AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

The 2023 yearbook of Neurorestoratology

Hongyun Huanga( )John R. BachbHari Shanker SharmacLin ChendPing WueAnna SarnowskafAli OtomgMengzhou XuehHooshang SaberiiXijing HejZiad AlhawamdehkDamien KufflerlJianzhong HumDario SiniscalconEdgardo O. AlvarezoMingchang LipPaul R. Sanbergq
Cell therapy Center, Beijing Hongtianji Neuroscience Academy, Beijing 100143, China
Department of Physical Medicine and Rehabilitation, Center for Ventilator Management Alternatives, University Hospital, Rutgers University – New Jersey Medical School, Newark 07102, NJ, USA
Experimental Central Nervous System Injury & Repair, Anesthesiology & Intensive Care Medicine, Department of Surgical Sciences, University Hospital, Uppsala University, SE-75185 Uppsala, Sweden
Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China
Department of Neurobiology, Cell Biology & Anatomy, University of Texas Medical Branch, Galveston 77555-0654, TX, USA
Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw 02-106, Poland
Department of Rehabilitation Medicine, Jordan University Hospital, Amman 11183, Jordan
Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1419733141, Iran
Xi'an International Rehabilitation Medical Center Hospital, Xi'an 710119, Shaanxi, China
School of Medicine, The University of Jordan, Amman 11942, Jordan
Institute of Neurobiology, University of Puerto Rico, San Juan PR 00901, Puerto Rico
Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
Laboratory of epigenetics and Neuropharmacology, faculty of Medical Sciences, Sede San Luis Catholic Cuyo University, San Luis 5700, Argentina
Department of Neurosurgery, Renmin Hospital of Wuhan university, Wuhan 430060, Hubei, China
Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa 33612, FL, USA
Show Author Information

Abstract

Remarkable advancements have been made in understanding the pathogenesis of Alzheimer's disease, Parkinson's disease, and other neurological disease; in our depth of understanding neurorestorative mechanisms such as anti-inflammatory processes, immune regulation, neuromodulation, neovascularization/neural repair, and neuroprotection; and in clinical neurorestorative treatments. Multiple types of cell therapies have been reported, with some positive outcomes. Diverse forms of neurostimulation and neuromodulation as well as brain–computer interfaces have shown good therapeutic outcomes in clinical applications. Further, therapeutic neurorestorative surgery and pharmaceutic therapy have been very impressive. These fundamental achievements are helpful for understanding the pathogenesis of neurological diseases and the mechanisms of neurorestoration. Patients with neurological impairments have benefited from therapeutic progress, but some of these therapies still require confirmation in higher-level randomized clinical trials.

References

1

Seo DO, O'Donnell D, Jain N, et al. ApoE isoform- and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathy. Science. 2023;379(6628):eadd1236. https://doi.org/10.1126/science.add1236.

2

Shirzadi Z, Schultz SA, Yau WYW, et al. Etiology of white matter hyperintensities in autosomal dominant and sporadic alzheimer disease. JAMA Neurol. 2023;80(12):1353–1363. https://doi.org/10.1001/jamaneurol.2023.3618.

3

Balusu S, Horré K, Thrupp N, et al. MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer's disease. Science. 2023;381(6663):1176–1182. https://doi.org/10.1126/science.abp9556.

4

Zou X, Liao YJ, Jiang CL, et al. Brain perfusion, cognition, and plasma Alzheimer's biomarkers in moyamoya disease. Alzheimers Dement. 2023;19(8):3316–3326. https://doi.org/10.1002/alz.12958.

5

Depp C, Sun T, Sasmita AO, et al. Myelin dysfunction drives amyloid-β deposition in models of Alzheimer's disease. Nature. 2023;618(7964):349–357. https://doi.org/10.1038/s41586-023-06120-6.

6

Hu JQ, Fang M, Pike JR, et al. Prediabetes, intervening diabetes and subsequent risk of dementia: the Atherosclerosis Risk in Communities (ARIC) study. Diabetologia. 2023;66(8):1442–1449. https://doi.org/10.1007/s00125-023-05930-7.

