Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
BaTiO3 (BTO) ferroelectric films, which are renowned for their lead-free compositions, superior stability, and absence of a wake-up effect, are promising candidate materials in the field of non-volatile memories. However, the prerequisites for high-temperature conditions in the fabrication of ferroelectric thin films impose constraints on the substrate choice, which has limited the advancement in non-volatile memories based on single-crystal flexible BTO films with robust ferroelectric properties. Herein, a technique has been developed for the fabrication of flexible devices using a pulsed laser deposition system. BTO ferroelectric films have then been deposited onto a flexible mica substrate, with SrTiO3 (STO) serving as a buffer layer. The obtained flexible BTO devices exhibited excellent ferroelectricity, with a maximum polarization (2Pmax) of up to 42.58 μC/cm2 and a remnant polarization (2Pr) of up to 21.39 μC/cm2. Furthermore, even after 1000 bending cycles, the bipolar switching endurance remained high at 1012 cycles. After 104 s, the flexible BTO device still maintained excellent polarization characteristics. These results make the flexible BTO ferroelectric thin film a potential candidate for the next generation of non-volatile memories.
Garcia V, Bibes M. Ferroelectric tunnel junctions for information storage and processing. Nat Commun 2014;5:4289.
Gao W, Zhu Y, Wang Y, Yuan G, Liu J. A review of flexible perovskite oxide ferroelectric films and their application. J Materiomics 2020;6(1):1–16.
Zheng H, Bai Y, Shao Y, Yu H, Chen B, Lin J, et al. Understanding and modulation of resistive switching behaviors in PbZr0.52Ti0.48O3/La0.67Sr0.33MnO3/Nb:SrTiO3 multilayer junctions. Appl Surf Sci 2022;574:151711.
Li C, Huang L, Li T, Lu W, Qiu X, Huang Z, et al. Ultrathin BaTiO3-based ferroelectric tunnel junctions through interface engineering. Nano Lett 2015;15(4):2568–73.
Ma C, Luo Z, Huang W, Zhao L, Chen Q, Lin Y, et al. Sub-nanosecond memristor based on ferroelectric tunnel junction. Nat Commun 2020;11(1):1439.
Wang X, Song B, Tao LL, Wen J, Zhang L, Zhang Y, et al. Effect of a semiconductor electrode on the tunneling electroresistance in ferroelectric tunneling junction. Appl Phys Lett 2016;109(16).
Wang T, Hsu P, Korytov M, Genoe J, Merckling C. Polarization control of epitaxial barium titanate (BaTiO3) grown by pulsed-laser deposition on a MBE-SrTiO3/Si(001) pseudo-substrate. J Appl Phys 2020;128(10):104104.
Hou P, Gao Z, Ni K. Multilevel data storage memory based on polycrystalline SrTiO3 ultrathin film. RSC Adv 2017;7(78):49753–8.
Yang B, Li C, Liu M, Wei R, Tang X, Hu L, et al. Design of flexible inorganic BiFe0.93Mn0.07O3 ferroelectric thin films for nonvolatile memory. J Materiomics 2020;6(3):600–6.
Li D, Zhao P, Deng X, Wu Y, He X, Liu D, et al. A new organic–inorganic hybrid perovskite ferroelectric [ClCH2CH2N(CH3)3][PbBr3] and its PVDF matrix-assisted highly-oriented flexible ferroelectric films. New J Chem 2022;46(40):19391–400.
Kim A, Huseynova G, Lee J, Lee JH. Enhancement of out-coupling efficiency of flexible organic light-emitting diodes fabricated on an MLA-patterned parylene substrate. Org Electron 2019;71:246–50.
Sun H, Luo Z, Zhao L, Liu C, Ma C, Lin Y, et al. BiFeO3-based flexible ferroelectric memristors for neuromorphic pattern recognition. ACS Appl Electron Mater 2020;2(4):1081–9.
Bakaul SR, Serrao CR, Lee O, Lu Z, Yadav A, Carraro C, et al. High speed epitaxial perovskite memory on flexible substrates. Adv Mater 2017;29(11):1605699.
