Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Progressive neurodegenerative diseases (NDs) that lack effective disease-modifying treatments, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), represent significant global health challenges. In recent years, key research findings have included the role of neuroinflammation driven by microglia and astrocytes, the impact of genetic mutations, and the importance of autophagy and mitochondrial quality control in maintaining neuronal health. In this review, we summarize recent advancements of the pathogenesis of NDs, the cellular and animal models that have provided valuable insights into disease mechanisms, and the development of blood-based biomarkers for early diagnosis and monitoring of disease progression. We also highlight emerging neurorestorative therapeutic strategies involving stem cell therapy, antisense oligonucleotides, and induced pluripotent stem cells. Additionally, we cover recent clinical trials of promising drugs, such as lecanemab and donanemab for AD, and tavapadon for PD. Finally, we propose future research directions, emphasizing the need for combination therapies that target multiple pathways, the development of more precise animal models, and the integration of nanotechnology for improved drug delivery across the blood–brain barrier.
Mattiuzzi C, Lippi G. Cancer statistics: a comparison between World Health Organization (WHO) and global burden of disease (GBD). Eur J Publ Health. 2020;30(5):1026-1027. https://doi.org/10.1093/eurpub/ckz216.
Raggi A, Monasta L, Beghi E, et al. Incidence, prevalence and disability associated with neurological disorders in Italy between 1990 and 2019: an analysis based on the global burden of disease study 2019. J Neurol. 2022;269(4):2080-2098. https://doi.org/10.1007/s00415-021-10774-5.
Natasha FM, Catherine D, John K, et al. The experience of Parkinson's disease in Hai district, Tanzania. J Neurodegener Disord. 2021;4(1):122-128. https://doi.org/10.36959/459/606.
Maher C, Ferreira G. Time to reconsider what Global Burden of Disease studies really tell us about low back pain. Ann Rheum Dis. 2022;81(3):306-308. https://doi.org/10.1136/annrheumdis-2021-221173.
Timmis A, Townsend N, Gale CP, et al. European society of cardiology: cardiovascular disease statistics 2019. Eur Heart J. 2020;41(1):12-85.
Choi BCK, Maza RA, Mujica OJ, et al. The Pan American Health Organization-adapted Hanlon method for prioritization of health programs. Rev Panam Salud Públic. 2019;43:e61. https://doi.org/10.26633/RPSP.2019.61.
Liu ZZ, Li T, Li P, et al. The ambiguous relationship of oxidative stress, tau hyperphosphorylation, and autophagy dysfunction in Alzheimer's disease. Oxid Med Cell Longev. 2015;2015:352723. https://doi.org/10.1155/2015/352723.
Varesi A, Carrara A, Pires VG, et al. Blood-based biomarkers for Alzheimer's disease diagnosis and progression: an overview. Cells. 2022;11(8):1367. https://doi.org/10.3390/cells11081367.
Yang DS, Stavrides P, Mohan PS, et al. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain. 2011;134(Pt 1):258-277. https://doi.org/10.1093/brain/awq341.
Babalola JA, Lang M, George M, et al. Astaxanthin enhances autophagy, amyloid beta clearance and exerts anti-inflammatory effects in in vitro models of Alzheimer's disease-related blood brain barrier dysfunction and inflammation. Brain Res. 2023;1819:148518. https://doi.org/10.1016/j.brainres.2023.148518.
Di Meco A, Curtis ME, Lauretti E, et al. Autophagy dysfunction in Alzheimer's disease: mechanistic insights and new therapeutic opportunities. Biol Psychiatr. 2020;87(9):797-807. https://doi.org/10.1016/j.biopsych.2019.05.008.
Wilson CM, Magnaudeix A, Yardin C, et al. Autophagy dysfunction and its link to Alzheimer's disease and type II diabetes mellitus. CNS Neurol Disord: Drug Targets. 2014;13(2):226-246. https://doi.org/10.2174/18715273113126660146.
