AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Virtual reality as a non-conventional rehabilitation for stroke: A comprehensive review

Muhammad Altaf HussainaAsim WarisaSyed Omer GilanibShafaq MushtaqcAmit N. PujaridNiaz B. Khana,eMohammed JameelfGulrux DaminovagM. Ijaz Khanh,i,j( )
Deparment of Engineering Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
College of Engineering, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
Department of Bio-Engineering, Pakistan Institute of Medical Sciences (PIMS), Islamabad 44000, Pakistan
School of Engineering, University of Aberdeen, Scotland AB24 3FX, UK
Department of Mechanical Engineering, University of Bahrain, Zallaq 32038, Bahrain
Department of Civil Engineering, College of Engineering, King Khalid University, Asir, P. O. Box 960, Abha 61421, Saudi Arabia
Department of Chemistry and Its Teaching Methods, Tashkent State Pedagogical University, Tashkent 100183, Uzbekistan
Department of Mechanical Engineering, Lebanese American University, Beirut P.O. Box 13-5053, Chouran Beirut, 1102 2801, Lebanon
Department of Mathematics and Statistics, Riphah International University I-14, Islamabad 44000, Pakistan
Department of Mechanics and Engineering Science, Peking University, Beijing 100871, China
Show Author Information

Abstract

Stroke survivors often experience debilitating neural, physical, and cognitive impairments, particularly affecting upper limb functions. Conventional rehabilitations, though effective, are perceived as slow and monotonous by stroke survivors. This review explores the potential of Virtual Reality (VR) as an engaging rehabilitation approach to address such limitations. Our findings show that VR-based rehabilitations can be beneficial in restoring post-stroke upper limb functions and improving routine life of survivors. Moreover, VR offers adaptability, and user-friendliness across age groups. However, further research with larger sample size studies and stronger evidence base is needed to definitively establish the effectiveness of VR in post-stroke rehabilitation.

References

1
Sembulingam K, Sembulingam P. Deep sea physiology. In: Essentials of Medical Physiology. 7th ed. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd.; 2006:670. https://doi.org/10.5005/jp/books/10283_129.
2

Amarenco P, Bogousslavsky J, Caplan LR, et al. Classification of stroke subtypes. Cerebrovasc Dis. 2009;27(5):493-501. https://doi.org/10.1159/000210432.

3

Waller JF. Davidson’s principles and practice of medicine. Postgrad Med J. 1992;68(797):232.

4

Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377(9778):1693-1702. https://doi.org/10.1016/s0140-6736(11)60325-5.

5

Dee M, Lennon O, O’Sullivan C. A systematic review of physical rehabilitation interventions for stroke in low and lower-middle income countries. Disabil Rehabil. 2020;42(4):473-501. https://doi.org/10.1080/09638288.2018.1501617.

6
Sanchetee P. Current trends in stroke rehabilitation. In: Sanchetee P, ed. Ischemic Stroke. London, UK: IntechOpen; 2021. https://doi.org/10.5772/intechopen.95576.
7

Beaulieu CL, Dijkers MP, Barrett RS, et al. Occupational, physical, and speech therapy treatment activities during inpatient rehabilitation for traumatic brain injury. Arch Phys Med Rehabil. 2015;96(8 Suppl):S222-S234.e17. https://doi.org/10.1016/j.apmr.2014.10.028.

8
Aharon AB. Top 5 Speech Therapy Exercises for Stroke Patients. Great Speech; Aug. 08, 2020. https://greatspeech.com/speech-therapy-for-stroke-patients/.
9

Karges J, Smallfied S. A Description of the Outcomes, Frequency, Duration, and Intensity of Occupational, Physical, And Speech Therapy in Inpatient Stroke Rehabilitation. J Allied Health. 2009;38(1):E1-E10.

10

Parker CJ, Gladman JR, Drummond AE, et al. A multicentre randomized controlled trial of leisure therapy and conventional occupational therapy after stroke. TOTAL Study Group. Trial of Occupational Therapy and Leisure. Clin Rehabil. 2001;15(1):42-52. https://doi.org/10.1191/026921501666968247.

