AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Advances in clinical neurorestorative treatments in brain trauma

Qian ZhouaWei ShenbLiang Wena( )
Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
Department of Neurosurgery, Beilun District People's Hospital of Ningbo, Ningbo 315800, Zhejiang, China
Show Author Information

Abstract

Traumatic brain injury (TBI) is a significant cause of mortality and disability globally, imposing a considerable burden on society and individuals. In recent years, neurorestorative therapies for TBI have attracted widespread attention. Despite the rapid progress in clinical neurorestorative treatments for TBI, few relevant reviews have been published. This review addresses advances in these strategies for patients with TBI, covering cellular therapies, neurostimulation therapies, brain-computer interfaces, pharmacologic therapies, and multidisciplinary therapies. This review aims to serve as a reference for clinical professionals treating patients with TBI, improving neurologic rehabilitation and outcomes for patients with TBI.

References

1

Maas AIR, Menon DK, Manley GT, et al. Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022;21(11):1004–1060. https://doi.org/10.1016/S1474-4422(22)00309-X.

2

Jiang JY, Gao GY, Feng JF, et al. Traumatic brain injury in China. Lancet Neurol. 2019;18(3):286–295. https://doi.org/10.1016/s1474-4422(18)30469-1.

3

Majdan M, Plancikova D, Brazinova A, et al. Epidemiology of traumatic brain injuries in Europe: a cross-sectional analysis. Lancet Public Health. 2016;1(2):e76–e83. https://doi.org/10.1016/S2468-2667(16)30017-2.

4

Yang XF, Chen L, Pu JB, et al. Guideline of clinical neurorestorative treatment for brain trauma (2022 China version). J Neurorestoratol. 2022;10(2):100005. https://doi.org/10.1016/j.jnrt.2022.100005.

5

Kaur P, Sharma S. Recent advances in pathophysiology of traumatic brain injury. Curr Neuropharmacol. 2018;16(8):1224–1238. https://doi.org/10.2174/1570159X15666170613083606.

6

Capizzi A, Woo J, Verduzco-Gutierrez M. Traumatic brain injury: an overview of epidemiology, pathophysiology, and medical management. Med Clin. 2020;104(2):213–238. https://doi.org/10.1016/j.mcna.2019.11.001.

7

Deng-Bryant Y, Readnower RD, Leung LY, et al. Treatment with amnion-derived cellular cytokine solution (ACCS) induces persistent motor improvement and ameliorates neuroinflammation in a rat model of penetrating ballistic-like brain injury. Restor Neurol Neurosci. 2015;33(2):189–203. https://doi.org/10.3233/RNN-140455.

8

Qiu XC, Ping SN, Kyle M, et al. Stem cell factor and granulocyte colony-stimulating factor promote remyelination in the chronic phase of severe traumatic brain injury. Cells. 2023;12(5):705. https://doi.org/10.3390/cells12050705.

9

Hur JY, Frost GR, Wu X, et al. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer's disease. Nature. 2020;586(7831):735–740. https://doi.org/10.1038/s41586-020-2681-2.

10

Liraz-Zaltsman S, Friedman-Levi Y, Shabashov-Stone D, et al. Chemokine receptors CC chemokine receptor 5 and C-X-C motif chemokine receptor 4 are new therapeutic targets for brain recovery after traumatic brain injury. J Neurotrauma. 2021;38(14):2003–2017. https://doi.org/10.1089/neu.2020.7015.

11

Xie C, Cong D, Wang X, et al. The effect of simvastatin treatment on proliferation and differentiation of neural stem cells after traumatic brain injury. Brain Res. 2015;1602:1–8. https://doi.org/10.1016/j.brainres.2014.03.021.

12

Chen MM, Zhao GW, He P, et al. Improvement in the neural stem cell proliferation in rats treated with modified “Shengyu” decoction may contribute to the neurorestoration. J Ethnopharmacol. 2015;165:9–19. https://doi.org/10.1016/j.jep.2015.02.037.

13

Ma DL, Wang N, Fan XT, et al. Protective effects of cornel iridoid glycoside in rats after traumatic brain injury. Neurochem Res. 2018;43(4):959–971. https://doi.org/10.1007/s11064-018-2501-3.