Ntsapi C, Lumkwana D, Swart C, et al. New insights into autophagy dysfunction related to amyloid beta toxicity and neuropathology in Alzheimer's disease. Int Rev Cell Mol Biol. 2018;336:321-361. https://doi.org/10.1016/bs.ircmb.2017.07.002.
Zhang Z, Yang X, Song YQ, et al. Autophagy in Alzheimer's disease pathogenesis: therapeutic potential and future perspectives. Ageing Res Rev. 2021;72:101464. https://doi.org/10.1016/j.arr.2021.101464.
Feng L, Li JM, Zhang R. Current research status of blood biomarkers in Alzheimer's disease: diagnosis and prognosis. Ageing Res Rev. 2021;72:101492. https://doi.org/10.1016/j.arr.2021.101492.
Aye S, Handels R, Winblad B, et al. Optimising Alzheimer's disease diagnosis and treatment: assessing cost-utility of integrating blood biomarkers in clinical practice for disease-modifying treatment. J Prev Alzheimers Dis. 2024;11(4):928-942. https://doi.org/10.14283/jpad.2024.67.
Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15(7):673-684. https://doi.org/10.1016/S1474-4422(16)00070-3.
Hirtz C, Busto GU, Bennys K, et al. Comparison of ultrasensitive and mass spectrometry quantification of blood-based amyloid biomarkers for Alzheimer's disease diagnosis in a memory clinic cohort. Alzheimer's Res Ther. 2023;15(1):34. https://doi.org/10.1186/s13195-023-01188-8.
Chen WN, Lin C, Su FJ, et al. Early diagnosis of mild cognitive impairment due to Alzheimer's disease using a composite of MemTrax and blood biomarkers. J Alzheimers Dis. 2023;94(3):1093-1103. https://doi.org/10.3233/jad-230182.
Hu S, Zhang LD, Su Y, et al. Sensitive detection of multiple blood biomarkers via immunomagnetic exosomal PCR for the diagnosis of Alzheimer's disease. Sci Adv. 2024;10(13):eabm3088. https://doi.org/10.1126/sciadv.abm3088.
Chen SY, Gao Y, Sun JY, et al. Traditional Chinese medicine: role in reducing β-amyloid, apoptosis, autophagy, neuroinflammation, oxidative stress, and mitochondrial dysfunction of Alzheimer's disease. Front Pharmacol. 2020;11:497. https://doi.org/10.3389/fphar.2020.00497.
Song H, Chen J, Huang J, et al. Epigenetic modification in Parkinson's disease. Front Cell Dev Biol. 2023;11:1123621. https://doi.org/10.3389/fcell.2023.1123621.
Han F, Hu B. Stem cell therapy for Parkinson's disease. Adv Exp Med Biol. 2020;1266:21-38. https://doi.org/10.1007/978-981-15-4370-8_3.
Xu Y, Zhi F, Mao JH, et al. δ-opioid receptor activation protects against Parkinson's disease-related mitochondrial dysfunction by enhancing PINK1/Parkin-dependent mitophagy. Aging. 2020;12(24):25035-25059. https://doi.org/10.18632/aging.103970.
Truban D, Hou X, Caulfield TR, et al. PINK1, parkin, and mitochondrial quality control: what can we learn about Parkinson's disease pathobiology? J Parkinsons Dis. 2017;7(1):13-29. https://doi.org/10.3233/JPD-160989.
Wang W, Nguyen LTT, Burlak C, et al. Caspase-1 causes truncation and aggregation of the Parkinson's disease-associated protein α-synuclein. Proc Natl Acad Sci USA. 2016;113(34):9587-9592. https://doi.org/10.1073/pnas.1610099113.
Vlad C, Lindner K, Karreman C, et al. Autoproteolytic fragments are intermediates in the oligomerization/aggregation of the Parkinson's disease protein alpha-synuclein as revealed by ion mobility mass spectrometry. Chembiochem. 2011;12(18):2740-2744. https://doi.org/10.1002/cbic.201100569.