11

Stephenson S, Wiles R. Advantages and disadvantages of the home setting for therapy: views of patients and therapists. Br J Occup Ther. 2000;63(2): 59-64. https://doi.org/10.1177/030802260006300203.

12

Dobkin BH. Rehabilitation after stroke. N Engl J Med. 2005;352(16): 1677-1684. https://doi.org/10.1056/nejmcp043511.

13

Qassim HM, Wan Hasan WZ. A review on upper limb rehabilitation robots. Appl Sci. 2020;10(19):6976. https://doi.org/10.3390/app10196976.

14

Ueda J, Ming D, Krishnamoorthy V, et al. Individual muscle control using an exoskeleton robot for muscle function testing. IEEE Trans Neural Syst Rehabil Eng. 2010;18(4):339-350. https://doi.org/10.1109/TNSRE.2010.2047116.

15

Garcia D, Arredondo R, Morris M, et al. A Review of Rehabilitation Strategies for Stroke Recovery. ASME Early Career Technical Journal. 2012;11:24-31.

16
Reinkensmeyer DJ. Rehabilitation Robot. Encyclopedia Britannica. Chicago, IL, USA; 2021. https://www.britannica.com/technology/rehabilitation-robot.
17

Kirihara MK, Saga PN, Saito DN. Design and control of an upper limb rehabilitation support device for disabled people using a pneumatic cylinder. Industrial Robot: An International Journal. 2010;37(4):354-363. https://doi.org/10.1108/01439911080001566.

18

Fasoli SE, Krebs HI, Stein J, et al. Robotic therapy for chronic motor impairments after stroke: follow-up results. Arch Phys Med Rehabil. 2004;85(7):1106-1111. https://doi.org/10.1016/j.apmr.2003.11.028.

19

Washabaugh EP, Guo J, Chang CK, et al. A portable passive rehabilitation robot for upper-extremity functional resistance training. IEEE Trans Biomed Eng. 2019;66(2):496-508. https://doi.org/10.1109/TBME.2018.2849580.

20
Rehab F, Brewer B. Understanding Active vs Passive Exercises to Customize Rehabilitation to your ability Level. Neurological Recovery Blog; 2020.
21

Głowiński S, Błażejewski A. An exoskeleton arm optimal configuration determination using inverse kinematics and genetic algorithm. Acta Bioeng Biomech. 2019;21(1):45-53.

22

Ren YP, Kang SH, Park HS, et al. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2013;21(3):490-499. https://doi.org/10.1109/TNSRE.2012.2225073.

23

Jakob I, Kollreider A, Germanotta M, et al. Robotic and sensor technology for upper limb rehabilitation. PM&R. 2018;10(9S2):S189-S197. https://doi.org/10.1016/j.pmrj.2018.07.011.

24

Cavallaro EE, Rosen J, Perry JC, et al. Real-time myoprocessors for a neural controlled powered exoskeleton arm. IEEE Trans Biomed Eng. 2006;53(11): 2387-2396. https://doi.org/10.1109/TBME.2006.880883.

25

Zhuang KZ, Sommer N, Mendez V, et al. Shared human-robot proportional control of a dexterous myoelectric prosthesis. Nat Mach Intell. 2019;1: 400-411. https://doi.org/10.1038/s42256-019-0093-5.

26

Hesse S, Schmidt H, Werner C, et al. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol. 2003;16(6):705-710. https://doi.org/10.1097/01.wco.0000102630.16692.38.

27

Miao Q, Zhang MM, McDaid A, et al. A robot-assisted bilateral upper limb training strategy with subject-specific workspace: a pilot study. Robot Auton Syst. 2020;124:103334. https://doi.org/10.1016/j.robot.2019.103334.

28

Thieme H, Mehrholz J, Pohl M, et al. Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev. 2018;7(7):CD008449. https://doi.org/10.1002/14651858.cd008449.

29

Priganc VW, Stralka SW. Graded motor imagery. J Hand Ther. 2011;24(2): 164-169. https://doi.org/10.1016/j.jht.2010.11.002.

30

Moseley GL, Butler DS, Beames TB. The Graded Motor Imagery Handbook. 2nd ed. Adelaide, Australia: Noigroup Publications; 2019.