7

Song PP, Peng W, Sauve V, et al. Parkinson's disease-linked parkin mutation disrupts recycling of synaptic vesicles in human dopaminergic neurons. Neuron. 2023;111(23):3775–3788.e7. https://doi.org/10.1016/j.neuron.2023.08.018.

8

Ryan SK, Zelic M, Han YN, et al. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration. Nat Neurosci. 2023;26(1):12–26. https://doi.org/10.1038/s41593-022-01221-3.

9

Kunimura A, Yano Y, Hisamatsu T, et al. Association between proprotein convertase subtilisin/kexin type 9 and subclinical cerebrovascular disease in the community. Eur J Neurol. 2023;30(5):1327–1334. https://doi.org/10.1111/ene.15723.

10

Van San E, Debruyne AC, Veeckmans G, et al. Ferroptosis contributes to multiple sclerosis and its pharmacological targeting suppresses experimental disease progression. Cell Death Differ. 2023;30(9):2092–2103. https://doi.org/10.1038/s41418-023-01195-0.

11

Wilton DK, Mastro K, Heller MD, et al. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington's disease. Nat Med. 2023;29(11):2866–2884. https://doi.org/10.1038/s41591-023-02566-3.

12

Mann JR, McKenna ED, Mawrie D, et al. Loss of function of the ALS-associated NEK1 kinase disrupts microtubule homeostasis and nuclear import. Sci Adv. 2023;9(33):eadi5548. https://doi.org/10.1126/sciadv.adi5548.

13

Wainberg M, Andrews SJ, Tripathy SJ. Shared genetic risk loci between Alzheimer's disease and related dementias, Parkinson's disease, and amyotrophic lateral sclerosis. Alzheimer's Res Ther. 2023;15(1):113. https://doi.org/10.1186/s13195-023-01244-3.

14

Meng Y, Goubran M, Rabin JS, et al. Blood-brain barrier opening of the default mode network in Alzheimer's disease with magnetic resonance-guided focused ultrasound. Brain. 2023;146(3):865–872. https://doi.org/10.1093/brain/awac459.

15

Mehta RI, Carpenter JS, Mehta RI, et al. Ultrasound-mediated blood-brain barrier opening uncovers an intracerebral perivenous fluid network in persons with Alzheimer's disease. Fluids Barriers CNS. 2023;20(1):46. https://doi.org/10.1186/s12987-023-00447-y.

16

Chang L, Dong WW, Luo B, et al. Deep brain stimulation improves central nervous system inflammation in Parkinson's disease: evidence and perspectives. CNS Neurosci Ther. 2023;29(8):2177–2185. https://doi.org/10.1111/cns.14167.

17

Bahr-Hosseini M, Nael K, Unal G, et al. High-definition cathodal direct current stimulation for treatment of acute ischemic stroke: a randomized clinical trial. JAMA Netw Open. 2023;6(6):e2319231. https://doi.org/10.1001/jamanetworkopen.2023.19231.

18

Squair JW, Milano M, de Coucy A, et al. Recovery of walking after paralysis by regenerating characterized neurons to their natural target region. Science. 2023;381(6664):1338–1345. https://doi.org/10.1126/science.adi6412.

19

Marino G, Campanelli F, Natale G, et al. Intensive exercise ameliorates motor and cognitive symptoms in experimental Parkinson's disease restoring striatal synaptic plasticity. Sci Adv. 2023;9(28):eadh1403. https://doi.org/10.1126/sciadv.adh1403.

20

Phan TG, Lim R, Chan ST, et al. Phase Ⅰ trial outcome of amnion cell therapy in patients with ischemic stroke (Ⅰ-ACT). Front Neurosci. 2023;17:1153231. https://doi.org/10.3389/fnins.2023.1153231.

21

Moniche F, Cabezas-Rodriguez JA, Valverde R, et al. Safety and efficacy of intra-arterial bone marrow mononuclear cell transplantation in patients with acute ischaemic stroke in Spain (IBIS trial): a phase 2, randomised, open-label, standard-of-care controlled, multicentre trial. Lancet Neurol. 2023;22(2):137–146. https://doi.org/10.1016/S1474-4422(22)00526-9.