Chang KH, Chen CM. The role of oxidative stress in Parkinson's disease. Antioxidants (Basel). 2020;9(7):597. https://doi.org/10.3390/antiox9070597.
Dodson MW, Guo M. Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson's disease. Curr Opin Neurobiol. 2007;17(3):331-337. https://doi.org/10.1016/j.conb.2007.04.010.
Surendran S, Rajasankar S. Parkinson's disease: oxidative stress and therapeutic approaches. Neurol Sci. 2010;31(5):531-540. https://doi.org/10.1007/s10072-010-0245-1.
Rizor A, Pajarillo E, Johnson J, et al. Astrocytic oxidative/nitrosative stress contributes to Parkinson's disease pathogenesis: the dual role of reactive astrocytes. Antioxidants (Basel). 2019;8(8):265. https://doi.org/10.3390/antiox8080265.
Wu K, Liu J, Zhuang N, et al. UCP4A protects against mitochondrial dysfunction and degeneration in pink1/parkin models of Parkinson's disease. Faseb J. 2014;28(12):5111-5121. https://doi.org/10.1096/fj.14-255802.
Lastres-Becker I, Ulusoy A, Innamorato NG, et al. α-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson's disease. Hum Mol Genet. 2012;21(14):3173-3192. https://doi.org/10.1093/hmg/dds143.
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson's disease. J Parkinsons Dis. 2013;3(4):461-491. https://doi.org/10.3233/JPD-130230.
Dong XL, He XH, Yang L, et al. Inhibition of miR-421 preserves mitochondrial function and protects against Parkinson's disease pathogenesis via Pink1/parkin-dependent mitophagy. Dis Markers. 2022;2022:5186252. https://doi.org/10.1155/2022/5186252.
Jayaram S, Krishnamurthy PT. Role of microgliosis, oxidative stress and associated neuroinflammation in the pathogenesis of Parkinson's disease: the therapeutic role of Nrf2 activators. Neurochem Int. 2021;145:105014. https://doi.org/10.1016/j.neuint.2021.105014.
Jhuo CF, Chen CJ, Tzen JTC, et al. Teaghrelin protected dopaminergic neurons in MPTP-induced Parkinson's disease animal model by promoting PINK1/Parkin-mediated mitophagy and AMPK/SIRT1/PGC1-α-mediated mitochondrial biogenesis. Environ Toxicol. 2024;39(7):4022-4034. https://doi.org/10.1002/tox.24275.
Niranjan R. The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson's disease: focus on astrocytes. Mol Neurobiol. 2014;49(1):28-38. https://doi.org/10.1007/s12035-013-8483-x.
Ma KY, Fokkens MR, Reggiori F, et al. Parkinson's disease–associated VPS35 mutant reduces mitochondrial membrane potential and impairs PINK1/Parkin-mediated mitophagy. Transl Neurodegener. 2021;10(1):19. https://doi.org/10.1186/s40035-021-00243-4.
Simola N, Morelli M, Carta AR. The 6-hydroxydopamine model of Parkinson's disease. Neurotox Res. 2007;11(3/4):151-167. https://doi.org/10.1007/BF03033565.
Winkler C, Kirik D, Björklund A, et al. L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson's disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis. 2002;10(2):165-186. https://doi.org/10.1006/nbdi.2002.0499.
Machado MMF, Bassani TB, Cóppola-Segovia V, et al. PPAR-γ agonist pioglitazone reduces microglial proliferation and NF-κB activation in the substantia nigra in the 6-hydroxydopamine model of Parkinson's disease. Pharmacol Rep. 2019;71(4):556-564. https://doi.org/10.1016/j.pharep.2018.11.005.
Marinova-Mutafchieva L, Sadeghian M, Broom L, et al. Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: a time course study in a 6-hydroxydopamine model of Parkinson's disease. J Neurochem. 2009;110(3):966-975. https://doi.org/10.1111/j.1471-4159.2009.06189.x.