31

Kar SK, Sarkar S. Neuro-stimulation techniques for the management of anxiety disorders: an update. Clin Psychopharmacol Neurosci. 2016;14(4): 330-337. https://doi.org/10.9758/cpn.2016.14.4.330.

32

Barreca S, Wolf SL, Fasoli S, et al. Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair. 2003;17(4):220-226. https://doi.org/10.1177/0888439003259415.

33

Rayegani SM, Raeissadat SA, Sedighipour L, et al. Effect of neurofeedback and electromyographic-biofeedback therapy on improving hand function in stroke patients. Top Stroke Rehabil. 2014;21(2):137-151. https://doi.org/10.1310/tsr2102-137.

34
Subasi A. Electromyogram-controlled assistive devices. In: Bioelectronics and Medical Devices. Amsterdam: Elsevier; 2019:285-311. https://doi.org/10.1016/b978-0-08-102420-1.00017-0.
35

Islam MRU, Waris A, Kamavuako EN, et al. A comparative study of motion detection with FMG and sEMG methods for assistive applications. J Rehabil Assist Technol Eng. 2020;7:2055668320938588. https://doi.org/10.1177/2055668320938588.

36

Ashraf H, Waris A, Gilani SO, et al. Evaluation of windowing techniques for intramuscular EMG-based diagnostic, rehabilitative and assistive devices. J Neural Eng. 2021;18(1):016017. https://doi.org/10.1088/1741-2552/abcc7f.

37
Gopura R, Bandara S, Gunasekara M. Recent Trends in EMG-Based Control Methods for Assistive Robots. In: Turker H, ed. Electrodiagnosis in New Frontiers of Clinical Research London, UK: IntechOpen. 2013.
38

Nazmi N, Abdul Rahman MA, Yamamoto SI, et al. A review of classification techniques of EMG signals during isotonic and isometric contractions. Sensors (Basel). 2016;16(8):1304. https://doi.org/10.3390/s16081304.

39
Moreland J, Thomson MA. Efficacy of electromyographic biofeedback compared with conventional physical therapy for upper-extremity function in patients following stroke: a research overview and meta-analysis. Phys Ther. 1994;74(6):534-543. https://doi.org/10.1093/ptj/74.6.534. discussion 544-547.
40

Cesqui B, Tropea P, Micera S, et al. EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study. J NeuroEngineering Rehabil. 2013;10(1):75. https://doi.org/10.1186/1743-0003-10-75.

41

Viñas-Diz S, Sobrido-Prieto M. Realidad virtual con fines terapéuticos en pacientes con ictus: revisión sistemática. Neurología. 2016;31(4):255-277. https://doi.org/10.1016/j.nrl.2015.06.012.

42

Crosbie JH, Lennon S, McGoldrick MC, et al. Virtual reality in the rehabilitation of the arm after hemiplegic stroke: a randomized controlled pilot study. Clin Rehabil. 2012;26(9):798-806. https://doi.org/10.1177/0269215511434575.

43

Adey-Wakeling Z, Crotty M. Upper limb rehabilitation following stroke: current evidence and future perspectives. Aging Health. 2013;9(6):629-647. https://doi.org/10.2217/ahe.13.67.

44

MacLean N, Pound P, Wolfe C, et al. The concept of patient motivation. Stroke. 2002;33(2):444-448. https://doi.org/10.1161/hs0202.102367.

45

Rensink M, Schuurmans M, Lindeman E, et al. Task-oriented training in rehabilitation after stroke: systematic review. J Adv Nurs. 2009;65(4): 737-754. https://doi.org/10.1111/j.1365-2648.2008.04925.x.

46

Lang CE, Lohse KR, Birkenmeier RL. Dose and timing in neurorehabilitation: prescribing motor therapy after stroke. Curr Opin Neurol. 2015;28(6): 549-555. https://doi.org/10.1097/WCO.0000000000000256.

47

Sveistrup H. Motor rehabilitation using virtual reality. J NeuroEngineering Rehabil. 2004;1(1):10. https://doi.org/10.1186/1743-0003-1-10.

48

Page MJ, Page MJ, McKenzie JE, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Rev Esp Cardiol: Engl Ed. 2021;74(9):790-799. https://doi.org/10.1016/j.rec.2021.07.010.

