Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Transparent electro-optic (EO) oxide ceramics are known for their rapid EO effects. EO ceramics have several advantages over single-crystals, including variable size and shape, controllable chemical composition, superior mechanical properties, and low cost. Synthesis of high-performance transparent EO ceramics requires high purity of raw materials, high density, homogeneous composition, uniform grain size, and relatively wide bandgap. Powder synthesis and sintering are two of the critical steps involved in the fabrication of highly transparent EO ceramics. Using high-activity precursor powders has been effective in fabricating high-density ceramics that demonstrate excellent EO performance. The sintering process plays a crucial role in achieving this result, and currently, there are several sintering methods available for producing high-density ceramics, including hot-pressing, hot isostatic pressing, and spark plasma sintering. This review summarizes the recent progress in materials and processes used to develop transparent EO ceramics, including those based on lead zirconate titanate, lead magnesium niobate-lead titanate, and lead-free potassium sodium niobate. In addition, several novel applications of transparent EO ceramics, including light shutters, spectral filters, optical memory, as well as image storage and displays are reviewed. In the end, the review concludes with a discussion of future trends and perspectives.
Valasek J. Piezo-electric and allied phenomena in Rochelle salt. Phys Rev 1921;17(4):475–81.
Wul B. Barium titanate: a new ferro-electric. Nature 1946;157:808.
Hippel AV, Breckenridge R, Chesley F, Tisza L. High dielectric constant ceramics. Ind Eng Chem 1946;38:1097–109.
Berlincourt D. Variation of electroelastic constants of polycrystalline lead titanate zirconate with thoroughness of poling. J Acoust Soc Am 1964;36:515–20.
Jin L, Li F, Zhang S. Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 2014;97(1):1–27.
Johnson C. Some dielectric and electro-optic properties of BaTiO3 single crystals. Appl Phys Lett 1965;7:221–3.
Land CE. Ferroelectric ceramic electro-optic storage and display devices. IEEE ASME J Microelectromech Syst 1967:94.
Haertling GH. Ferroelectric ceramics: history and technology. J Am Ceram Soc 1999;82(4):797–818.
Land CE, Holland R. Electrooptic effects in ferroelectric ceramics. IEEE spectrum 1970;7:71–8.
Goodman G. Ferroelectric properties of lead metaniobate. J Am Ceram Soc 1953;36:368–72.
Subbarao E. X-Ray study of phase transitions in ferroelectric PbNb2O6 and related materials. J Am Ceram Soc 1960;43:439–42.
Francombe M, Lewis B. Structural, dielectric and optical properties of ferroelectric lead metaniobate. Acta Crystallogr 1958;11:696–703.
Jona F, Shirane G, Pepinsky R. Dielectric, X-ray, and optical study of ferroelectric Cd2Nb2O7 and related compounds. Phys Rev 1955;98:903–9.
Ye Z-G, Kolpakova N, Rivera J-P, Schmid H. Optical and electric investigations of the phase transitions in pyrochlore Cd2Nb2O7. Ferroelectrics 1991;124:275–80.
Takenaka T, Sakata K. Grain orientation effects on electrical properties of bismuth layer-structured ferroelectric Pb(1–x)(NaCe)x/2Bi4Ti4O15 solid solution. J Appl Phys 1984;55(4):1092–9.
Takeuchi T, Tani T, Saito Y. Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method. Jpn J Appl Phys 1999;38:5553–6.
Damjanovic D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 1998;61:1267–324.
Sun E, Cao W. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications. Prog Mater Sci 2014;65:124–210.
Barsoum M. Fundamentals of ceramics. Boca Raton (FL): CRC Press; 2019.
Tan Y, Zhang J, Ye H, McKinnon R, Viola G, Wu Y, et al. Unfolding grain size effects in barium titanate ferroelectric ceramics. Sci Rep 2015;5:9953.
Fong DD, Stephenson GB, Streiffer SK, Eastman JA, Auciello O, Fuoss PH, et al. Ferroelectricity in ultrathin perovskite films. Science 2004;304(5677):1650–3.
Tan Y, Viola G, Koval V, Yu C, Mahajan A, Zhang J, et al. On the origin of grain size effects in Ba(Ti0.96Sn0.04)O3 perovskite ceramics. J Eur Ceram Soc 2019;39:2064–75.
Wang SF, Zhang J, Luo DW, Gu F, Tang DY, Dong ZL, et al. Transparent ceramics: processing, materials and applications. Prog Solid State Chem 2013;41:20–54.
Qiu C, Wang B, Zhang N, Zhang S, Wang Y, Tian H, et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 2020;577:350–4.
Balabanov SS, Yavetskiy RP, Belyaev AV, Gavrishchuk EM, Drobotenko VV, Evdokimov Ⅱ, et al. Fabrication of transparent MgAl2O4 ceramics by hot-pressing of sol-gel-derived nanopowders. Ceram Int 2015;41:13366–71.
Li J, Wu Y, Pan Y, Liu W, Huang L, Guo J. Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics. Opt Mater 2008;31:6–17.
Lyberis A, Patriarche G, Gredin P, Vivien D, Mortier M. Origin of light scattering in ytterbium doped calcium fluoride transparent ceramic for high power lasers. J Eur Ceram Soc 2011;31:1619–30.