22

Niizuma K, Osawa SI, Endo H, et al. Randomized placebo-controlled trial of CL2020, an allogenic muse cell-based product, in subacute ischemic stroke. J Cerebr Blood Flow Metabol. 2023;43(12):2029–2039. https://doi.org/10.1177/0271678X231202594.

23

Yamashita T, Nakano Y, Sasaki R, et al. Safety and clinical effects of a muse cell-based product in patients with amyotrophic lateral sclerosis: results of a phase 2 clinical trial. Cell Transplant. 2023;32:9636897231214370. https://doi.org/10.1177/09636897231214370.

24

Gotkine M, Caraco Y, Lerner Y, et al. Safety and efficacy of first-in-man intrathecal injection of human astrocytes (AstroRx®) in ALS patients: phase Ⅰ/Ⅱa clinical trial results. J Transl Med. 2023;21(1):122. https://doi.org/10.1186/s12967-023-03903-3.

25

Nam JY, Chun S, Lee TY, et al. Long-term survival benefits of intrathecal autologous bone marrow-derived mesenchymal stem cells (Neuronata-R®: lenzumestrocel) treatment in ALS: propensity-score-matched control, surveillance study. Front Aging Neurosci. 2023;15:1148444. https://doi.org/10.3389/fnagi.2023.1148444.

26

De Marchi F, Mareschi K, Ferrero I, et al. Effect of mesenchymal stromal cell transplantation on long-term survival in amyotrophic lateral sclerosis. Cytotherapy. 2023;25(8):798–802. https://doi.org/10.1016/j.jcyt.2023.02.005.

27

Kirkeby A, Nelander J, Hoban DB, et al. Preclinical quality, safety, and efficacy of a human embryonic stem cell-derived product for the treatment of Parkinson's disease, STEM-PD. Cell Stem Cell. 2023;30(10):1299–1314.e9. https://doi.org/10.1016/j.stem.2023.08.014.

28

Kim J, Inbo H, Kim HS, et al. First clinical report on the treatment of Parkinson's disease with fetal midbrain precursor cells. Mov Disord. 2023;38(4):589–603. https://doi.org/10.1002/mds.29316.

29

Kim KI, Lee MC, Lee JH, et al. Clinical efficacy and safety of the intra-articular injection of autologous adipose-derived mesenchymal stem cells for knee osteoarthritis: a phase Ⅲ, randomized, double-blind, placebo-controlled trial. Am J Sports Med. 2023;51(9):2243–2253. https://doi.org/10.1177/03635465231179223.

30

Mautner K, Gottschalk M, Boden SD, et al. Cell-based versus corticosteroid injections for knee pain in osteoarthritis: a randomized phase 3 trial. Nat Med. 2023;29(12):3120–3126. https://doi.org/10.1038/s41591-023-02632-w.

31

Lv ZY, Li Y, Wang YC, et al. Safety and efficacy outcomes after intranasal administration of neural stem cells in cerebral palsy: a randomized phase 1/2 controlled trial. Stem Cell Res Ther. 2023;14(1):23. https://doi.org/10.1186/s13287-022-03234-y.

32

Yousif NG, Yousif MG, Mohsen AAU, et al. Prospective single center analysis of outcome stem cells transplants in patients with cerebral palsy. Pol Merkur Lek. 2023;51(4):339–345. https://doi.org/10.36740/Merkur202304107.

33

Suh MR, Min K, Cho KH, et al. Maintenance of the synergistic effects of cord blood cells and erythropoietin combination therapy after additional cord blood infusion in children with cerebral palsy: 1-year open-label extension study of randomized placebo-controlled trial. Stem Cell Res Ther. 2023;14(1):362. https://doi.org/10.1186/s13287-023-03600-4.

34

Brody M, Agronin M, Herskowitz BJ, et al. Results and insights from a phase Ⅰ clinical trial of Lomecel-B for Alzheimer's disease. Alzheimers Dement. 2023;19(1):261–273. https://doi.org/10.1002/alz.12651.

35

Nabavi SM, Karimi S, Arab L, et al. Intravenous transplantation of bone marrow-derived mesenchymal stromal cells in patients with multiple sclerosis, a phase Ⅰ/Ⅱa, double blind, randomized controlled study. Mult Scler Relat Disord. 2023;78:104895. https://doi.org/10.1016/j.msard.2023.104895.