49

Chen YH, Kang JH, Lin HC. Patients with Traumatic Brain Injury. Stroke. 2011;42(10):2733-2739. https://doi.org/10.1161/STROKEAHA.111.620112.

50

Thompson-Butel AG, Shiner CT, McGhee J, et al. The role of personalized virtual reality in education for patients post stroke-a qualitative case series. J Stroke Cerebrovasc Dis. 2019;28(2):450-457. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.10.018.

51

Rizzo AA, Buckwalter JG, Bowerly T, et al. The virtual classroom: a virtual reality environment for the assessment and rehabilitation of attention deficits. CyberPsychology Behav. 2000;3(3):483-499. https://doi.org/10.1089/10949310050078940.

52

Yamato TP, Pompeu JE, Pompeu SMAA, et al. Virtual reality for stroke rehabilitation. Phys Ther. 2016;96(10):1508-1513. https://doi.org/10.2522/ptj.20150539.

53

Kiper P, Szczudlik A, Agostini M, et al. Virtual reality for upper limb rehabilitation in subacute and chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2018;99(5):834-842.e4. https://doi.org/10.1016/j.apmr.2018.01.023.

54

Rodríguez-Hernández M, Polonio-López B, Corregidor-Sánchez AI, et al. Can specific virtual reality combined with conventional rehabilitation improve poststroke hand motor function? A randomized clinical trial. J Neuroeng Rehabil. 2023;20(1):38. https://doi.org/10.1186/s12984-023-01170-3.

55

Yin CW, Sien NY, Ying LA, et al. Virtual reality for upper extremity rehabilitation in early stroke: a pilot randomized controlled trial. Clin Rehabil. 2014;28(11):1107-1114. https://doi.org/10.1177/0269215514532851.

56
Dovat L, Lambercy O, Salman B, et al. Post-stroke training of a pick and place activity in a virtual environment. In: 2008 Virtual Rehabilitation. Vancouver, BC, Canada. 2008:28-34. https://doi.org/10.1109/ICVR.2008.4625116.
57
Baniña MC, Molad R, Solomon J, et al. Exercise intensity is increased during upper limb movement training using a virtual rehabilitation system. In: 2019 International Conference on Virtual Rehabilitation (ICVR). Tel Aviv, Israel. 2019:1-6. https://doi.org/10.1109/ICVR46560.2019.8994735.
58

Rose T, Nam CS, Chen KB. Immersion of virtual reality for rehabilitation - Review. Appl Ergon. 2018;69:153-161. https://doi.org/10.1016/j.apergo.2018.01.009.

59

Chen JY, Or CK, Li ZX, et al. Effectiveness, safety and patients’ perceptions of an immersive virtual reality-based exercise system for poststroke upper limb motor rehabilitation: a proof-of-concept and feasibility randomized controlled trial. Digit Health. 2023;9:20552076231203599. https://doi.org/10.1177/20552076231203599.

60

Kizony R, Katz N, Tamar Weiss PL. Adapting an immersive virtual reality system for rehabilitation. J Visual Comput Animat. 2003;14(5):261-268. https://doi.org/10.1002/vis.323.

61
MAVS Luis, Atienza RO, Luis AMS. Immersive virtual reality as a supplement in the rehabilitation program of post-stroke patients. In: 2016 10th International Conference on Next Generation Mobile Applications, Security and Technologies (NGMAST). Cardiff, UK. 2016:47-52. https://doi.org/10.1109/NGMAST.2016.13.
62

Ikbali Afsar S, Mirzayev I, Umit Yemisci O, et al. Virtual reality in upper extremity rehabilitation of stroke patients: a randomized controlled trial. J Stroke Cerebrovasc Dis. 2018;27(12):3473-3478. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.007.

63

Xie HY, Zhang HT, Liang HW, et al. A novel glasses-free virtual reality rehabilitation system on improving upper limb motor function among patients with stroke: a feasibility pilot study. Med Nov Technol Devices. 2021;11:100069. https://doi.org/10.1016/j.medntd.2021.100069.

64

Pollock A, Farmer SE, Brady MC, et al. Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev. 2014;2014(11): 1465-1858. https://doi.org/10.1002/14651858.cd010820.