Dupuy AD, Kodera Y, Garay JE. Unprecedented electro-optic performance in lead-free transparent ceramics. Adv Mater 2016;28(36):7970–7.
Furuse H, Horiuchi N, Kim B-N. Transparent non-cubic laser ceramics with fine microstructure. Sci Rep 2019;9:10300.
Liu K, He D, Wang H, Lu T, Li F, Zhou X. High-pressure sintering mechanism of yttrium aluminum garnet (Y3Al5O12) transparent nanoceramics. Scripta Mater 2012;66:319–22.
Mei L, Hea G, Wang L-L, Liu G-H, Li J-T. Fabrication of transparent LaAlO3/t-ZrO2 nanoceramics through controlled amorphous crystallization. J Eur Ceram Soc 2011;31:1603–9.
Ruan W, Li G, Zeng J, Kamzina LS, Zeng H, Zheng L, et al. Fabrication of PMN–PZT transparent ceramics by two-stage sintering. J Am Ceram Soc 2012;95(7):2103–6.
Fujii I, Nakashima S, Wada T. Fabrication of 0.24Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 transparent ceramics by conventional sintering technique. J Am Ceram Soc 2019;102:1240–8.
Haertling GH, Land CE. Recent improvements in the optical and electrooptic properties of PLZT ceramics. Ferroelectrics 1972;3:269–80.
Dambekalne M, Antonova M, Livinsh M, Garbarz-Glos B, Smiga W, Sternberg A. PLZT—synthesis, sintering and ceramics microstructure. J Eur Ceram Soc 2006;26:2963–6.
Tang XG, Ding AL, Ye Y, Chen WX. Preparation and characterization of highly (111)-oriented (Pb,La)(Zr,Ti)O3 thin films by sol–gel processing. Thin Solid Films 2003;423:13–7.
Bouayad K, Sayouri S, Lamcharfi T, Ezzejari M, Mezzane D, Hajji L, et al. Sol–gel processing and dielectric properties of (Pb1–yLay)(Zr0.52Ti0.48)O3 ceramics. Physica A 2005;358:175–83.
Suchanek WL, Riman RE. Hydrothermal synthesis of advanced ceramic powders. Adv Sci Technol 2006;45:184–93.
Lv J-H, Zhang M, Guo M, Li W-C, Wang X-D. Hydrothermal synthesis and characterization of KxNa(1–x)NbO3 powders. Int J Appl Ceram Technol 2007;4(6):571–7.
Kong LB, Ma J, Zhu W, Tan OK. Preparation and characterization of PLZT ceramics using high-energy ball milling. J Alloys Compd 2001;322:290–7.
Kong LB, Ma J, Huang H, Zhang RF. Effect of excess PbO on microstructure and electrical properties of PLZT 7/60/40 ceramics derived from a high-energy ball milling process. J Alloys Compd 2002;345:238–45.
Kong LB, Ma J, Zhu W, Tan OK. Preparation and characterization of PLZT 8/65/35 ceramics via reaction sintering from ball milled powders. Mater Lett 2002;52:378–87.
Kong LB, Ma J, Zhu W, Tan OK. Translucent PMN and PMN-PT ceramics from high-energy ball milling derived powders. Mater Res Bull 2002;37:23–32.
Kong LB, Ma J, Zhu W, Tan OK. Preparation of PMN–PT ceramics via a high-energy ball milling process. J Alloys Compd 2002;236:242–6.
Jiten C, Rawat M, Bhattacharya A, Singh KC. (Na0.5K0.5)NbO3 nanocrystalline powders produced by high energy ball milling and corresponding ceramics. Mater Res Bull 2017;90:162–9.
Awano M, Takagi H. Synthesis of PLZT ceramics by the coprecipitation method and the effects of grinding on synthesis and sintering behavior of powders. J Ceram Soc Jpn 1993;101:124–8.
Ying H, Sun X, Yang Q, Li J, Wang Y, Zhang Z, et al. Synthesis of ultrafine PLZT powder by a simple co-precipitation method. Acta Metall Sin 1999;12:1180–3.
Tarale AN, Premkumar S, Reddy VR, Mathe VL. Microstructural evolution of 0.75PMN–0.25PT ferroelectrics synthesized by hydroxide co-precipitation method and their dielectric properties. J Mater Sci Mater Electron 2017;28:5485–97.
Tarale AN, Premkumar S, Reddy VR, Salunkhe DJ, Mathe VL. Dielectric and ferroelectric properties of (1–x)PMN-(x)PT synthesized by co-precipitation method. Ferroelectrics 2017;516:8–17.
Huang C, Xu J, Fang Z, Ai D, Zhou W, Zhao L, et al. Effect of preparation process on properties of PLZT (9/65/35) transparent ceramics. J Alloys Compd 2017;723:602–10.
Haertling GH, Land CE. Hot-pressed (Pb, La)(Zr, Ti)O3 ferroelectric ceramics for electrooptic applications. J Am Ceram Soc 1971;54(1):1–11.
Jiang H, Zou YK, Chen Q, Li KK, Zhang R, Wang Y, et al. Transparent electro-optic ceramics and devices. Proceedings of SPIE 2005;5644:380–394.
Haertling GH. Improved hot-pressed electrooptic ceramics in the (Pb,La)(Zr,Ti)O3 system. J Am Ceram Soc 1971;54(6):303–9.
