM, et al. Trial of globus pallidus focused ultrasound ablation in Parkinson's disease. N Engl J Med. 2023;388(8):683–693. https://doi.org/10.1056/NEJMoa2202721.

80

Wu JG, Cui XJ, Bao L, et al. A nanoparticle-based wireless deep brain stimulation system that reverses Parkinson's disease. Sci Adv. 2025;11(3):eado4927. https://doi.org/10.1126/sciadv.ado4927.

81

Lu JC, Feng ZH, Shi X, et al. Correlation between programmed stimulation parameters and their efficacy after deep brain electrode implantation for Parkinson's disease. J Neurorestoratol. 2020;8(1):53–59. https://doi.org/10.26599/jnr.2019.9040018.

82

Spindola B, Leite MA, Orsini M, et al. Ablative surgery for Parkinson's disease: is there still a role for pallidotomy in the deep brain stimulation era? Clin Neurol Neurosurg. 2017;158:33–39. https://doi.org/10.1016/j.clineuro.2017.04.018.

83

Krishna V, Sammartino F, Rezai AL. A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: advances in diagnosis and treatment. JAMA Neurol. 2018;75(2):246–254. https://doi.org/10.1001/jamaneurol.2017.3129.

84

PhD SH, Fahd Baig MB.P, Abteen Mostofi MA.M, et al. Closed-loop deep brain stimulation for essential tremor based on thalamic local field potentials. Mov Disord. 2021;36(4):863–873. https://doi.org/10.1002/mds.28513.

85

Chen Y, Wang F, Li T, et al. Considerations and discussions on the clear definition and definite scope of brain-computer interfaces. Front Neurosci. 2024;18:1449208. https://doi.org/10.3389/fnins.2024.1449208.

86

Milekovic T, Moraud EM, Macellari N, et al. A spinal cord neuroprosthesis for locomotor deficits due to Parkinson's disease. Nat Med. 2023;29(11):2854–2865. https://doi.org/10.1038/s41591-023-02584-1.

Journal of Neurorestoratology
Cite this article:
Yin Y, Su D, Lam JS, et al. Advances in clinical neurorestorative treatments of Parkinson's disease. Journal of Neurorestoratology, 2025, 13(3). https://doi.org/10.1016/j.jnrt.2025.100204

63

Views

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 28 November 2024
Revised: 19 January 2025
Accepted: 16 February 2025
Published: 01 June 2025
© 2025 The Author(s).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return