Luo Z, Peters JJP, Sanchez AM, Alexe M. Flexible memristors based on single-crystalline ferroelectric tunnel junctions. ACS Appl Mater Interfaces 2019;11(26):23313–9.
Huang J, Chen W. Flexible strategy of epitaxial oxide thin films. iScience 2022;25(10):105041.
Lu L, Dai Y, Du H, Liu M, Wu J, Zhang Y, et al. Atomic scale understanding of the epitaxy of perovskite oxides on flexible mica substrate. Adv Mater Interfac 2019;7(2):1901265.
Lu Z, Liu J, Feng J, Zheng X, Yang L, Ge C, et al. Synthesis of single-crystal La0.67Sr0.33MnO3 freestanding films with different crystal-orientation. Apl Mater 2020;8(5):051155.
Nian L, Li J, Wang Z, Zhang T, Sun H, Li Y, et al. Synthesis of oxide interface-based two-dimensional electron gas on Si. ACS Appl Mater Interfaces 2022;14(47):53442–9.
Lu D, Baek DJ, Hong SS, Kourkoutis LF, Hikita Y, Hwang HY. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat Mater 2016;15(12):1255–60.
Xu R, Huang J, Barnard ES, Hong SS, Singh P, Wong EK, et al. Strain-induced room-temperature ferroelectricity in SrTiO3 membranes. Nat Commun 2020;11(1):3141.
Bakaul SR, Serrao CR, Lee M, Yeung CW, Sarker A, Hsu SL, et al. Single crystal functional oxides on silicon. Nat Commun 2016;7:10547.
Chiabrera FM, Yun S, Li Y, Dahm RT, Zhang H, Kirchert CKR, et al. Freestanding perovskite oxide films: synthesis, challenges, and properties. Ann Phys 2022;534(9):2200084.
Ji D, Cai S, Paudel TR, Sun H, Zhang C, Han L, et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 2019;570(7759):87–90.
Zhao Z, Abdelsamie A, Guo R, Shi S, Zhao J, Lin W, et al. Flexible artificial synapse based on single-crystalline BiFeO3 thin film. Nano Res 2021;15(3):2682–8.
Jiang J, Bitla Y, Huang C, Do T, Liu H, Hsieh Y, et al. Flexible ferroelectric element based on van der waals heteroepitaxy. Sci Adv 2017;3(6):e1700121.
Mo S, Feng K, Pang J, Ouyang K, Jiang L, Yang Q, et al. All-inorganic transparent Hf0.85Ce0.15O2 ferroelectric thin films with high flexibility and stability. Nano Res 2022;16(4):5065–72.
Chen Y, Yang Y, Yuan P, Jiang P, Wang Y, Xu Y, et al. Flexible Hf0.5Zr0.5O2 ferroelectric thin films on polyimide with improved ferroelectricity and high flexibility. Nano Res 2021;15(4):2913–8.
Zhou X, Sun H, Li J, Du X, Wang H, Luo Z, et al. A flexible Hf0.5Zr0.5O2 thin film with highly robust ferroelectricity. J Materiomics 2023;10(1):210–7.
Joh H, Jung M, Hwang J, Goh Y, Jung T, Jeon S. Flexible ferroelectric hafnia-based synaptic transistor by focused-microwave annealing. ACS Appl Mater Interfaces 2022;14(1):1326–33.
Liu H, Lu T, Li Y, Ju Z, Zhao R, Li J, et al. Flexible quasi-van der waals ferroelectric hafnium-based oxide for integrated high-performance nonvolatile memory. Adv Sci 2020;7(19):2001266.
Liu W, Liao J, Jiang J, Zhou Y, Chen Q, Mo S, et al. Highly stable performance of flexible Hf0.6Zr0.4O2 ferroelectric thin films under multi-service conditions. J Mater Chem C 2020;8(11):3878–86.
Xiao W, Liu C, Peng Y, Zheng S, Feng Q, Zhang C, et al. Thermally stable and radiation hard ferroelectric Hf0.5Zr0.5O2 thin films on muscovite mica for flexible nonvolatile memory applications. ACS Appl Energy Mater 2019;1(6):919–27.
Zhong H, Li M, Zhang Q, Yang L, He R, Liu F, et al. Large-scale Hf0.5Zr0.5O2 membranes with robust ferroelectricity. Adv Mater 2022;34(24):e2109889.
