AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Editorial | Open Access

Brain-computer interface (BCI) in clinical neurorestorative practices

Yunfa FuaYuhang XueaXiaogang ChenbYong Huc,d( )
Faculty of Information Engineering and Automation, Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
Orthopedics Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518057, Guangdong, China
Show Author Information

References

1

Sun YK, Chen XG, Gao XR. The potential of diverse brainecomputer interface signal acquisition techniques in neurorestoratology. J Neurorestoratol. 2024;12(3):100138. https://doi.org/10.1016/j.jnrt.2024.100138.

2

Ma ZZ, Wu JJ, Cao Z, et al. Motor imagery-based brain-computer interface rehabilitation programs enhance upper extremity performance and cortical activation in stroke patients. J NeuroEng Rehabil. 2024;21(1):91. https://doi.org/10.1186/s12984-024-01387-w.

3

Metzger SL, Littlejohn KT, Silva AB, et al. A high-performance neuroprosthesis for speech decoding and avatar control. Nature. 2023;620(7976):1037-1046. https://doi.org/10.1038/s41586-023-06443-4.

4

Levett JJ, Elkaim LM, Niazi F, et al. Invasive brain computer interface for motor restoration in spinal cord injury: a systematic review. Neuromodulation. 2024;27(4):597-603. https://doi.org/10.1016/j.neurom.2023.10.006.

5

Lorach H, Galvez A, Spagnolo V, et al. Walking naturally after spinal cord injury using a brain-spine interface. Nature. 2023;618(7963):126-133. https://doi.org/10.1038/s41586-023-06094-5.

6

Chen YX, Wang F, Li TW, et al. Considerations and discussions on the clear definition and definite scope of brain-computer interfaces. Front Neurosci. 2024;18:1449208. https://doi.org/10.3389/fnins.2024.1449208.

7

Nan WY, Yang WJ, Gong AM, et al. Successful learning of alpha up-regulation through neurofeedback training modulates sustained attention. Neuropsychologia. 2024;195:108804. https://doi.org/10.1016/j.neuropsychologia.2024.108804.

8

Fu YF, Chen XG, Hu Y. Correct understanding of brainecomputer interfaces. J Neurorestoratol. 2024;12(3):100139. https://doi.org/10.1016/j.jnrt.2024.100139.

Journal of Neurorestoratology
Cite this article:
Fu Y, Xue Y, Chen X, et al. Brain-computer interface (BCI) in clinical neurorestorative practices. Journal of Neurorestoratology, 2025, 13(2). https://doi.org/10.1016/j.jnrt.2025.100188

96

Views

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 06 January 2025
Published: 01 April 2025
© 2025 The Author(s).

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return