Ruan W, Li G, Zeng J, Bian J, Kamzina LS, Zeng H, et al. Large electro-optic effect in La-doped 0.75Pb(Mg1/3Nb2/3)O3–0.25PbTiO3 transparent ceramic by two-stage sintering. J Am Ceram Soc 2010;93(8):2128–31.
Li K, Li FL, Wang Y, Kwok KW, Chan HLW. Hot-pressed K0.48Na0.52Nb1–xBixO3 (x = 0.05–0.15) lead-free ceramics for electro-optic applications. Mater Chem Phys 2011;131:320–4.
Geng Z, Li K, Shi D, Zhang L, Shi X. Effect of Sr and Ba-doping in optical and electrical properties of KNN based transparent ceramics. J Mater Sci Mater Electron 2015;26:6769–75.
Geng Z, Li K, Li X, Shi D. Fabrication and photoluminescence of Eu-doped KNN-based transparent ceramics. J Mater Sci 2017;52(4):2285–95.
Lu TC, Chang XH, Qi JQ, Luo XJ, Wei QM, Zhu S, et al. Low-temperature high-pressure preparation of transparent nanocrystalline MgAl2O4 ceramics. Appl Phys Lett 2006;88:213120.
Zou Y, He D, Wei X, Yu R, Lu T, Chang X, et al. Nanosintering mechanism of MgAl2O4 transparent ceramics under high pressure. Mater Chem Phys 2010;123:529–33.
Haertling GH. Hot-pressed lead zirconate-lead titanate ceramics containing bismuth. Am Ceram Soc Bull 1964;43.
Murray TF, Dungan RH. Oxygen firing can replace hot pressing for PZT. Ceram Ind 1964;82(6):74–7.
Takagi K, Kikuchi S, Li J-F, Okamura H, Watanabe R, Kawasaki A. Ferroelectric and photostrictive properties of fine-grained PLZT ceramics derived from mechanical alloying. J Am Ceram Soc 2004;87(8):1477–82.
Wei Z, Tsuboi T, Nakai Y, Huang Y, Zeng J, Li G. The synthesis of Er3+-doped PMN–PT transparent ceramic and its infrared luminescence. Mater Lett 2012;68:57–9.
Song Z, Zhang Y, Lu C, Ma Z, Hu Z, Wang L, et al. Fabrication and ferroelectric/dielectric properties of La-doped PMN-PT ceramics with high optical transmittance. Ceram Int 2017;43:3720–5.
Ma Z, Zhang Y, Lu C, Qin Y, Lv Z, Lu S. Synthesis and properties of La-doped PMN–PT transparent ferroelectric ceramics. J Mater Sci Mater Electron 2018;29(8):6985–90.
Fang Z, Jiang X, Tian X, Zheng F, Cheng M, Zhao E, et al. Ultratransparent PMN-PT electro-optic ceramics and its application in optical communication. Adv Opt Mater 2021:2002139.
Zheng F, Tian X, Fang Z, Lin J, Lu Y, Gao W, et al. Sm-doped PIN-PMN-PT transparent ceramics with high Curie temperature, good piezoelectricity, and excellent electro-optical properties. ACS Appl Mater Interfaces 2023;15(5):7053–62.
Zhang Y, Song Z, Lv M, Yang B, Wang L, Chen C, et al. Comparison of PMN–PT transparent ceramics processed by three different sintering methods. J Mater Sci Mater Electron 2017;28(20):15612–7.
Lin J, Wang Y, Xiong R, Sa B, Shi C, Zhai J, et al. Tailoring micro-structure of eco-friendly temperature-insensitive transparent ceramics achieving superior piezoelectricity. Acta Mater 2022;235:118061.
Hu M, Chang Z, Nie N, Wan Z, Dong W, Fu Q. La-doped PMN–PT transparent ceramics with ultra-high electro-optic effect and its application in optical devices. J Adv Ceram 2023;12(7):1441–53.
Kobune M, Mineshige A, Fujii S, Maeda Y. Preparation and pyroelectric properties of Mn-modified (Pb, La)(Zr, Ti)O3 (PLZT) ceramics. Jpn J Appl Phys 1997;36:5976.
Kim N, McHenry DA, Jang S-J, Shrout TR. Fabrication of optically transparent lead magnesium niobate polycrystalline ceramics using hot isostatic pressing. J Am Ceram Soc 1990;73(4):923–8.
Kojima S, Kobune M, Nishioka Y, Yazava T. Ferroelectric and memory characteristics of (Pb, La)(Zr, Ti)O3 thin films crystallized by hot isostatic pressing. J Ceram Soc Jpn 2004;112(5):S469-72.
Maiwa H. Dielectric and electromechanical properties of (K,Na)NbO3 ceramics prepared by hot isostatic pressing. Ferroelectrics 2016;49(1):71–8.
Bahanurddin NFK, Mohamed JJ, Ahmad ZA. Enhancement of K0.5Na0.5NbO3 (KNN) properties through optimization of pressure applied during sintering process via HIP methods. Int J Cur Res Eng Sci Tech 2017:348–53.
Bahanurddin NFK, Mohamed JJ, Ahmad ZA. Effect of sintering temperature on structure and dielectric properties of lead free K0.5Na0.5NbO3 prepared via hot isostatic pressing. Mater Sci Forum 2017;888:42–6.