65
Boian RF, Deutsch JE, Lee CS, et al. Haptic effects for virtual reality-based post-stroke rehabilitation. In: 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. Los Angeles, CA, USA: HAPTICS 2003. Proceedings; 2003:247-253. https://doi.org/10.1109/HAPTIC.2003.1191289.
66
Zadeh MH, Wang D, Kubica E. Human factors for designing a haptic interface for interaction with a virtual environment. In: 2007 IEEE International Workshop on Haptic, Audio and Visual Environments and Games. Ottawa, ON, Canada. 2007:21-26. https://doi.org/10.1109/HAVE.2007.4371580.
67
Or CK, Holden RJ, Valdez RS. Human factors engineering and user-centered design for mobile health technology: enhancing effectiveness, efficiency, and satisfaction[M]//Duffy VG, Ziefle M, Rau PLP, et al. In: Human-Automation Interaction. Cham: Springer; 2023:97-118. https://doi.org/10.1007/978-3-031-10788-7_6.
68

Helou S, Khalil N, Daou M, et al. Virtual reality for healthcare: a scoping review of commercially available applications for head-mounted displays. Digit Health. 2023;9:20552076231178619. https://doi.org/10.1177/20552076231178619.

69
Cameirao MS, Bermudez i Badia S, Oller ED, et al. Using a multi-task adaptive VR system for upper limb rehabilitation in the acute phase of stroke. In: 2008 Virtual Rehabilitation. Vancouver, BC, Canada. 2008:2-7. https://doi.org/10.1109/ICVR.2008.4625112.
70

Lin BS, Chen JL, Hsu HC. Novel upper-limb rehabilitation system based on attention technology for post-stroke patients: a preliminary study. IEEE Access. 2018;6:2720-2731. https://doi.org/10.1109/ACCESS.2017.2785122.

71

Choi YH, Paik NJ. Mobile game-based virtual reality program for upper extremity stroke rehabilitation. J Vis Exp. 2018;133:56241. https://doi.org/10.3791/56241.

72

Shahmoradi L, Almasi S, Ahmadi H, et al. Virtual reality games for rehabilitation of upper extremities in stroke patients. J Bodyw Mov Ther. 2021;26: 113-122. https://doi.org/10.1016/j.jbmt.2020.10.006.

73

Albiol-Pñrez S, Gil-Gómez JA, Llorens R, et al. The role of virtual motor rehabilitation: a quantitative analysis between acute and chronic patients with acquired brain injury. IEEE J Biomed Health Inform. 2014;18(1): 391-398. https://doi.org/10.1109/JBHI.2013.2272101.

74

Montalbán MA, Arrogante O. Rehabilitation through virtual reality therapy after a stroke: a literature review. Revista Científica De La Sociedad De Enfermería Neurológica (English Ed). 2020;52:19-27. https://doi.org/10.1016/j.sedeng.2020.01.001.

75

Domínguez-Téllez P, Moral-Muñoz JA, Salazar A, et al. Game-based virtual reality interventions to improve upper limb motor function and quality of life after stroke: systematic review and meta-analysis. Games Health J. 2020;9(1):1-10. https://doi.org/10.1089/g4h.2019.0043.

76

Laver KE, Lange B, George S, et al. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;2018(1):CD008349. https://doi.org/10.1002/14651858.cd008349.pub3.

77

Chen JY, Or CK, Chen TR. Effectiveness of using virtual reality-supported exercise therapy for upper extremity motor rehabilitation in patients with stroke: systematic review and meta-analysis of randomized controlled trials. J Med Internet Res. 2022;24(6):e24111. https://doi.org/10.2196/24111.

78

Chen JY, Xie ZZ, Or C. Effectiveness of immersive virtual reality-supported interventions for patients with disorders or impairments: a systematic review and meta-analysis. Health Technol. 2021;11(4):811-833. https://doi.org/10.1007/s12553-021-00561-7.

79

Eames S, Hoffmann T, Worrall L, et al. Delivery styles and formats for different stroke information topics: patient and carer preferences. Patient Educ Couns. 2011;84(2):e18-e23. https://doi.org/10.1016/j.pec.2010.07.007.