Silva A, Fina I, Sánchez F, Silva JPB, Marques L, Lenzi V. Unraveling the ferroelectric switching mechanisms in ferroelectric pure and La doped HfO2 epitaxial thin films. Mater Today Phys 2023;34:101064.
Yang Y, Yuan G, Yan Z, Wang Y, Lu X, Liu J. Flexible, semitransparent, and inorganic resistive memory based on BaTi0.95Co0.05O3 Film. Adv Mater 2017;29(26):1700425.
Hou P, Yang K, Ni K, Wang J, Zhong X, Liao M, et al. An ultrathin flexible electronic device based on the tunneling effect: a flexible ferroelectric tunnel junction. J Mater Chem C 2018;6(19):5193–8.
Liu J, Feng Y, Tang R, Zhao R, Gao J, Shi D, et al. Mechanically tunable magnetic properties of flexible SrRuO3 epitaxial thin films on mica substrates. Adv Electron Mater 2018;4(4):1700522.
Wu J, Liang Z, Ma C, Hu G, Shen L, Sun Z, et al. Flexible lead-free BaTiO3 ferroelectric elements with high performance. IEEE Electron Device Lett 2019;40(6):889–92.
Yang C, Han Y, Qian J, Cheng Z. Flexible, temperature-stable, and fatigue-endurable PbZr0.52Ti0.48O3 ferroelectric film for nonvolatile memory. Adv Electron Mater 2019;5(10):1900443.
An F, Zi M, Chen Q, Liu C, Qu K, Jia T, et al. Flexible room-temperature multiferroic thin film with multifield tunable coupling properties. Mater Today Phys 2022;23:100615.
Chen Q, Zhang Y, Tang M, Yang L, Zhong X, Ren C, et al. Significantly enhanced energy storage density and efficiency in flexible Bi3.15Nd0.85Ti3O12 thin film via periodic dielectric layers. J Appl Phys 2022;131(11):114101.
Sun H, Luo Z, Liu C, Ma C, Wang Z, Yin Y, et al. A flexible BiFeO3-based ferroelectric tunnel junction memristor for neuromorphic computing. J Materiomics 2022;8(1):144–9.
Ko DL, Tsai MF, Chen JW, Shao PW, Tan YZ, Wang JJ, et al. Mechanically controllable nonlinear dielectrics. Sci Adv 2020;6(10):eaaz3180.
Wen Z, Wu D. Ferroelectric tunnel junctions: modulations on the potential barrier. Adv Mater 2020;32(27):e1904123.
Wen Z, Li C, Wu D, Li A, Ming N. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat Mater 2013;12(7):617–21.
Yang Y, Wu M, Li X, Hu H, Jiang Z, Li Z, et al. The role of ferroelectric polarization in resistive memory properties of metal/insulator/semiconductor tunnel junctions: acomparative study. ACS Appl Mater Interfaces 2020;12(29):32935–42.
Li D, Zhu X, Wu Y, Zhao J, Zhang K, Li R, et al. La-doped BiFeO3 junction based random access multilevel nonvolatile memory. Microelectron Eng 2023;267–268:111908.
Du X, Sun H, Wang H, Li J, Yin Y, Li X. High-speed switching and giant electroresistance in an epitaxial Hf0.5Zr0.5O2-based ferroelectric tunnel junction memristor. ACS Appl Mater Interfaces 2022;14(1):1355–61.
Shin W, Yim J, Bae JH, Lee JK, Hong S, Kim J, et al. Synergistic improvement of sensing performance in ferroelectric transistor gas sensors using remnant polarization. Mater Horiz 2022;9(6):1623–30.
Yu H, Chung CC, Shewmon N, Ho S, Carpenter JH, Larrabee R, et al. Flexible inorganic ferroelectric thin films for nonvolatile memory devices. Adv Funct Mater 2017;27(21):1700461.
Su L, Lu X, Chen L, Wang Y, Yuan G, Liu JM. Flexible, fatigue-free, and large-scale Bi3.25La0.75Ti3O12 ferroelectric memories. ACS Appl Mater Interfaces 2018;10(25):21428–33.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).