Tsukuma K, Yamashita I, Kusunose T. Transparent 8 mol% Y2O3–ZrO2 (8Y) ceramics. J Am Ceram Soc 2008;91(3):813–8.
Chaim R, Chevallier G, Weibel A, Estournes C. Grain growth during spark plasma and flash sintering of ceramic nanoparticles: a review. J Mater Sci 2018;53(5):3087–105.
Wu YJ, Li J, Kimura R, Uekawa N, Kakegawa K. Effects of preparation conditions on the structural and optical properties of spark plasma-sintered PLZT (8/65/35) ceramics. J Am Ceram Soc 2005;88(12):3327–31.
Liu K, Wang W, Liu Q, Song L, Guo Yw, Ye F. Photostriction properties of PLZT (4/52/48) ceramics sintered by SPS. Ceram Int 2019;45:2097–102.
Park J-K, Chung U-J, Hwang NM, Kim D-Y. Preparation of dense lead magnesium niobate–lead titanate (Pb(Mg1/3Nb2/3)O3–PbTiO3) ceramics by spark plasma sintering. J Am Ceram Soc 2001;84(12):3057–9.
Chen K-p, Li C, Zhang X, Huang Y. Microstructure and electrical properties of 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 ceramics by spark plasma sintering. Mater Lett 2002;57:20–3.
Zuo R, Granzow T, Lupascu DC, Rodel J. PMN–PT ceramics prepared by spark plasma sintering. J Am Ceram Soc 2007;90(4):1101–6.
Chen K, Zhang X, Wang H, Zhang L, Zhu J, Yang F, et al. Making nanostructured ceramics from micrometer-sized powders via grain refinement during SPS sintering. J Am Ceram Soc 2008;91(8):2475–80.
Bah M, Giovannelli F, Schoenstein F, Feuillard G, Clezio EL, Monot-Laffez I. High electromechanical performance with spark plasma sintering of undoped K0.5Na0.5NbO3 ceramics. Ceram Int 2014;40:7473–80.
Zhen Y, Li J-F, Wang K, Yan Y, Yu L. Spark plasma sintering of Li/Ta-modified (K,Na)NbO3 lead-free piezoelectric ceramics: post-annealing temperature effect on phase structure, electrical properties and grain growth behavior. Mater Sci Eng B 2011;176:1110–4.
Sen C, Alkan B, Akin I, Yucel O, Sahin FC, Goller G. Microstructure and ferroelectric properties of spark plasma sintered Li substituted K0.5Na0.5NbO3 ceramics. J Ceram Soc Jpn 2011;119(5):355–61.
Cheng J, Agrawal D, Zhang Y. Fabricating transparent ceramics by microwave sintering. Am Ceram Soc Bull 2000;79(9):71–4.
Sharma PK, Ounaies Z, Varadan VV, Varadan VK. Dielectric and piezoelectric properties of microwave sintered PZT. Smart Mater Struct 2001;10:878–83.
Chang H-Y, Cheng S-Y, Sheu C-I. Microwave sintering of ferroelectric PZT thick films. Mater Lett 2008;62:3620–2.
Kumar A, Emani SR, Prasada VVB, Raju KCJ, James AR. Microwave sintering of fine grained PLZT 8/60/40 ceramics prepared via high energy mechanical milling. J Eur Ceram Soc 2016;36:2505–11.
Agrawal S, Cheng J, Guo R, Bhalla AS, Islam RA, Priya S. Magnetoelectric properties of microwave sintered particulate composites. Mater Lett 2009;63:2198–200.
Jeong D-Y, Lee S-H, Song H-C, Choi K-H. Hydrothermal synthesis and microwave sintering of (K0.5Na0.5)NbO3 ceramics. J Kor Phys Soc 2011;58(3):663–7.
Feizpour M, Bafrooei HB, Hayati R, Ebadzadeh T. Microwave-assisted synthesis and sintering of potassium sodium niobate lead-free piezoelectric ceramics. Ceram Int 2014;40:871–7.
Bafandeh MR, Gharahkhani R, Abbasi MH, Saidi A, Lee J-S, Han H-S. Improvement of piezoelectric and ferroelectric properties in (K,Na)NbO3-based ceramics via microwave sintering. J Electroceram 2014;33:128–33.
Xu Z, Zeng X, Cao Z, Ling L, Qiu P, He X. Effects of barium substitution on the optical and electrical properties of PLZT transparent electro-optical ceramics. Ceram Int 2019;45:17890–7.
Chen Y, Sun D, Zhu Y, Zeng X, Ling L, Qiu P, et al. The effect of Sn4+ doping on the electrostrictive property of PLZT (9/65/35) transparent electro-optical ceramics. Ceram Int 2020;46:6738–44.
Xu Z, Zeng X, Cao Z, Ling L, Qiu P, He X. The electrical and optical properties of Nb-doping PLZT (9/65/35) transparent ceramics. J Electroceram 2020;44:215–22.
Huangfu G, Xiao H, Guan L, Zhong H, Hu C, Shi Z, et al. Visible or near-infrared light self-powered photodetectors based on transparent ferroelectric ceramics. ACS Appl Mater Interfaces 2020;12:33950–9.
Zeng X, He X, Cheng W, Qiu P, Xia B. Effect of Dy substitution on ferroelectric, optical and electro-optic properties of transparent Pb0.90La0.10(Zr0.65Ti0.35)O3 ceramics. Ceram Int 2014;40:6197–202.