14

Xiong Y, Zhang YL, Mahmood A, et al. Neuroprotective and neurorestorative effects of thymosin β4 treatment initiated 6 hours after traumatic brain injury in rats. J Neurosurg., 116(5): 1081–1092. doi:10.3171/2012.1.jns111729.

15

Yonutas HM, Brad Hubbard W, Pandya JD, et al. Bioenergetic restoration and neuroprotection after therapeutic targeting of mitoNEET: new mechanism of pioglitazone following traumatic brain injury. Exp Neurol. 2020;327:113243. https://doi.org/10.1016/j.expneurol.2020.113243.

16

Zhang YL, Zhang ZG, Chopp M, et al. Treatment of traumatic brain injury in rats with N-acetyl-seryl-aspartyl-lysyl-proline. J Neurosurg. 2017;126(3):782–795. https://doi.org/10.3171/2016.3.JNS152699.

17

Bambakidis T, Dekker SE, Williams AM, et al. Early treatment with a single dose of mesenchymal stem cell derived extracellular vesicles modulates the brain transcriptome to create neuroprotective changes in a porcine model of traumatic brain injury and hemorrhagic shock. Shock. 2022;57(2):281–290. https://doi.org/10.1097/shk.0000000000001889.

18

Chen Y, Li J, Ma B, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging: Albany NY. 2020;12(18):18274–18296. https://doi.org/10.18632/aging.103692.

19

Cox CS, Notrica DM, Juranek J, et al. Autologous bone marrow mononuclear cells to treat severe traumatic brain injury in children. Brain. 2024;147(5):1914–1925. https://doi.org/10.1093/brain/awae005.

20

Kawabori M, Weintraub AH, Imai H, et al. Cell therapy for chronic TBI: interim analysis of the randomized controlled STEMTRA trial. Neurology. 2021;96(8):e1202–e1214. https://doi.org/10.1212/WNL.0000000000011450.

21

Kabatas S, Civelek E, Sezen GB, et al. Functional recovery after Wharton's jelly-derived mesenchymal stem cell administration in a patient with traumatic brain injury: a pilot study. Turk Neurosurg. 2020;30(6):914–922. https://doi.org/10.5137/1019-5149.JTN.31732-20.1.

22

Viet QHN, Nguyen VQ, Le Hoang DM, et al. Ability to regulate immunity of mesenchymal stem cells in the treatment of traumatic brain injury. Neurol Sci. 2022;43(3):2157–2164. https://doi.org/10.1007/s10072-021-05529-z.

23

Okonkwo DO, McAllister P, Achrol AS, et al. Mesenchymal stromal cell implants for chronic motor deficits after traumatic brain injury: post hoc analysis of a randomized trial. Neurology. 2024;103(7):e209797. https://doi.org/10.1212/WNL.0000000000209797.

24

Turgeon AF, Fergusson DA, Clayton L, et al. Liberal or restrictive transfusion strategy in patients with traumatic brain injury. N Engl J Med. 2024;391(8):722–735. https://doi.org/10.1056/nejmoa2404360.

25

Kabatas S, Civelek E, Boyalı O, et al. Safety and efficiency of Wharton's Jelly-derived mesenchymal stem cell administration in patients with traumatic brain injury: first results of a phase Ⅰ study. World J Stem Cell., 16(6): 641–655. doi:10.4252/wjsc.v16.i6.641.

26

Li XF, Sundström E. Stem cell therapies for central nervous system trauma: the 4 ws-what, when, where, and why. Stem Cells Transl Med. 2022;11(1):14–25. https://doi.org/10.1093/stcltm/szab6.

27

Wu X, Xie L, Lei J, et al. Acute traumatic Coma awakening by right Median nerve electrical stimulation: a randomised controlled trial. Intensive Care Med. 2023;49(6):633–644. https://doi.org/10.1007/s134-023-07072-1.

28

Zhou YF, Sun YJ, He P, et al. The efficacy and safety of transcutaneous auricular vagus nerve stimulation for patients with minimally conscious state: a sham-controlled randomized double-blind clinical trial. Front Neurosci. 2023;17:1323079. https://doi.org/10.3389/fnins.2023.1323079.