Wang HQ, Ye YY, Zhu ZY, et al. MiR-124 regulates apoptosis and autophagy process in MPTP model of Parkinson's disease by targeting to BIM. Brain Pathol. 2016;26(2):167-176. https://doi.org/10.1111/bpa.12267.
Zhang LY, Zhang LP, Li YW, et al. The novel dual GLP-1/GIP receptor agonist DA-CH5 is superior to single GLP-1 receptor agonists in the MPTP model of Parkinson's disease. J Park Dis. 2020;10(2):523-542. https://doi.org/10.3233/jpd-191768.
Li DS, Yang HQ, Ma JJ, et al. MicroRNA-30e regulates neuroinflammation in MPTP model of Parkinson's disease by targeting Nlrp3. Hum Cell. 2018;31(2):106-115. https://doi.org/10.1007/s13577-017-0187-5.
Blesa J, Przedborski S. Parkinson's disease: animal models and dopaminergic cell vulnerability. Front Neuroanat. 2014;8:155. https://doi.org/10.3389/fnana.2014.00155.
Lu X, Song N, Wang W, et al. Generation of integration-free human iPSC line LCPHi001-A from a Parkinson's disease patient carrying the RecNciI mutation in GBA gene. Stem Cell Res. 2021;56:102514. https://doi.org/10.1016/j.scr.2021.102514.
Duty S, Jenner P. Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164(4):1357-1391. https://doi.org/10.1111/j.1476-5381.2011.01426.x.
Gruijs da Silva LA, Simonetti F, Hutten S, et al. Disease-linked TDP-43 hyperphosphorylation suppresses TDP-43 condensation and aggregation. EMBO J. 2022;41(8):e108443. https://doi.org/10.15252/embj.2021108443.
Vanneste J, Vercruysse T, Van Damme P, et al. Quantitative nucleocytoplasmic transport assays in cellular models of neurodegeneration. Bio Protoc. 2020;10(12):e3659. https://doi.org/10.21769/BioProtoc.3659.
Jafarinia H, Van der Giessen E, Onck PR. Molecular basis of C9orf72 poly-PR interference with the β-karyopherin family of nuclear transport receptors. Sci Rep. 2022;12(1):21324. https://doi.org/10.1038/s41598-022-25732-y.
Junghans M, John F, Cihankaya H, et al. ROS scavengers decrease gH2ax spots in motor neuronal nuclei of ALS model mice in vitro. Front Cell Neurosci. 2022;16:963169. https://doi.org/10.3389/fncel.2022.963169.
Kramer NJ, Haney MS, Morgens DW, et al. CRISPR–Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity. Nat Genet. 2018;50(4):603-612. https://doi.org/10.1038/s41588-018-0070-7.
Rabinovich-Toidman P, Rabinovich-Nikitin I, Ezra A, et al. Mutant SOD1 increases APP expression and phosphorylation in cellular and animal models of ALS. PLoS One. 2015;10(11):e0143420. https://doi.org/10.1371/journal.pone.0143420.
Ding XB, Xiang Z, Qin C, et al. Spreading of TDP-43 pathology via pyramidal tract induces ALS-like phenotypes in TDP-43 transgenic mice. Acta Neuropathol Commun. 2021;9(1):15. https://doi.org/10.1186/s40478-020-01112-3.
Tsai KJ, Yang CH, Fang YH, et al. Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J Exp Med. 2010;207(8):1661-1673. https://doi.org/10.1084/jem.20092164.
Rajaratnam S, Soman AP, Phalguna KS, et al. Integrated omic analysis delineates pathways modulating toxic TDP-43 protein aggregates in amyotrophic lateral sclerosis. Cells. 2023;12(9):1228. https://doi.org/10.3390/cells12091228.
Mühling T, Duda J, Weishaupt JH, et al. Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca(2+) transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice. Front Cell Neurosci. 2014;8:353. https://doi.org/10.3389/fncel.2014.00353.