36

Cohen JA, Lublin FD, Lock C, et al. Evaluation of neurotrophic factor secreting mesenchymal stem cells in progressive multiple sclerosis. Mult Scler. 2023;29(1):92–106. https://doi.org/10.1177/13524585221122156.

37

Sirait SP, Bramono K, Menaldi SL, et al. Effect of adipose derived stromal vascular fraction on leprosy neuropathy: a Preliminary report. PLoS Neglected Trop Dis. 2023;17(1):e0010994. https://doi.org/10.1371/journal.pntd.0010994.

38

Granit V, Benatar M, Kurtoglu M, et al. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol. 2023;22(7):578–590. https://doi.org/10.1016/S1474-4422(23)00194-1.

39

Qin C, Tian DS, Zhou LQ, et al. Anti-BCMA CAR T-cell therapy CT103A in relapsed or refractory AQP4-IgG seropositive neuromyelitis optica spectrum disorders: phase 1 trial interim results. Signal Transduct Targeted Ther. 2023;8(1):5. https://doi.org/10.1038/s41392-022-01278-3.

40

Epperla N, Feng L, Shah NN, et al. Outcomes of patients with secondary central nervous system lymphoma following CAR T-cell therapy: a multicenter cohort study. J Hematol Oncol. 2023;16(1):111. https://doi.org/10.1186/s13045-023-01508-3.

41

Williamson JN, James SA, He D, et al. High-definition transcranial direct current stimulation for upper extremity rehabilitation in moderate-to-severe ischemic stroke: a pilot study. Front Hum Neurosci. 2023;17:1286238. https://doi.org/10.3389/fnhum.2023.1286238.

42

Wang LY, Shi AQ, Xue H, et al. Efficacy of transcranial direct current stimulation combined with conventional swallowing rehabilitation training on post-stroke dysphagia. Dysphagia. 2023;38(6):1537–1545. https://doi.org/10.1007/s00455-023-10581-2.

43

Segal SK, Weber CL, Kaplan AM, et al. A novel sequential bilateral neurostimulation approach for treatment-resistant depression involving high-frequency repetitive transcranial magnetic stimulation to the left dorsolateral prefrontal cortex and intermittent theta burst to the right dorsolateral prefrontal cortex. Brain Stimul. 2023;16(6):1719–1721. https://doi.org/10.1016/j.brs.2023.11.007.

44

Leuchter MK, Citrenbaum C, Wilson AC, et al. A comparison of self- and observer-rated scales for detecting clinical improvement during repetitive transcranial stimulation (rTMS) treatment of depression. Psychiatr Res. 2023;330:115608. https://doi.org/10.1016/j.psychres.2023.115608.

45

Zhao WF, Wang H, Leng HX, et al. Acute effect of twice-daily 15 mA transcranial alternating current stimulation on treatment-resistant depression: a case series study. Gen Psychiatr. 2023;36(6):e101278. https://doi.org/10.1136/gpsych-2023-101278.

46

Mitra A, Raichle ME, Geoly AD, et al. Targeted neurostimulation reverses a spatiotemporal biomarker of treatment-resistant depression. Proc Natl Acad Sci U S A. 2023;120(21):e2218958120. https://doi.org/10.1073/pnas.2218958120.

47

Alagapan S, Choi KS, Heisig S, et al. Cingulate dynamics track depression recovery with deep brain stimulation. Nature. 2023;622(7981):130–138. https://doi.org/10.1038/s41586-023-06541-3.

48

Wu X, Xie L, Lei J, et al. Acute traumatic coma awakening by right Median nerve electrical stimulation: a randomised controlled trial. Intensive Care Med. 2023;49(6):633–644. https://doi.org/10.1007/s00134-023-07072-1.

49

Zhou YF, Sun YJ, He P, et al. The efficacy and safety of transcutaneous auricular vagus nerve stimulation for patients with minimally conscious state: a sham-controlled randomized double-blind clinical trial. Front Neurosci. 2023;17:1323079. https://doi.org/10.3389/fnins.2023.1323079.