29

Zewdie E, Ciechanski P, Kuo HC, et al. Safety and tolerability of transcranial magnetic and direct current stimulation in children: prospective single center evidence from 3.5 million stimulations. Brain Stimul. 2020;13(3):565–575. https://doi.org/10.1016/j.brs.2019.12.025.

30

Stilling J, Paxman E, Mercier L, et al. Treatment of persistent post-traumatic headache and post-concussion symptoms using repetitive transcranial magnetic stimulation: a pilot, double-blind, randomized controlled trial. J Neurotrauma. 2020;37(2):312–323. https://doi.org/10.1089/neu.2019.6692.

31

Zhang H, Zhao Y, Qu Y, et al. Transcutaneous cervical vagus nerve magnetic stimulation in patients with traumatic brain injury: a feasibility study. Neuromodulation. 2024;27(4):672–680. https://doi.org/10.1016/j.neurom.2023.09.004.

32

Philip NS, Ramanathan D, Gamboa B, et al. Repetitive transcranial magnetic stimulation for depression and posttraumatic stress disorder in veterans with mild traumatic brain injury. Neuromodulation. 2023;26(4):878–884. https://doi.org/10.1016/j.neurom.2022.11.015.

33

Ptito A, Papa LD, Gregory K, et al. A prospective, multicenter study to assess the safety and efficacy of translingual neurostimulation plus physical therapy for the treatment of a chronic balance deficit due to mild-to-moderate traumatic brain injury. Neuromodulation. 2021;24(8):1412–1421. https://doi.org/10.1111/ner.13159.

34

D'Arcy RCN, Greene T, Greene D, et al. Portable neuromodulation induces neuroplasticity to re-activate motor function recovery from brain injury: a high-density MEG case study. J NeuroEng Rehabil. 2020;17(1):158. https://doi.org/10.1186/s12984-020-00772-5.

35

De Freitas DJ, De Carvalho D, Paglioni VM, et al. Effects of transcranial direct current stimulation (tDCS) and concurrent cognitive training on episodic memory in patients with traumatic brain injury: a double-blind, randomised, placebo-controlled study. BMJ Open. 2021;11(8):e045285. https://doi.org/10.1136/bmjopen-2020-045285.

36

Thibaut A, Fregni F, Estraneo A, et al. Sham-controlled randomized multicentre trial of transcranial direct current stimulation for prolonged disorders of consciousness. Eur J Neurol. 2023;30(10):3016–3031. https://doi.org/10.1111/ene.15974.

37

Tyler M, Skinner K, Prabhakaran V, et al. Translingual neurostimulation for the treatment of chronic symptoms due to mild-to-moderate traumatic brain injury. Arch Rehabil Res Clin Transl. 2019;1(3/4):100026. https://doi.org/10.1016/j.arrct.2019.100026.

38

Hakon J, Moghiseh M, Poulsen I, et al. Transcutaneous vagus nerve stimulation in patients with severe traumatic brain injury: a feasibility trial. Neuromodulation Technol Neural Interface. 2020;23(6):859–864. https://doi.org/10.1111/ner.13148.

39

Qian QY, Ling YT, Zhong H, et al. Restoration of arm and hand functions via noninvasive cervical cord neuromodulation after traumatic brain injury: a case study. Brain Inj. 2020;34(13/14):1771–1780. https://doi.org/10.1080/02699052.2020.1850864.

40

Hitti FL, Piazza M, Sinha S, et al. Surgical outcomes in post-traumatic epilepsy: a single institutional experience. Oper Neurosurg.. 2020;18(1):12–18. https://doi.org/10.1093/ons/opz043.

41

Wang Y, Yang L, Liu W, et al. The efficacy and safety of bilateral synchronous transcutaneous auricular vagus nerve stimulation for prolonged disorders of consciousness: a multicenter, double-blind, stratified, randomized controlled trial protocol. Front Neurol. 2024;15:1418937. https://doi.org/10.3389/fneur.2024.1418937.

42

Schiff ND, Giacino JT, Butson CR, et al. Thalamic deep brain stimulation in traumatic brain injury: a phase 1, randomized feasibility study. Nat Med. 2023;29(12):3162–3174. https://doi.org/10.1038/s41591-023-02638-4.