Apolloni S, Fabbrizio P, Amadio S, et al. Novel P2X7 antagonist ameliorates the early phase of ALS disease and decreases inflammation and autophagy in SOD1-G93A mouse model. Int J Mol Sci. 2021;22(19):10649. https://doi.org/10.3390/ijms221910649.
Nanaura H, Kawamukai H, Fujiwara A, et al. C9orf72-derived arginine-rich poly-dipeptides impede phase modifiers. Nat Commun. 2021;12(1):5301. https://doi.org/10.1038/s41467-021-25560-0.
Suk TR, Rousseaux MWC. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol Neurodegener. 2020;15(1):45. https://doi.org/10.1186/s13024-020-00397-1.
Guz J, Gackowski D, Foksinski M, et al. Comparison of oxidative stress/DNA damage in Semen and blood of fertile and infertile men. PLoS One. 2013;8(7):e68490. https://doi.org/10.1371/journal.pone.0068490.
Krach F, Batra R, Wheeler EC, et al. Transcriptome-pathology correlation identifies interplay between TDP-43 and the expression of its kinase CK1E in sporadic ALS. Acta Neuropathol. 2018;136(3):405-423. https://doi.org/10.1007/s00401-018-1870-7.
Nowak A, Zakłos-Szyda M, Żyżelewicz D, et al. Acrylamide decreases cell viability, and provides oxidative stress, DNA damage, and apoptosis in human colon adenocarcinoma cell line caco-2. Molecules. 2020;25(2):368. https://doi.org/10.3390/molecules25020368.
Consortium HI. Bioenergetic deficits in Huntington's disease iPSC-derived neural cells and rescue with glycolytic metabolites. Hum Mol Genet. 2020;29(11):1757-1771. https://doi.org/10.1093/hmg/ddy430.
HD iPSC Consortium. Bioenergetic deficits in Huntington's disease iPSC-derived neural cells and rescue with glycolytic metabolites. Hum Mol Genet. 2020;29(11):1757-1771. https://doi.org/10.1093/hmg/ddy430.
Takahashi J. iPS cell-based therapy for Parkinson's disease: a Kyoto trial. Regen Ther. 2020;13:18-22. https://doi.org/10.1016/j.reth.2020.06.002.
Martire A, Pepponi R, Domenici MR, et al. BDNF prevents NMDA-induced toxicity in models of Huntington's disease: the effects are genotype specific and adenosine A2A receptor is involved. J Neurochem. 2013;125(2):225-235. https://doi.org/10.1111/jnc.12177.
Mehta SR, Tom CM, Wang YZ, et al. Human Huntington's disease iPSC-derived cortical neurons display altered transcriptomics, morphology, and maturation. Cell Rep. 2018;25(4):1081-1096.e6. https://doi.org/10.1016/j.celrep.2018.09.076.
Sturrock A, Laule C, Wyper K, et al. A longitudinal study of magnetic resonance spectroscopy Huntington's disease biomarkers. Mov Disord. 2015;30(3):393-401. https://doi.org/10.1002/mds.26118.
Morena E, Romano C, Marconi M, et al. Peripheral biomarkers in manifest and premanifest Huntington's disease. Int J Mol Sci. 2023;24(7):6051. https://doi.org/10.3390/ijms24076051.
Zhu BF, Zhao C, Young FI, et al. Isolation and long-term expansion of functional, myelinating oligodendrocyte progenitor cells from neonatal rat brain. Curr Protoc Stem Cell Biol. 2014;31:2D.17.1-2D.1715. https://doi.org/10.1002/9780470151808.sc02d17s31.
Watzlawik JO, Warrington AE, Rodriguez M. PDGF is required for remyelination-promoting IgM stimulation of oligodendrocyte progenitor cell proliferation. PLoS One. 2013;8(2):e55149. https://doi.org/10.1371/journal.pone.0055149.