80

Dhar E, Upadhyay U, Huang YR, et al. A scoping review to assess the effects of virtual reality in medical education and clinical care. Digit Health. 2023;9: 20552076231158022. https://doi.org/10.1177/20552076231158022.

81

Levin MF. Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain. 1996;119(1):281-293. https://doi.org/10.1093/brain/119.1.281.

82

Dobkin BH. Training and exercise to drive poststroke recovery. Nat Clin Pract Neurol. 2008;4(2):76-85. https://doi.org/10.1038/ncpneuro0709.

83

Max, Wendy. The economic impact of Alzheimer’s disease. Neurology. 1993;43(8):6-10.

84

Sohlberg MM, Mateer CA. Introduction to cognitive rehabilitation: Theory and practice. NY, New York: Guilford Press; 1989.

85

Gómez Bergin AD, Craven MP. Virtual, augmented, mixed, and extended reality interventions in healthcare: a systematic review of health economic evaluations and cost-effectiveness. BMC Digit Health. 2023;1(1):53. https://doi.org/10.1186/s44247-023-00054-9.

86

Tan HZ, Eberman BS, Srinivasan MA. Human Factors for the Design Of Force-Reflecting Haptic Interfaces. Dynamic Systems and Control. 1994;55(1): 353-359.

87
Lawrence DA, Pao LY, Dougherty AM, et al. Human Perception of Friction in Haptic Interfaces. Dynamic Systems and Control. California, USA: Anaheim; 1998:287-294. https://doi.org/10.1115/imece1998-0267.
88

Wang ZR, Wang P, Xing L, et al. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients. Neural Regen Res. 2017;12(11): 1823. https://doi.org/10.4103/1673-5374.219043.

89

Mekbib B, Han J, Zhang L, et al. Virtual reality therapy for upper limb rehabilitation in patients with stroke: a meta-analysis of randomized clinical trials. Brain Inj. Mar. 2020;34(4):456-465. https://doi.org/10.1080/02699052.2020.1725126.

90

Merians AS, Tunik E, Sv Adamovich. Virtual reality to maximize function for hand and arm rehabilitation: exploration of neural mechanisms. Stud Health Technol Inform. 2009;145:109-125.

91

Kim WS, Cho SM, Ku JH, et al. Clinical Application of Virtual Reality for Upper Limb Motor Rehabilitation in Stroke: Review of Technologies and Clinical Evidence. J Clin Med. 2020;9(10):3369. https://doi.org/10.3390/jcm9103369.

92

Placidi G, Cinque L, Polsinelli M, et al. Measurements by A LEAP-based virtual glove for the hand rehabilitation. Sensors. 2018;18(3):834. https://doi.org/10.3390/s18030834.

93
Khademi M, Mousavi Hondori H, McKenzie A, et al. Free-hand interaction with leap motion controller for stroke rehabilitationCHI ‘14 Extended Abstracts on Human Factors in Computing Systems, Toronto Ontario Canada. 2014: 1663-1668. https://doi.org/10.1145/2559206.2581203.
94

Babikian T, Asarnow R. Neurocognitive outcomes and recovery after pediatric TBI: meta-analytic review of the literature. Neuropsychology. 2009;23(3):283-296. https://doi.org/10.1037/a0015268.

95

Nardone A, Godi M, Artuso A, et al. Balance rehabilitation by moving platform and exercises in patients with neuropathy or vestibular deficit. Arch Phys Med Rehabil. 2010;91(12):1869-1877. https://doi.org/10.1016/j.apmr.2010.09.011.

96

Hoofien Vaki Dan, Gilboa Eli Assaf. Traumatic brain injury (TBI) 10-20 years later: a comprehensive outcome study of psychiatric symptomatology, cognitive abilities and psychosocial functioning. Brain Inj. 2001;15(3): 189-209. https://doi.org/10.1080/026990501300005659.

97

Geurtsen GJ, van Heugten CM, Martina JD, et al. Three-year follow-up results of a residential community reintegration program for patients with chronic acquired brain injury. Arch Phys Med Rehabil. 2012;93(5):908-911. https://doi.org/10.1016/j.apmr.2011.12.008.

98

Gupta A, Taly A. Functional outcome following rehabilitation in chronic severe traumatic brain injury patients: A prospective study. Ann Indian Acad Neurol. 2012;15(2):120. https://doi.org/10.4103/0972-2327.94995.