50

Schiff ND, Giacino JT, Butson CR, et al. Thalamic deep brain stimulation in traumatic brain injury: a phase 1, randomized feasibility study. Nat Med. 2023;29(12):3162–3174. https://doi.org/10.1038/s41591-023-02638-4.

51

Xiong HY, Cao YQ, Du SH, et al. Effects of high-definition transcranial direct current stimulation targeting the anterior cingulate cortex on the pain thresholds: a randomized controlled trial. Pain Med. 2023;24(1):89–98. https://doi.org/10.1093/pm/pnac135.

52

Li XY, Yao JJ, Lin XX, et al. Transcranial random noise stimulation over the left dorsolateral prefrontal cortex attenuates pain expectation and perception. Clin Neurophysiol. 2023;147:1–10. https://doi.org/10.1016/j.clinph.2022.12.009.

53

Krishna V, Fishman PS, Eisenberg HM, et al. Trial of globus pallidus focused ultrasound ablation in Parkinson's disease. N Engl J Med. 2023;388(8):683–693. https://doi.org/10.1056/NEJMoa2202721.

54

Milekovic T, Moraud EM, Macellari N, et al. A spinal cord neuroprosthesis for locomotor deficits due to Parkinson's disease. Nat Med. 2023;29(11):2854–2865. https://doi.org/10.1038/s41591-023-02584-1.

55

Li XX, Chen L, Yu KQ, et al. Impact of twice-a-day transcranial direct current stimulation intervention on cognitive function and motor cortex plasticity in patients with Alzheimer's disease. Gen Psychiatr. 2023;36(6):e101166. https://doi.org/10.1136/gpsych-2023-101166.

56

Molho W, Raymond N, Reinhart RMG, et al. Lesion network guided delta frequency neuromodulation improves cognition in patients with psychosis spectrum disorders: a pilot study. Asian J Psychiatr. 2024;92:103887. https://doi.org/10.1016/j.ajp.2023.103887.

57

Dakwar-Kawar O, Mairon N, Hochman S, et al. Transcranial random noise stimulation combined with cognitive training for treating ADHD: a randomized, sham-controlled clinical trial. Transl Psychiatry. 2023;13(1):271. https://doi.org/10.1038/s41398-023-02547-7.

58
Wan KR, Ng ZYV, Wee SK, et al. Recovery of volitional motor control and overground walking in participants with chronic clinically motor complete spinal cord injury: restoration of rehabilitative function with epidural spinal stimulation (restores) trial-a preliminary study. J Neurotrauma. 2024 Jan 5. https://doi.org/10.1089/neu.2023.0265.
59

Koy A, Kühn AA, Schiller P, et al. Long-term follow-up of pediatric patients with dyskinetic cerebral palsy and deep brain stimulation. Mov Disord. 2023;38(9):1736–1742. https://doi.org/10.1002/mds.29516.

60

Lorach H, Galvez A, Spagnolo V, et al. Walking naturally after spinal cord injury using a brain-spine interface. Nature. 2023;618(7963):126–133. https://doi.org/10.1038/s41586-023-06094-5.

61

Mitchell P, Lee SCM, Yoo PE, et al. Assessment of safety of a fully implanted endovascular brain-computer interface for severe paralysis in 4 patients: the stentrode with thought-controlled digital switch (SWITCH) study. JAMA Neurol. 2023;80(3):270–278. https://doi.org/10.1001/jamaneurol.2022.4847.

62

Violante IR, Alania K, Cassarà AM, et al. Non-invasive temporal interference electrical stimulation of the human hippocampus. Nat Neurosci. 2023;26(11):1994–2004. https://doi.org/10.1038/s41593-023-01456-8.

63

Défossez A, Caucheteux C, Rapin J, et al. Decoding speech perception from non-invasive brain recordings. Nat Mach Intell. 2023;5:1097–1107. https://doi.org/10.1038/s42256-023-00714-5.

64

Willett FR, Kunz EM, Fan CF, et al. A high-performance speech neuroprosthesis. Nature. 2023;620(7976):1031–1036. https://doi.org/10.1038/s41586-023-06377-x.