Zhang X, Xia B, Zeng X, Qiu P, Cheng W, He X. Temperature dependence of electric-induced light scattering performance for PLZT ceramics. J Am Ceram Soc 2014;97(5):1389–92.
Kong LB, Ma J, Zhu W, Tan OK. Preparation and characterization of translucent PLZT 8/65/35 ceramics from nano-sized powders produced by a high-energy ball-milling process. Mater Res Bull 2001;36:1675–85.
Ji W, He X, Cheng W, Qiu P, Zheng X. Influences of excess PbO on optical properties and microstructures of La modified 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 electro-optic transparent ceramics. Mater Sci Forum 2013;745–746:555–9.
Tian X, Fang Z, Zheng F, Ma Z, Gao W, Shi G, et al. Continuous control of polarization state and tunable dual-channel optical communication based on highly transparent PMN-PT electro-optic ceramics. Ceram Int 2023;49(14):23967–74.
Yan P, Qin Y, Xu Z, Han F, Wang Y, Wen Z, et al. Highly transparent Eu-doped 0.72PMN-0.28PT ceramics with excellent piezoelectricity. ACS Appl Mater Interfaces 2021;13:54210–6.
Zeng J, Zhao K, Zhang X, Man Z, Zeng H, Zheng L, et al. Giant piezoelectric properties and photoluminescence enhancement for Pr3+ doped PMN-PT transparent ceramics. SSRN 2021:3906850.
Londoño FA, Herrera A, Garcia D. Effect of rare earth additives on the properties of the PLMN-13PT:RE transparent ceramics. Bol Soc Esp Ceram Vidr 2021;60(1):2–10.
Liu Z, Fan H, Peng B. Enhancement of optical transparency in Bi2O3-modified (K0.5Na0.5)0.9Sr0.1Nb0.9Ti0.1O3 ceramics for electro-optic applications. J Mater Sci 2015;50:7958–66.
Rahman A, Park S, Min Y, Hwang G-T, Choi J-J, Hahn B-D, et al. An easy approach to obtain large piezoelectric constant in high-quality transparent ceramics by normal sintering process in modified potassium sodium niobate ceramics. J Eur Ceram Soc 2020;40:2989–95.
Liu Q, Li J-F, Zhao L, Zhang Y, Gao J, Sun W, et al. Niobate based lead-free piezoceramics: diffused phase transition boundary leading to temperature-insensitive high piezoelectric voltage coefficient. J Mater Chem C 2018;6:1116–25.
Liu Z, Fan H, Lei S, Wang J, Tian H. Fatigue properties and impedance analysis of potassium sodium niobate–strontium titanate transparent ceramics. Appl Phys 2016;122(10):1–6.
Lin J, Wang H, Zhai J, Wu X, Shen B, Ye H, et al. Simultaneously improved transparency, photochromic contrast and Curie temperature via rare-earth ion modification in KNN-based ceramics. Inorg Chem Front 2021;8:2027–35.
Li F, Kwok K-W. K0.5Na0.5NbO3-Based lead-free transparent electro-optic ceramics prepared by pressureless sintering. J Am Ceram Soc 2013;96(11):3557–62.
Fujii I, Hirai K, Imai T, Wada T. Fabrication of [Li0.05(K0.5Na0.5)0.95]NbO3 transparent ceramics using conventional sintering technique. J Ceram Soc Jpn 2019;127(12):905–11.
Liu Y, Yi W, Yan C, Ma J, Fan L. A novel transparent material based on KNN ferroelectric ceramics. Ferroelectrics 2021;573:173–8.
Wu X, Lu S, Kwok KW. Photoluminescence, electro-optic response and piezoelectric properties in pressureless-sintered Er-doped KNN-based transparent ceramics. J Alloys Compd 2017;695:3573–8.
Zhang M, Yang H, Li D, Lin Y. Excellent energy density and power density achieved in K0.5Na0.5NbO3-based ceramics with high optical transparency. J Alloys Compd 2020;829:154565.
Wu X, Lin J, Chen P, Liu C, Lin M, Lin C, et al. Ho3+-doped (K, Na)NbO3-based multifunctional transparent ceramics with superior optical temperature sensing performance. J Am Ceram Soc 2019;102:1249–58.
Yang D, Ma C, Yang Z, Wei L, Chao X, Yang Z, et al. Optical and electrical properties of pressureless sintered transparent (K0.37Na0.63)NbO3-based ceramics. Ceram Int 2016;42:4648–57.
Zhang X, Yang D, Yang Z, Zhao X, Chai Q, Chao X, et al. Transparency of K0.5N0.5NbO3–Sr(Mg1/3Nb2/3)O3 lead-free ceramics modulated by relaxor behavior and grain size. Ceram Int 2016;42:17963–71.
Land CE. Electrooptic ceramic storage and display devices. Jpn Oyo Buturi 1970;39:18–29.
Yin QR, Ding AL, Zheng XS, Qiu PS, Shen MR, Cao WW. Preparation and characterization of transparent PZN–PLZT ceramics. J Mater Res 2004;19(3):729–32.
Wu Y, Zhao H, Zou YK, Chen X, Bartolo BD, Zhang JW. Optoenergy storage, stimulated processes in optical amplification with electrooptic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate. J Appl Phys 2011;110:033106.