43

Vorobyev AN, Burmistrova AV, Puzin KM, et al. Clinical outcome after epidural spinal cord stimulation in patients with severe traumatic brain injury. Cureus. 2024;16(7):e65753. https://doi.org/10.7759/cureus.65753.

44

Chudy D, Deletis V, Paradžik V, et al. Deep brain stimulation in disorders of consciousness: 10 years of a single center experience. Sci Rep. 2023;13(1):19491. https://doi.org/10.1038/s41598-023-46300-y.

45

Chudy D, Deletis V, Almahariq F, et al. Deep brain stimulation for the early treatment of the minimally conscious state and vegetative state: experience in 14 patients. J Neurosurg. 2018;128(4):1189–1198. https://doi.org/10.3171/2016.10.JNS161071.

46

Lemaire JJ, Sontheimer A, Pereira B, et al. Deep brain stimulation in five patients with severe disorders of consciousness. Ann Clin Transl Neurol. 2018;5(11):1372–1384. https://doi.org/10.1002/acn3.648.

47

Yang Y, He QH, Dang YY, et al. Long-term functional outcomes improved with deep brain stimulation in patients with disorders of consciousness. Stroke Vasc Neurol. 2023;8(5):368–378. https://doi.org/10.1136/svn-2022-001998.

48

Yang Y, He Q, Xia X, et al. Long-term functional prognosis and related factors of spinal cord stimulation in patients with disorders of consciousness. CNS Neurosci Ther. 2022;28(8):1249–1258. https://doi.org/10.1111/cns.13870.

49

Vorobyev AN, Varyukhina MD, Mayorova LA, et al. The use of epidural spinal cord stimulation in patients with chronic disorders of consciousness - neuroimaging and clinical results. Eur Rev Med Pharmacol Sci. 2023;27(2):681–686. https://doi.org/10.26355/eurrev_202301_31070.

50

Lorach H, Galvez A, Spagnolo V, et al. Walking naturally after spinal cord injury using a brain–spine interface. Nature. 2023;618(7963):126–133. https://doi.org/10.1038/s41586-023-06094-5.

51

Mitchell P, Lee SCM, Yoo PE, et al. Assessment of safety of a fully implanted endovascular brain-computer interface for severe paralysis in 4 patients. JAMA Neurol. 2023;80(3):270. https://doi.org/10.1001/jamaneurol.2022.4847.

52

Flint RD, Li YC, Wang PT, et al. Noninvasively recorded high-gamma signals improve synchrony of force feedback in a novel neurorehabilitation brain-machine interface for brain injury. J Neural Eng. 2022;19(3):. https://doi.org/10.1088/1741-2552/ac7004.

53

Roeder BM, Riley MR, She XW, et al. Patterned hippocampal stimulation facilitates memory in patients with a history of head impact and/or brain injury. Front Hum Neurosci. 2022;16:933401. https://doi.org/10.3389/fnhum.2022.933401.

54

Cajigas I, Davis KC, Meschede-Krasa B, et al. Implantable brain-computer interface for neuroprosthetic-enabled volitional hand grasp restoration in spinal cord injury. Brain Commun. 2021;3(4):fcab248. https://doi.org/10.1093/braincomms/fcab248.

55

Simeral JD, Hosman T, Saab J, et al. Home use of a percutaneous wireless intracortical brain-computer interface by individuals with tetraplegia. IEEE Trans Biomed Eng. 2021;68(7):2313–2325. https://doi.org/10.1109/TBME.2021.3069119.

56

Benabid AL, Costecalde T, Eliseyev A, et al. An exoskeleton controlled by an epidural wireless brain–machine interface in a tetraplegic patient: a proof-of-concept demonstration. Lancet Neurol. 2019;18(12):1112–1122. https://doi.org/10.1016/S1474-4422(19)30321-7.

57

Bockbrader M, Annetta N, Friedenberg D, et al. Clinically significant gains in skillful grasp coordination by an individual with tetraplegia using an implanted brain-computer interface with forearm transcutaneous muscle stimulation. Arch Phys Med Rehabil. 2019;100(7):1201–1217. https://doi.org/10.1016/j.apmr.2018.07.445.

58

Selfslagh A, Shokur S, Campos DSF, et al. Non-invasive, brain-controlled functional electrical stimulation for locomotion rehabilitation in individuals with paraplegia. Sci Rep. 2019;9(1):6782. https://doi.org/10.1038/s41598-019-43041-9.