65

Metzger SL, Littlejohn KT, Silva AB, et al. A high-performance neuroprosthesis for speech decoding and avatar control. Nature. 2023;620(7976):1037–1046. https://doi.org/10.1038/s41586-023-06443-4.

66

Liu Y, Zhao ZH, Xu MP, et al. Decoding and synthesizing tonal language speech from brain activity. Sci Adv. 2023;9(23):eadh0478. https://doi.org/10.1126/sciadv.adh0478.

67

Olthuis SGH, Pirson FAV, Pinckaers FME, et al. Endovascular treatment versus no endovascular treatment after 6-24 h in patients with ischaemic stroke and collateral flow on CT angiography (MR CLEAN-LATE) in The Netherlands: a multicentre, open-label, blinded-endpoint, randomised, controlled, phase 3 trial. Lancet. 2023;401(10385):1371–1380. https://doi.org/10.1016/S0140-6736(23)00575-5.

68

Sarraj A, Hassan AE, Abraham MG, et al. Trial of endovascular thrombectomy for large ischemic strokes. N Engl J Med. 2023;388(14):1259–1271. https://doi.org/10.1056/NEJMoa2214403.

69

Huo XC, Ma GT, Tong X, et al. Trial of endovascular therapy for acute ischemic stroke with large infarct. N Engl J Med. 2023;388(14):1272–1283. https://doi.org/10.1056/NEJMoa2213379.

70

Wen A, Cao WF, Zhao C, et al. Endovascular therapy beyond 24 hours for anterior circulation large vessel occlusion or stenosis in acute ischemic stroke: a retrospective study. Front Neurol. 2023;14:1237661. https://doi.org/10.3389/fneur.2023.1237661.

71

Hoy SM. Lecanemab: first approval. Drugs. 2023;83(4):359–365. https://doi.org/10.1007/s40265-023-01851-2.

72

Kurkinen M. Lecanemab (Leqembi) is not the right drug for patients with Alzheimer's disease. Adv Clin Exp Med. 2023;32(9):943–947. https://doi.org/10.17219/acem/171379.

73

Sims JR, Zimmer JA, Evans CD, et al. Donanemab in early symptomatic alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA. 2023;330(6):512–527. https://doi.org/10.1001/jama.2023.13239.

74

Gueorguieva I, Willis BA, Chua L, et al. Donanemab population pharmacokinetics, amyloid plaque reduction, and safety in participants with Alzheimer's disease. Clin Pharmacol Ther. 2023;113(6):1258–1267. https://doi.org/10.1002/cpt.2875.

75

Gonzales MM, Garbarino VR, Kautz TF, et al. Senolytic therapy in mild Alzheimer's disease: a phase 1 feasibility trial. Nat Med. 2023;29(10):2481–2488. https://doi.org/10.1038/s41591-023-02543-w.

76

Bastiaansen AEM, van Steenhoven RW, Te Vaarwerk ES, et al. Antibodies associated with autoimmune encephalitis in patients with presumed neurodegenerative dementia. Neurol Neuroimmunol Neuroinflamm. 2023;10(5):e200137. https://doi.org/10.1212/NXI.0000000000200137.

77

Sun MY, Chen WM, Wu SY, et al. Metformin in elderly type 2 diabetes mellitus: dose-dependent dementia risk reduction. Brain. 2024;147(4):1474–1482. https://doi.org/10.1093/brain/awad366.

78

Zimmerman SC, Ferguson EL, Choudhary V, et al. Metformin cessation and dementia incidence. JAMA Netw Open. 2023;6(10):e2339723. https://doi.org/10.1001/jamanetworkopen.2023.39723.

79

Zhao M, Luo YM, Wang HC, et al. Guilingji capsule for Alzheimer's disease: secondary analysis of a randomized non-inferiority controlled trial. J Tradit Chin Med. 2023;43(5):1019–1025. https://doi.org/10.19852/j.cnki.jtcm.20230404.006.

80

Guo ZN, Yue BH, Fan L, et al. Effectiveness of butylphthalide on cerebral autoregulation in ischemic stroke patients with large artery atherosclerosis (EBCAS study): a randomized, controlled, multicenter trial. J Cerebr Blood Flow Metabol. 2023;43(10):1702–1712. https://doi.org/10.1177/0271678X231168507.