Snow GS. Improvements in atmosphere sintering of transparent PLZT ceramics. J Am Ceram Soc 1973;56(9):479–80.
Zeng X, Cheng W, Qiu P, He X. Effects of lanthanum substitution on dielectric, ferroelectric and electro-optic properties of slim-loop PLZT ceramics. Mater Sci Forum 2018;913:459–65.
Cheng H, He X, Zeng X, Ling L, Qiu P, Sun D. A novel vacuum/oxygen hot press sintering approach for the fabrication of transparent PLZT (7.4/70/30) ceramics. Ceram Int 2021;47:9620–6.
Lim BC, Phua PB, Lai WJ, Hong MH. Fast switchable electro-optic radial polarization retarder. Opt Lett 2008;33(9):950–2.
Uchino K. Electro-optic ceramics and their display applications. Ceram Int 1995;21:309–15.
Noheda B, Cox DE, Shirane G, Gao J, Ye Z-G. Phase diagram of the ferroelectric relaxor (1-x)Pb(Mg1/3Nb2/3)O3−xPbTiO3. Phys Rev B 2002;66:054104.
Ye Z-G, Dong M. Morphotropic domain structures and phase transitions in relaxor-based piezo-ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 single crystals. J Appl Phys 2000;87(5):2312–9.
Choi SW, Jung JM, Bhalla AS. Morphotropic phase boundary in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 ceramics. Ferroelectrics 1996;189:27–38.
Xu G, Luo H, Xu H, Yin Z. Third ferroelectric phase in PMNT single crystals near the morphotropic phase boundary composition. Phys Rev B 2001;64:020102.
Liu W, Ren X. Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 2009;103:257602.
Eitel RE, Randall CA, Shrout TR, Rehrig PW, Hackenberger W, Park S-E. New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3–PbTiO3 ceramics. Jpn J Appl Phys 2001;40:5999–6002.
Park S-E, Shrout TR. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 1997;82:1804–11.
Sergienko IA, Gufan YM. Phenomenological theory of phase transitions in highly piezoelectric perovskites. Phys Rev B 2002;65:144104.
Fu H, Cohen RE. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 2000;403:281–3.
Haertling GH. PLZT electrooptic materials and applications—a review. Ferroelectrics 1987;75:25–55.
Baek J-G, Isobe T, Senna M. Synthesis of pyrochlore-free 0.9Pb(Mg1/3 Nb2/3)O3–0.1PbTiO3 ceramics via a soft mechanochemical route. J Am Ceram Soc 1997;80(4):973–81.
Ravindranathan P, Komarneni S, Bhalla AS, Roy R. Synthesis and dielectric properties of solution sol-gel-derived 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 ceramics. J Am Ceram Soc 1991;74(112):2996–9.
Sheikh AD, Kumar HH, Mathe VL. Dielectric properties of chemically co-precipitated tetragonal Pb(Mg1/3Nb2/3)0.65Ti0.35O3. Solid State Sci 2010;12:1534–9.
Suh D-H, Lee D-H, Kim N-K. Phase developments and dielectric/ferroelectric responses in the PMN–PT system. J Eur Ceram Soc 2002;22:219–23.
Gupta SM, Bedekar PR, Kulkarni AR. Synthesis, dielectric and microstructure studies of lead magnesium niobate stabilised using lead titanate. Ferroelectrics 1996;189:17–25.
Guha JP, Hong DJ, Anderson HU. Effect of excess PbO on the sintering characteristics and dielectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3-based ceramics. J Am Ceram Soc 1988;71(3):C152–4.
Kelly J, Leonard M, Tantigate C, Safari A. Effect of composition on the electromechanical properties of (1-x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 ceramics. J Am Ceram Soc 1997;80:957–64.
Ghasemifard M, Hosseini SM, Khorrami GH. Synthesis and structure of PMN–PT ceramic nanopowder free from pyrochlore phase. Ceram Int 2009;35:2899–905.
Cascales C, Rasines I, Casado PG, Vega J. The new pyrochlores Pb2(M0.5Sb1.5)O6.5 (M = Al, Sc, Cr, Fe, Ga, Rh). Mater Res Bull 1985;20:1359–65.
Lejeune M, Boilot JP. Influence of ceramic processing on dielectric properties of perovskite type compound: Pb(Mg1/3Nb2/3)O3. Ceram Int 1983;9:119–22.
Wang HC, Schulze WA. The role of excess magnesium oxide or lead oxide in determining the microstructure and properties of lead magnesium niobate. J Am Ceram Soc 1990;73:825–32.
Ji W, He X, Zeng X, Sun D, Cheng W, Qiu P, et al. Effects of sintering atmosphere on the PLMNT transparent ceramics prepared by hot-press sintering method. Ferroelectrics 2016;490:196–202.
Chen X, Chen S, Clequin P-M, Shoulders WT, Gaume R. Combustion synthesis of lead oxide nanopowders for the preparation of PMN–PT transparent ceramics. Ceram Int 2015;41:755–60.
Wei Z, Huang Y, Tsuboi T, Nakai Y, Zeng J, Li G. Optical characteristics of Er3+-doped PMN–PT transparent ceramics. Ceram Int 2012;38:3397–402.