99

Laver K, George S, Thomas S, et al. Virtual Reality for Stroke Rehabilitation. Stroke. 2012;43(2):e20-e21. https://doi.org/10.1161/STROKEAHA.111.642439.

100

Fluet GG, Deutsch JE. Virtual Reality for Sensorimotor Rehabilitation Post-Stroke: The Promise and Current State of the Field. Curr Phys Med Rehabil Rep. 2013;1(1):9-20. https://doi.org/10.1007/s40141-013-0005-2.

101

Lohse KR, Hilderman CGE, Cheung KL, et al. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One. 2014;9(3): e93318. https://doi.org/10.1371/journal.pone.0093318.

102

Chen MH, Huang LL, Lee CF, et al. A controlled pilot trial of two commercial video games for rehabilitation of arm function after stroke. Clin Rehabil. 2015;29(7):674-682. https://doi.org/10.1177/0269215514554115.

103

Saposnik G, Mamdani M, Bayley M, et al. Effectiveness of Virtual Reality Exercises in STroke Rehabilitation (EVREST): rationale, design, and protocol of a pilot randomized clinical trial assessing the Wii gaming system. Int J Stroke. 2010;5(1):47-51. https://doi.org/10.1111/j.1747-4949.2009.00404.x.

104

Saposnik G, Teasell R, Mamdani M, et al. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke. 2010;41(7):1477-1484. https://doi.org/10.1161/STROKEAHA.110.584979.

105

Faria AL, Cameirão MS, Couras JF, et al. Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke - A Pilot Study. Front Psychol. 2018;9:854. https://doi.org/10.3389/fpsyg.2018.00854.

106

Clay F, Howett D, FitzGerald J, et al. Use of immersive virtual reality in the assessment and treatment of Alzheimer’s disease: a systematic review. J Alzheimers Dis. 2020;75(1):23-43. https://doi.org/10.3233/jad-191218.

107

Micarelli A, Viziano A, Micarelli B, et al. Vestibular rehabilitation in older adults with and without mild cognitive impairment: effects of virtual reality using a head-mounted display. Arch Gerontol Geriatr. 2019;83:246-256. https://doi.org/10.1016/j.archger.2019.05.008.

108

Chang YJ, Chen SF, Huang JD. A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res Dev Disabil. 2011;32(6):2566-2570. https://doi.org/10.1016/j.ridd.2011.07.002.

109

Ma HI, Hwang WJ, Fang JJ, et al. Effects of virtual reality training on functional reaching movements in people with Parkinson’s disease: a randomized controlled pilot trial. Clin Rehabil. 2011;25(10):892-902. https://doi.org/10.1177/0269215511406757.

110

Shah N, Basteris A, Amirabdollahian F. Design parameters in multimodal games for rehabilitation. Games Health J. 2014;3(1):13-20. https://doi.org/10.1089/g4h.2013.0044.

111

Lewthwaite R, Wulf G. Social-comparative feedback affects motor skill learning. Q J Exp Psychol (Hove). 2010;63(4):738-749. https://doi.org/10.1080/17470210903111839.

112

Wolf SL, Thompson PA, Winstein CJ, et al. The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy. Stroke. 2010;41(10):2309-2315. https://doi.org/10.1161/strokeaha.110.588723.

113

Toh SFM, Gonzalez PC, Fong KNK. Usability of a wearable device for home-based upper limb telerehabilitation in persons with stroke: a mixed-methods study. Digit Health. 2023;9:20552076231153737. https://doi.org/10.1177/20552076231153737.

Journal of Neurorestoratology
Article number: 100135
Cite this article:
Hussain MA, Waris A, Gilani SO, et al. Virtual reality as a non-conventional rehabilitation for stroke: A comprehensive review. Journal of Neurorestoratology, 2024, 12(3): 100135. https://doi.org/10.1016/j.jnrt.2024.100135

114

Views

1

Crossref

0

Web of Science

2

Scopus

Altmetrics

Received: 30 December 2023
Revised: 11 March 2024
Accepted: 30 March 2024
Published: 18 June 2024
© 2024 The Author(s).

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return