81

Keam SJ. Sovateltide: first approval. Drugs. 2023;83(13):1239–1244. https://doi.org/10.1007/s40265-023-01922-4.

82

Morimoto S, Takahashi S, Ito D, et al. Phase 1/2a clinical trial in ALS with ropinirole, a drug candidate identified by iPSC drug discovery. Cell Stem Cell. 2023;30(6):766–780.e9. https://doi.org/10.1016/j.stem.2023.04.017.

83

Chawla T, Goyal V. Tofersen: silver lining or hyperbole? Ann Indian Acad Neurol. 2023;26(5):638–640. https://doi.org/10.4103/aian.aian_734_23.

84

Aschenbrenner DS. New drug approved for ALS. Am J Nurs. 2023;123(1):22–23. https://doi.org/10.1097/01.NAJ.0000911516.31267.67.

85

Faravelli I, Gagliardi D, Abati E, et al. Multi-omics profiling of CSF from spinal muscular atrophy type 3 patients after nusinersen treatment: a 2-year follow-up multicenter retrospective study. Cell Mol Life Sci. 2023;80(8):241. https://doi.org/10.1007/s00018-023-04885-7.

86

Gowda V, Atherton M, Murugan A, et al. Efficacy and safety of onasemnogene abeparvovec in children with spinal muscular atrophy type 1: real-world evidence from 6 infusion centres in the United Kingdom. Lancet Reg Health Eur. 2024;37:100817. https://doi.org/10.1016/j.lanepe.2023.100817.

87

Verhoeven JE, Han LKM, Lever-van Milligen BA, et al. Antidepressants or running therapy: comparing effects on mental and physical health in patients with depression and anxiety disorders. J Affect Disord. 2023;329:19–29. https://doi.org/10.1016/j.jad.2023.02.064.

88

Shao CL, Wang YZ, Gou H, et al. Strength training of the nonhemiplegic side promotes motor function recovery in patients with stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2023;104(2):188–194. https://doi.org/10.1016/j.apmr.2022.09.012.

89

Kim S, Shin Y, Jeong Y, et al. Autonomy support encourages use of more-affected arm post-stroke. J NeuroEng Rehabil. 2023;20(1):116. https://doi.org/10.1186/s12984-023-01238-0.

90

Shin S, Lee HJ, Chang WH, et al. A smart glove digital system promotes restoration of upper limb motor function and enhances cortical hemodynamic changes in subacute stroke patients with mild to moderate weakness: a randomized controlled trial. J Clin Med. 2022;11(24):7343. https://doi.org/10.3390/jcm11247343.

91

Hao MQ, Fang Q, Wu B, et al. Rehabilitation effect of intelligent rehabilitation training system on hemiplegic limb spasms after stroke. Open Life Sci. 2023;18(1):20220724. https://doi.org/10.1515/biol-2022-0724.

92

Boyne P, Billinger SA, Reisman DS, et al. Optimal intensity and duration of walking rehabilitation in patients with chronic stroke: a randomized clinical trial. JAMA Neurol. 2023;80(4):342–351. https://doi.org/10.1001/jamaneurol.2023.0033.

93

Hoffman HG, Fontenot MR, Garcia-Palacios A, et al. Adding tactile feedback increases avatar ownership and makes virtual reality more effective at reducing pain in a randomized crossover study. Sci Rep. 2023;13(1):7915. https://doi.org/10.1038/s41598-023-31038-4.

94

Liu K, Madrigal E, Chung JS, et al. Preliminary study of virtual-reality-guided meditation for veterans with stress and chronic pain. Alternative Ther Health Med. 2023;29(6):42–49.

95

Pak SS, Janela D, Freitas N, et al. Comparing digital to conventional physical therapy for chronic shoulder pain: randomized controlled trial. J Med Internet Res. 2023;25:e49236. https://doi.org/10.2196/49236.

96

Merlot B, Elie V, Périgord A, et al. Pain reduction with an immersive digital therapeutic in women living with endometriosis-related pelvic pain: at-home self-administered randomized controlled trial. J Med Internet Res. 2023;25:e47869. https://doi.org/10.2196/47869.