Zhou Y, Zhao K, Ruan W, Zeng J, Zheng L, Li G. Electric field-induced light scattering in Eu-doped PMN-PT transparent ceramics. J Am Ceram Soc 2016;99(12):3993–9.
Zhao K, Zeng J, Xu K, Zeng H, Li G. Dynamic behaviors of ferroelectric domain structures in Eu-doped PMN-PT transparent ceramics studied by piezoresponse force microscopy. J Mater Sci Mater Electron 2020;31:15991–5.
Lv Z, Qin Y, Zhang Y, Fu J, Lu C. Efficient upconversion photoluminescence in transparent Pr3+/Yb3+ codoped 0.75Pb(Mg1/3Nb2/3)O3–0.25PbTiO3 ferroelectric ceramics. Ceram Int 2019;45:10924–9.
Chen F. Evaluation of PLZT ceramics for applications in optical communications. Opt Commun 1972;6:297–300.
Directive EU. Restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS) 2011/65/EU. Off J Eur Communities 2013;46:19–23.
Shirane G, Danner H, Pavlovic A, Pepinsky R. Phase transitions in ferroelectric KNbO3. Phys Rev 1954;93:672–3.
Shrout TR, Zhang SJ. Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 2007;19:111–24.
Ahtee M, Glazer A. Lattice parameters and tilted octahedra in sodium–potassium niobate solid solutions. Acta Crystallogr 1976;A32:434–46.
Ahtee M, Hewat A. Structural phase transitions in sodium–potassium niobate solid solutions by neutron powder diffraction. Acta Crystallogr 1978;A34:309–17.
Li J-F, Wang K, Zhu F-Y, Cheng L-Q, Yao F-Z. (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 2013;96(12):3677–96.
Dubernet P, Ravez J. Dielectric study of KNbO3 ceramics over a large range of frequency (102-109 Hz) and temperature (300-800 K). Ferroelectrics 1998;211:51–66.
Skidmore TA, Milne SJ. Phase development during mixed-oxide processing of a [Na0.5K0.5NbO3]1–x–[LiTaO3]x powder. J Mater Res 2007;22(8):2265–72.
Wang Y, Damjanovic D, Klein N, Hollenstein E, Setter N. Compositional inhomogeneity in Li- and Ta-modified (K, Na)NbO3 ceramics. J Am Ceram Soc 2007;90(11):3485–9.
Wang Y, Damjanovic D, Klein N, Setter N. High-temperature instability of Li- and Ta-modified (K,Na)NbO3 piezoceramics. J Am Ceram Soc 2008;91(6):1962–70.
Zhao P, Zhang B-P, Li J-F. Enhanced dielectric and piezoelectric properties in LiTaO3-doped lead-free (K,Na)NbO3 ceramics by optimizing sintering temperature. Scripta Mater 2008;58:429–32.
Zhen Y, Li J-F. Normal sintering of (K,Na)NbO3-based ceramics: influence of sintering temperature on densification, microstructure, and electrical properties. J Am Ceram Soc 2006;89(12):3669–75.
Rojac T, Kosec M, Malič B, Holc J. Mechanochemical synthesis of NaNbO3, KNbO3 and K0.5Na0.5NbO3. Sci Sinter 2005;37:61–7.
Castro A, Jimenez B, Hungria T, Moure A, Pardo L. Sodium niobate ceramics prepared by mechanical activation assisted methods. J Eur Ceram Soc 2004;24:941–5.
Yang R-Y, Lin M-H, Lu H-Y. Core–shell structures in pressureless-sintered undoped Pb(Fe2/3W1/3)O3 ceramics. Acta Mater 2001;49:2597–607.
Ringgaard E, Wurlitzer T, Wolny WW. Properties of lead-free piezoceramics based on alkali niobates. Ferroelectrics 2005;319:97–107.
Birol H, Damjanovic D, Setter N. Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. J Eur Ceram Soc 2006;26:861–6.
Guo Y, Kakimoto K-i, Ohsato H. (Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics. Mater Lett 2005;59:241–4.
Zuo R, Xu Z, Li L. Dielectric and piezoelectric properties of Fe2O3-doped (Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3 lead-free ceramics. J Phys Chem Solid 2008;69:1728–32.
Chen K, Xu G, Yang D, Wang X, Li J. Dielectric and piezoelectric properties of lead-free 0.95(K0.5Na0.5)NbO3–0.05LiNbO3 crystals grown by the Bridgman method. J Appl Phys 2007;101:044103.
Kroupa J, Petzelt J, Malic B, Kosec M. Electro-optic properties of KNN–STO lead-free ceramics. J Phys D Appl Phys 2005;38:679–81.
Li F, Kwok KW. Fabrication of transparent electro-optic (K0.5Na0.5)1–xLixNb1–xBixO3 lead-free ceramics. J Eur Ceram Soc 2013;33:123–30.
Kwok K, Li F, Lin D. A novel lead-free transparent ceramic with high electro-optic coefficient. Funct Mater Lett 2011;4:237–40.
Wan X, Luo H, Zhao X, Wang DY, Chan HLW, Choy CL. Refractive indices and linear electro-optic properties of (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 single crystals. Appl Phys Lett 2004;85:5233.
Cong L, Huajing W, Jianzhang M, Baoyu D, Xiao W, Tengfei L, et al. Effect of dwell time on cold sintering assisted sintering based highly transparent 0.9K0.5Na0.5NbO3-0.1LiBiO3 ceramics. J Alloys Compd 2020;826:154249.