Gutiérrez-Franco A, Eixarch H, Costa C, et al. Semaphorin 7A as a potential therapeutic target for multiple sclerosis. Mol Neurobiol. 2017;54(6):4820-4831. https://doi.org/10.1007/s12035-016-0154-2.
Nishri Y, Hampton D, Ben-Shushan E, et al. Continuous immune-modulatory effects of human Olig2+ precursor cells attenuating a chronic-active model of multiple sclerosis. Mol Neurobiol. 2020;57(2):1021-1034. https://doi.org/10.1007/s12035-019-01802-7.
Yang EJ, Song KS. The ameliorative effects of capsidiol isolated from elicited Capsicum annuum on mouse splenocyte immune responses and neuroinflammation. Phytother Res. 2021;35(3):1597-1608. https://doi.org/10.1002/ptr.6927.
Ortiz FC, Balia M, Orduz D. A commentary on: “Anti-muscarinic adjunct therapy accelerates functional human oligodendrocyte repair”. Front Cell Neurosci. 2015;9:274. https://doi.org/10.3389/fncel.2015.00274.
Furlan R, Cuomo C, Martino G. Animal models of multiple sclerosis. Methods Mol Biol. 2009;549:157-173. https://doi.org/10.1007/978-1-60327-931-4_11.
Smith P. Animal models of multiple sclerosis. Curr Protoc. 2021;1(6):e185. https://doi.org/10.1002/cpz1.185.
Smith P. Animal models of multiple sclerosis. Curr Protoc. 2021;1(6):e185. https://doi.org/10.1002/cpz1.185.
Montorio D, Cennamo G, Carotenuto A, et al. Correlation analysis between foveal avascular zone and near peripheral retinal hypoperfusion in multiple sclerosis: a wide field optical coherence tomography angiography study. Front Med. 2022;9:1032514. https://doi.org/10.3389/fmed.2022.1032514.
Bostan M, Pîrvulescu R, Tiu C, et al. OCT and OCT-a biomarkers in multiple sclerosis - review. Rom J Ophthalmol. 2023;67(2):107-110. https://doi.org/10.22336/rjo.2023.20.
Donica VC, Alexa AI, Pavel IA, et al. The evolvement of OCT and OCT-a in identifying multiple sclerosis biomarkers. Biomedicines. 2023;11(11):3031. https://doi.org/10.3390/biomedicines11113031.
Liu J, Song S, Gu XY, et al. Microvascular impairments detected by optical coherence tomography angiography in multiple sclerosis patients: a systematic review and meta-analysis. Front Neurosci. 2022;16:1121899. https://doi.org/10.3389/fnins.2022.1121899.
Mohammadi S, Gouravani M, Salehi MA, et al. Optical coherence tomography angiography measurements in multiple sclerosis: a systematic review and meta-analysis. J Neuroinflammation. 2023;20(1):85. https://doi.org/10.1186/s12974-023-02763-4.
Cerdà-Ibáñez M, Domínguez LM, Duch-Samper A. Peripapillar radial nerve fiber layer (RNFL) and choroidal macular thickness (CMT): valid biomarkers of disability progression during one year in patients with multiple sclerosis (MS). J Adv Med Med Res. 2023;35(22):88-93. https://doi.org/10.9734/jammr/2023/v35i225249.
Yan SS, Campos de Souza S, Xie ZD, et al. Research progress in clinical trials of stem cell therapy for stroke and neurodegenerative diseases. Ibrain. 2023;9(2):214-230. https://doi.org/10.1002/ibra.12095.
Labrador-Velandia S, Alonso-Alonso ML, Alvarez-Sanchez S, et al. Mesenchymal stem cell therapy in retinal and optic nerve diseases: an update of clinical trials. World J Stem Cell. 2016;8(11):376-383. https://doi.org/10.4252/wjsc.v8.i11.376.