59

Wang J, Mahajan HP, Toto PE, et al. The feasibility of an automatic prompting system in assisting people with traumatic brain injury in cooking tasks. Disabil Rehabil Assist Technol. 2019;14(8):817–825. https://doi.org/10.1080/17483107.2018.1499144.

60

Huang JY, Qiu LN, Lin QM, et al. Hybrid asynchronous brain–computer interface for yes/no communication in patients with disorders of consciousness. J Neural Eng. 2021;18(5):056001. https://doi.org/10.1088/1741-2552/abf00c.

61

Meulenbroek P, Cherney LR. Usability and acceptability of a computer-based social communication intervention for persons with traumatic brain injury: a mixed-methods study. Semin Speech Lang. 2022;43(3):218–232. https://doi.org/10.1055/s-0042-1750346.

62

Loane DJ, Faden AI. Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci. 2010;31(12):596–604. https://doi.org/10.1016/j.tips.2010.09.005.

63

Janowitz T, Menon DK. Exploring new routes for neuroprotective drug development in traumatic brain injury. Sci Transl Med. 2010;2(27):27rv1. https://doi.org/10.1126/scitranslmed.3000330.

64

Collaborators CT. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet. 2019;394(10210):1713–1723. https://doi.org/10.1016/S0140-6736(19)32233-0.

65

Malekahmadi M, Shadnoush M, Islam SMS, et al. The effect of French maritime pine bark extract supplementation on inflammation, nutritional and clinical status in critically ill patients with traumatic brain injury: a randomized controlled trial. Phytother Res. 2021;35(9):5178–5188. https://doi.org/10.1002/ptr.7187.

66

Zahedi H, Hosseinzadeh-Attar MJ, Shadnoush M, et al. Effects of curcuminoids on inflammatory and oxidative stress biomarkers and clinical outcomes in critically ill patients: a randomized double-blind placebo-controlled trial. Phytother Res. 2021;35(8):4605–4615. https://doi.org/10.1002/ptr.7179.

67

Huang XC, Yang LL, Ye JP, et al. Equimolar doses of hypertonic agents (saline or mannitol) in the treatment of intracranial hypertension after severe traumatic brain injury. Medicine. 2020;99(38):e22004. https://doi.org/10.1097/MD.0000000000022004.

68

Roquilly A, Moyer JD, Huet O, et al. Effect of continuous infusion of hypertonic saline vs standard care on 6-month neurological outcomes in patients with traumatic brain injury: the COBI randomized clinical trial. JAMA. 2021;325(20):2056–2066. https://doi.org/10.1001/jama.2021.5561.

69

Lombardo S, Smith MC, Semler MW, et al. Balanced crystalloid versus saline in adults with traumatic brain injury: secondary analysis of a clinical trial. J Neurotrauma. 2022;39(17/18):1159–1167. https://doi.org/10.1089/neu.2021.0465.

70

Zampieri F, Damiani L, Biondi R, et al. Effects of balanced solution on short-term outcomes in traumatic brain injury patients: a secondary analysis of the BaSICS randomized trial. Rev Bras De Terapia Intensiva. 2022;34:410–417. https://doi.org/10.5935/0103-507X.20220261-en.

71

Poh K, Bustam A, Hasan MS, et al. Isotonic balanced fluid versus 0.9% saline in patients with moderate to severe traumatic brain injury: a double-blinded randomised controlled trial. Am J Emerg Med. 2024;77:106–114. https://doi.org/10.1016/j.ajem.2023.11.064.

72

Huet O, Chapalain X, Vermeersch V, et al. Impact of continuous hypertonic (NaCl 20%) saline solution on renal outcomes after traumatic brain injury (TBI): a post hoc analysis of the COBI trial. Crit Care. 2023;27(1):42. https://doi.org/10.1186/s13054-023-04311-1.

73

Narayan SW, Castelino R, Hammond N, et al. Effect of mannitol plus hypertonic saline combination versus hypertonic saline monotherapy on acute kidney injury after traumatic brain injury. J Crit Care. 2020;57:220–224. https://doi.org/10.1016/j.jcrc.2020.03.006.