Yang D, Yang Z, Zhang X, Wei L, Chao X, Yang Z. High transmittance in lead-free lanthanum modified potassium-sodium niobate ceramics. J Alloys Compd 2017;716:21–9.
Ren X, Chai Q, Zhao X, Peng Z, Wu D, Liang P, et al. Relaxor behaviors and electric response in transparent 0.95(K0.5Na0.5NbO3)0.05Ca(ZrxZnyNbz)1.025O3 ceramics with low-symmetric structure. Ceram Int 2019;45:3961–8.
Lin J, Zhai J, Wu X, Ye H, Wang H. Expedient red emitting and transparency dual modulation in KNN-based transparent ceramics via sensitive photothermochromic behavior. ACS Appl Electron Mater 2021;3:1394–402.
Yang Z, Du J, Martin LIDJ, Poelman D. Reversible yellow-gray photochromism in potassium-sodium niobate-based transparent ceramics. J Eur Ceram Soc 2021;41(3):1925–33.
Ichiki M, Zhang L, Tanaka M, Maeda R. Electrical properties of piezoelectric sodium-potassium niobate. J Eur Ceram Soc 2004;24:1693–7.
Patro PK, Kulkarni AR, Gupta SM, Harendranath CS. Improved microstructure, dielectric and ferroelectric properties of microwave-sintered Sr0.5Ba0.5Nb2O6. Physica B 2007;400:237–42.
Li J-F, Wang K, Zhang B-P, Zhang L-M. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc 2006;89(2):706–9.
Zhang B-P, Li J-F, Wang K, Zhang H. Compositional dependence of piezoelectric properties in NaxK1-xNbO3 lead-free ceramics prepared by spark plasma sintering. J Am Ceram Soc 2006;89(5):1605–9.
Wu J, Xiao D, Wang Y, Zhu J, Yu P, Jiang Y. Compositional dependence of phase structure and electrical properties in (K0.42Na0.58)NbO3-LiSbO3 lead-free ceramics. J Appl Phys 2007;102:114113.
Fushimi S, Ikeda T. Optical study of lead zirconate-titanate. J Phys Soc Jpn 1965;20:2007–12.
Thacher PD, Land CE. Ferroelectric electrooptic ceramics with reduced scattering. IEEE Trans Electron Dev 1969;16:515–21.
Keiser GE. A review of WDM technology and applications. Opt Fiber Technol 1999;5:3–39.
Xin Y, Shaojun Z, Jiyang W. Mutual action of optical activity and electro-optic effect and its influence on the electro-optic Q-switch. Opt Rev 2004;11(5):328–31.
Landry MJ, McCarthy AE. Transmission switching characteristics of PLZT shutters. Appl Opt 1973;12(10):2312–9.
Cutchen JT, Harris JO, Laguna GR. PLZT electrooptic shutters: applications. Appl Opt 1975;14(8):1866–73.
Haertling GH. PLZT reflective displays. Ferroelectrics 1983;50:63–72.
Smith WD. Memory and display applications for PLZT ceramics. J Solid State Chem 1975;12:186–92.
Roberts HN. Strain-biased PLZT input devices (page composers) for holographic memories and optical data processing. Appl Opt 1972;11(2):397–404.
Zhao H, Sun X, Zhang JW, Zou YK, Li KK, Wang Y, et al. Lasing action and optical amplification in Nd3+ doped electrooptic lanthanum lead zirconate titanate ceramics. Opt Express 2011;19(4):2965–71.
Camargo ASSd, Botero ÉR, Garcia D, Eiras JA, Nunes LAO. Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: energy transfer and stimulated emission. Appl Phys Lett 2005;86:152905.
Camargo ASSd, Jacinto C, Nunes LAO, Catunda T, Garcia D, Botero ÉR, et al. Effect of Nd3+ concentration quenching in highly doped lead lanthanum zirconate titanate transparent ferroelectric ceramics. J Appl Phys 2007;101:053111.
Camargo ASSd, Nunes LAdO, Santos IA, Garcia D, Eiras JA. Structural and spectroscopic properties of rare-earth (Nd3+, Er3+ and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics. J Appl Phys 2004;95(4):2135–40.
Camargo ASSd, Botero ÉR, Andreeta ÉRM, Garcia D, Eiras JA, Nunes LAO. 2.8 and 1.55 μm emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic. Appl Phys Lett 2005;86:241112.
Zhang J, Sun H, Zou Y, Chen X, Bartolo BD, Zhao H. Multifunctional optical device with electrooptic Er and Yb doped lanthanum-modified lead zirconate titanate ceramic gain media. J Lightwave Technol 2013;31(9):1495–502.
Ye Q, Qiao L, Gan J, Cai H, Qu R. Fiber Sagnac π-shifted interferometer for a polarization-independent PMNT high-speed electro-optic switch. Opt Lett 2010;35(24):4187–9.
Qiao L, Ye Q, Gan J, Cai H, Qu R. Optical characteristics of transparent PMNT ceramic and its application at high speed electro-optic switch. Opt Commun 2011;284:3886–90.
Lü X, Han Q, Liu T, Chen Y, Ren K. Actively Q-switched erbium-doped fiber ring laser with a nanosecond ceramic optical switch. Laser Phys 2014;24:115102.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).