97

Chen YN, Qin JW, Tao LY, et al. Effects of Tai Chi Chuan on cognitive function in adults 60 years or older with type 2 diabetes and mild cognitive impairment in China: a randomized clinical trial. JAMA Netw Open. 2023;6(4):e237004. https://doi.org/10.1001/jamanetworkopen.2023.7004.

98

Hwang HF, Tseng KC, Chen SJ, et al. Effects of home-based computerized cognitive training and Tai Chi exercise on cognitive functions in older adults with mild cognitive impairment. Aging Ment Health. 2023;27(11):2170–2178. https://doi.org/10.1080/13607863.2023.2225430.

99

Xu Y, Zhu JF, Liu H, et al. Effects of Tai Chi combined with tDCS on cognitive function in patients with MCI: a randomized controlled trial. Front Public Health. 2023;11:1199246. https://doi.org/10.3389/fpubh.2023.1199246.

100

Li FZ, Harmer P, Eckstrom E, et al. Clinical effectiveness of cognitively enhanced Tai ji Quan training on global cognition and dual-task performance during walking in older adults with mild cognitive impairment or self-reported memory concerns: a randomized controlled trial. Ann Intern Med. 2023;176(11):1498–1507. https://doi.org/10.7326/M23-1603.

101

Li Y, Yin JY, Liu SY, et al. Learning hand kinematics for Parkinson's disease assessment using a multimodal sensor glove. Adv Sci. 2023;10(20):e2206982. https://doi.org/10.1002/advs.202206982.

102

Kang SJ, Pei CZ, Lee DH, et al. A pilot randomized clinical trial of biomedical link with mental health in art therapy intervention programs for alcohol use disorder: changes in NK cells, addiction biomarkers, electroencephalography, and MMPI-2 profiles. PLoS One. 2023;18(5):e0284344. https://doi.org/10.1371/journal.pone.0284344.

103

Bonakdarpour B, Zhou GY, Huang D, et al. Calming effect of Clinically Designed Improvisatory Music for patients admitted to the epilepsy monitoring unit during the COVID-19 pandemic: a pilot study. Front Neurol. 2023;14:1206171. https://doi.org/10.3389/fneur.2023.1206171.

104

Wang YC, Huang C, Tian RF, et al. Target temperature management and therapeutic hypothermia in sever neuroprotection for traumatic brain injury: clinic value and effect on oxidative stress. Medicine. 2023;102(10):e32921. https://doi.org/10.1097/MD.0000000000032921.

105

Ono H, Nishijima Y, Ohta S. Therapeutic inhalation of hydrogen gas for Alzheimer's disease patients and subsequent long-term follow-up as a disease-modifying treatment: an open label pilot study. Pharmaceuticals. 2023;16(3):434. https://doi.org/10.3390/ph16030434.

106

Tamura T, Suzuki M, Homma K, et al. Efficacy of inhaled hydrogen on neurological outcome following brain ischaemia during post-cardiac arrest care (HYBRID Ⅱ): a multi-centre, randomised, double-blind, placebo-controlled trial. EClinicalMedicine. 2023;58:101907. https://doi.org/10.1016/j.eclinm.2023.101907.

107

Huang HY, Chen L, Sanberg PR, et al. Beijing declaration of international association of neurorestoratology (2023 Xi’an version). J Neurorestoratol. 2023;11(2):100055. https://doi.org/10.1016/j.jnrt.2023.100055.

108

Guo XD, Hu JZ, Feng SQ, et al. Clinical neurorestorative treatment guidelines for neurological dysfunctions of sequels from vertebral and spinal cord lesions (CANR 2023 version). J Neurorestoratol. 2023;11(3):100070. https://doi.org/10.1016/j.jnrt.2023.100070.

Journal of Neurorestoratology
Article number: 100136
Cite this article:
Huang H, Bach JR, Sharma HS, et al. The 2023 yearbook of Neurorestoratology. Journal of Neurorestoratology, 2024, 12(3): 100136. https://doi.org/10.1016/j.jnrt.2024.100136

46

Views

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 24 March 2024
Revised: 07 May 2024
Accepted: 08 May 2024
Published: 13 June 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return