74

Huang CC, Chiang PY, Cheng YC, et al. Efficacy and safety of Wendan decoction for acute brain injury: a randomized controlled study. J Alternative Compl Med. 2020;26(5):392–397. https://doi.org/10.1089/acm.2019.0349.

75

Chen LF, Jiang HZ, Xing GQ, et al. Effects of Yunanan Baiyao adjunct therapy on postoperative recovery and clinical prognosis of patients with traumatic brain injury: a randomized controlled trial. Phytomedicine. 2021;89:153593. https://doi.org/10.1016/j.phymed.2021.153593.

76

Nilsson MKL, Johansson B, Carlsson ML, et al. Effect of the monoaminergic stabiliser (-)-OSU6162 on mental fatigue following stroke or traumatic brain injury. Acta Neuropsychiatr. 2020;32(6):303–312. https://doi.org/10.1017/neu.2020.22.

77

Meshkat S, Mahmoodi Baram S, Rajaei S, et al. Boswellia serrata extract shows cognitive benefits in a double-blind, randomized, placebo-controlled pilot clinical trial in individuals who suffered traumatic brain injury. Brain Inj. 2022;36(4):553–559. https://doi.org/10.1080/02699052.2022.2059816.

78

Hammond FM, Zafonte RD, Sherer M, et al. Assessing the benefits and risks of amantadine for irritability and aggression after traumatic brain injury. Pharm Manag PM R 2024;16(7):661–668. https://doi.org/10.1002/pmrj.13122.

79

Fairhurst C, Kumar R, Checketts D, et al. Efficacy and safety of nabiximols cannabinoid medicine for paediatric spasticity in cerebral palsy or traumatic brain injury: a randomized controlled trial. Dev Med Child Neurol. 2020;62(9):1031–1039. https://doi.org/10.1111/dmcn.14548.

80

Curcio A, Temperoni G, Tramontano M, et al. The effects of aquatic therapy during post-acute neurorehabilitation in patients with severe traumatic brain injury: a preliminary randomized controlled trial. Brain Inj. 2020;34(12):1630–1635. https://doi.org/10.1080/02699052.2020.1825809.

81

Rodríguez-Rajo P, García-Rudolph A, Sánchez-Carrión R, et al. Computerized social cognitive training in the subacute phase after traumatic brain injury: a quasi-randomized controlled trial. Appl Neuropsychol Adult. 2024;31(4):540–553. https://doi.org/10.1080/23279095.2022.2042693.

82

Plawecki A, Henderson CE, Lotter JK, et al. Comparative efficacy of high-intensity training versus conventional training in individuals with chronic traumatic brain injury: a pilot randomized controlled study. J Neurotrauma. 2024;41(7/8):807–817. https://doi.org/10.1089/neu.2023.0494.

83

Pradines M, Ghedira M, Portero R, et al. Ultrasound structural changes in triceps surae after a 1-year daily self-stretch program: a prospective randomized controlled trial in chronic hemiparesis. Neurorehabilitation Neural Repair. 2019;33(4):245–259. https://doi.org/10.1177/1545968319829455.

84

Fan MC, Li SF, Sun P, et al. Early intensive rehabilitation for patients with traumatic brain injury: a prospective pilot trial. World Neurosurg. 2020;137:e183–e188. https://doi.org/10.1016/j.wneu.2020.01.113.

85

Bonanno M, De Luca R, De Nunzio AM, et al. Innovative technologies in the neurorehabilitation of traumatic brain injury: a systematic review. Brain Sci. 2022;12(12):1678. https://doi.org/10.3390/brainsci12121678.

86

Calabrò RS, Cacciola A, Bertè F, et al. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? Neurol Sci. 2016;37(4):503–514. https://doi.org/10.1007/s10072-016-2474-4.

87

Ferreira FMRM, Chaves MEA, Oliveira VC, et al. Effect of robot-assisted therapy on participation of people with limited upper limb functioning: a systematic review with GRADE recommendations. Occup Ther Int. 2021;2021:6649549. https://doi.org/10.1155/2021/6649549.

88

De Luca R, Bonanno M, Vermiglio G, et al. Robotic verticalization plus music therapy in chronic disorders of consciousness: promising results from a pilot study. Brain Sci. 2022;12(8):1045. https://doi.org/10.3390/brainsci12081045.