Xie Y, Sun Y, Liu YD, et al. Targeted delivery of RGD-CD146+CD271+ human umbilical cord mesenchymal stem cell-derived exosomes promotes blood-spinal cord barrier repair after spinal cord injury. ACS Nano. 2023;17(18):18008-18024. https://doi.org/10.1021/acsnano.3c04423.
Huang C, Liu YB, Ding J, et al. Thermosensitive quaternized chitosan hydrogel scaffolds promote neural differentiation in bone marrow mesenchymal stem cells and functional recovery in a rat spinal cord injury model. Cell Tissue Res. 2021;385(1):65-85. https://doi.org/10.1007/s00441-021-03430-x.
Liang ZY, Yang ZL, Xie HS, et al. Small extracellular vesicles from hypoxia-preconditioned bone marrow mesenchymal stem cells attenuate spinal cord injury via miR-146a-5p-mediated regulation of macrophage polarization. Neural Regen Res. 2024;19(10):2259-2269. https://doi.org/10.4103/1673-5374.391194.
Hu XY, Liu Z, Zhou XR, et al. Small extracellular vesicles derived from mesenchymal stem cell facilitate functional recovery in spinal cord injury by activating neural stem cells via the ERK1/2 pathway. Front Cell Neurosci. 2022;16:954597. https://doi.org/10.3389/fncel.2022.954597.
Salado-Manzano C, Perpiña U, Straccia M, et al. Is the immunological response a bottleneck for cell therapy in neurodegenerative diseases? Front Cell Neurosci. 2020;14:250. https://doi.org/10.3389/fncel.2020.00250.
Moreta MPG, Burgos-Alonso N, Torrecilla M, etal.Efficacy of acetylcholinesterase inhibitors on cognitive function in Alzheimer's disease. review of reviews. Biomedicines. 2021;9(11):1689. https://doi.org/10.3390/biomedicines9111689.
Saxena M, Dubey R. Target enzyme in Alzheimer's disease: acetylcholinesterase inhibitors. Curr Top Med Chem. 2019;19(4):264-275. https://doi.org/10.2174/1568026619666190128125912.
Alborghetti M, Nicoletti F. Different generations of type-B monoamine oxidase inhibitors in Parkinson's disease: from bench to bedside. Curr Neuropharmacol. 2019;17(9):861-873. https://doi.org/10.2174/1570159X16666180830100754.
Yan R, Cai HH, Cui YS, et al. Comparative efficacy and safety of monoamine oxidase type B inhibitors plus channel blockers and monoamine oxidase type B inhibitors as adjuvant therapy to levodopa in the treatment of Parkinson's disease: a network meta-analysis of randomized controlled trials. Eur J Neurol. 2023;30(4):1118-1134. https://doi.org/10.1111/ene.15651.
Henchcliffe C, Schumacher HC, Burgut FT. Recent advances in Parkinson's disease therapy: use of monoamine oxidase inhibitors. Expert Rev Neurother. 2005;5(6):811-821. https://doi.org/10.1586/14737175.5.6.811.
Fedele E. Anti-amyloid therapies for Alzheimer's disease and the amyloid cascade hypothesis. Int J Mol Sci. 2023;24(19):14499. https://doi.org/10.3390/ijms241914499.
Bradshaw AC, Georges J. Anti-amyloid therapies for Alzheimer's disease: an Alzheimer Europe position paper and call to action. J Prev Alzheimers Dis. 2024;11(2):265-273. https://doi.org/10.14283/jpad.2024.37.
Perneczky R, Jessen F, Grimmer T, et al. Anti-amyloid antibody therapies in Alzheimer's disease. Brain. 2023;146(3):842-849. https://doi.org/10.1093/brain/awad005.
Han F, Wang W, Chen B, et al. Human induced pluripotent stem cell-derived neurons improve motor asymmetry in a 6-hydroxydopamine-induced rat model of Parkinson's disease. Cytotherapy. 2015;17(5):665-679. https://doi.org/10.1016/j.jcyt.2015.02.001.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).