89

Keller J, Štětkářová I, Macri V, et al. Virtual reality-based treatment for regaining upper extremity function induces cortex grey matter changes in persons with acquired brain injury. J NeuroEng Rehabil. 2020;17(1):127. https://doi.org/10.1186/s12984-020-00754-7.

90

Williams K, Christenbury J, Niemeier JP, et al. Is robotic gait training feasible in adults with disorders of consciousness? J Head Trauma Rehabil. 2020;35(3):E266–E270. https://doi.org/10.1097/HTR.0000000000000523.

91

Maggio MG, De Luca R, Molonia F, et al. Cognitive rehabilitation in patients with traumatic brain injury: a narrative review on the emerging use of virtual reality. J Clin Neurosci. 2019;61:1–4. https://doi.org/10.1016/j.jocn.2018.12.020.

92

Shin H, Kim K. Virtual reality for cognitive rehabilitation after brain injury: a systematic review. J Phys Ther Sci. 2015;27(9):2999–3002. https://doi.org/10.1589/jpts.27.2999.

93

Tramontano M, Belluscio V, Bergamini E, et al. Vestibular rehabilitation improves gait quality and activities of daily living in people with severe traumatic brain injury: a randomized clinical trial. Sensors. 2022;22(21):8553. https://doi.org/10.3390/s22218553.

94

Tefertiller C, Ketchum JM, Bartelt P, et al. Feasibility of virtual reality and treadmill training in traumatic brain injury: a randomized controlled pilot trial. Brain Inj. 2022;36(7):898–908. https://doi.org/10.1080/02699052.2022.2096258.

95

Corallo F, Maresca G, Formica C, et al. Humanoid robot use in cognitive rehabilitation of patients with severe brain injury: a pilot study. J Clin Med. 2022;11(10):2940. https://doi.org/10.3390/jcm11102940.

96

De Luca R, Bonanno M, Rifici C, et al. Does non-immersive virtual reality improve attention processes in severe traumatic brain injury? encouraging data from a pilot study. Brain Sci. 2022;12(9):1211. https://doi.org/10.3390/brainsci12091211.

97

Ettenhofer ML, Guise B, Brandler B, et al. Neurocognitive driving rehabilitation in virtual environments (NeuroDRIVE): a pilot clinical trial for chronic traumatic brain injury. NeuroRehabilitation. 2019;44(4):531–544. https://doi.org/10.3233/NRE-192718.

98

De Luca R, Maggio MG, Maresca G, et al. Improving cognitive function after traumatic brain injury: a clinical trial on the potential use of the semi-immersive virtual reality. Behav Neurol. 2019;2019:9268179. https://doi.org/10.1155/2019/9268179.

99

Voelbel GT, Lindsey HM, Mercuri G, et al. The effects of neuroplasticity-based auditory information processing remediation in adults with chronic traumatic brain injury. NeuroRehabilitation. 2021;49(2):267–278. https://doi.org/10.3233/NRE-218025.

100

Lohaus T, Reckelkamm S, Thoma P. Treating social cognition impairment with the online therapy 'SoCoBo': a randomized controlled trial including traumatic brain injury patients. PLoS One. 2024;19(1):e0294767. https://doi.org/10.1371/journal.pone.0294767.

101

Kolk A, Saard M, Pertens L, et al. Structured model of neurorehab: a pilot study of modern multitouch technology and virtual reality platforms for training sociocognitive deficit in children with acquired brain injury. Appl Neuropsychol Child. 2019;8(4):326–332. https://doi.org/10.1080/21622965.2018.1486193.

102

Siponkoski ST, Martínez-Molina N, Kuusela L, et al. Music therapy enhances executive functions and prefrontal structural neuroplasticity after traumatic brain injury: evidence from a randomized controlled trial. J Neurotrauma. 2020;37(4):618–634. https://doi.org/10.1089/neu.2019.6413.

103

Jones C, Richard N, Thaut M. Investigating music-based cognitive rehabilitation for individuals with moderate to severe chronic acquired brain injury: a feasibility experiment. NeuroRehabilitation. 2021;48(2):209–220. https://doi.org/10.3233/NRE-208015.

104

Siponkoski ST, Koskinen S, Laitinen S, et al. Effects of neurological music therapy on behavioural and emotional recovery after traumatic brain injury: a randomized controlled cross-over trial. Neuropsychol Rehabil. 2022;32(7):1356–1388. https://doi.org/10.1080/09602011.2021.1890138.

105

Wang YC, Huang C, Tian RF, et al. Target temperature management and therapeutic hypothermia in sever neuroprotection for traumatic brain injury: clinic value and effect on oxidative stress. Medicine. 2023;102(10):e32921. https://doi.org/10.1097/MD.0000000000032921.

106

Doenyas-Barak K, Catalogna M, Kutz I, et al. Hyperbaric oxygen therapy improves symptoms, brain's microstructure and functionality in veterans with treatment resistant post-traumatic stress disorder: a prospective, randomized, controlled trial. PLoS One. 2022;17(2):e0264161. https://doi.org/10.1371/journal.pone.0264161.

107

Lu Y, Zhou XS, Cheng JC, et al. Early intensified rehabilitation training with hyperbaric oxygen therapy improves functional disorders and prognosis of patients with traumatic brain injury. Adv Wound Care. 2021;10(12):663–670. https://doi.org/10.1089/wound.2018.0876.

108

Hadanny A, Catalogna M, Yaniv S, et al. Hyperbaric oxygen therapy in children with post-concussion syndrome improves cognitive and behavioral function: a randomized controlled trial. Sci Rep. 2022;12(1):15233. https://doi.org/10.1038/s41598-022-19395-y.

109

Biggs AT, Dainer HM, Littlejohn LF. Effect sizes for symptomatic and cognitive improvements in traumatic brain injury following hyperbaric oxygen therapy. J Appl Physiol. 2021;130(5):1594–1603. https://doi.org/10.1152/japplphysiol.01084.2020.

110

Shapira R, Gdalyahu A, Gottfried I, et al. Hyperbaric oxygen therapy alleviates vascular dysfunction and amyloid burden in an Alzheimer's disease mouse model and in elderly patients. Aging. 2021;13(17):20935–20961. https://doi.org/10.18632/aging.203485.

111

Andreassen M, Hemmingsson H, Boman IL, et al. Feasibility of an intervention for patients with cognitive impairment using an interactive digital calendar with mobile phone reminders (RemindMe) to improve the performance of activities in everyday life. Int J Environ Res Publ Health. 2020;17(7):2222. https://doi.org/10.3390/ijerph17072222.

112

Shen J, Zhu L, Shan Y, et al. Effects of remote ischemic preconditioning in severe traumatic brain injury: a single-center randomized controlled trial. Medicine. 2023;102(38):e35190. https://doi.org/10.1097/MD.0000000000035190.

113

Skripnik OY, Sumenko VV, Trusova OY, et al. Treatment of contusion of moderate severity in children in outpatient clinics. Zh Nevrol Psikhiatr Im S S Korsakova. 2020;120(3):29–33. https://doi.org/10.17116/jnevro202012003129.

114

Al-Khazali HM, Christensen RH, Dodick DW, et al. Hypersensitivity to BKCa channel opening in persistent post-traumatic headache. J Headache Pain. 2024;25(1):102. https://doi.org/10.1186/s10194-024-01808-0.

115

Bender Pape TL, Herrold AA, Livengood SL, et al. A pilot trial examining the merits of combining amantadine and repetitive transcranial magnetic stimulation as an intervention for persons with disordered consciousness after TBI. J Head Trauma Rehabil. 2020;35(6):371–387. https://doi.org/10.1097/HTR.0000000000000634.

116

Wu XL, Liu LX, Yang LY, et al. Comprehensive rehabilitation in a patient with corpus callosum syndrome after traumatic brain injury: case report. Medicine. 2020;99(28):e21218. https://doi.org/10.1097/MD.0000000000021218.

Journal of Neurorestoratology
Cite this article:
Zhou Q, Shen W, Wen L. Advances in clinical neurorestorative treatments in brain trauma. Journal of Neurorestoratology, 2025, 13(3). https://doi.org/10.1016/j.jnrt.2025.100191

78

Views

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 07 October 2024
Revised: 10 December 2024
Accepted: 25 December 2024
Published: 01 June 2025
© 2025 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return