Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
InTe single crystals have demonstrated great promise in the field of thermoelectric materials, particularly when oriented along the [110] direction. This specific crystal orientation exhibits higher electronic conductivity and lower thermal conductivity compared to other orientations of InTe. Through first-principles calculations, we identified the anisotropic valence band and phonon dispersion as the underlying factors. Moreover, reducing the density of In+ vacancies in InTe was found to lower the band effective mass and modulate carrier scattering, enhancing the material quality factor (B). To explore these findings, we systematically grew InTe single crystals, achieving exceptional thermoelectric performance. A record-breaking power factor of 12.0 μW·cm−1·K−2 and a dimensionless figure of merit (zT) of 0.5 at room temperature were obtained. Notably, InTe crystals oriented along [110] with low In+ vacancy density exhibited the highest average zT of 0.63 among InTe-based thermoelectric materials within the 300–473 K temperature range. Furthermore, we introduced an effective method of reducing In+ vacancies through Indium vapor annealing, resulting in the highest reported carrier mobility of 182 cm2·V−1·s−1 for InTe. Our study highlights the potential for improving InTe's thermoelectric performance near room temperature through vacancy modulation and crystal orientation.
Jiang BB, Wang W, Liu SX, Wang Y, Wang CF, Chen YN, et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science. 2022;377(6602):208–13.
Zhu TJ, Liu YT, Fu CG, Heremans JP, Snyder JG, Zhao XB. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater. 2017;29(14):1605884.
Liu D, Wang D, Hong T, Wang Z, Wang Y, Qin Y, et al. Lattice plainification advances highly effective SnSe crystalline thermoelectrics. Science. 2023;380(6647):841–6.
Han ZJ, Li JW, Jiang F, Xia JT, Zhang BP, Li JF, et al. Room-temperature thermoelectric materials: challenges and a new paradigm. J Materiomics 2022;8(2):427–36.
Liu XS, Xing T, Qiu PF, Deng TT, Li P, Li XW, et al. Suppressing the donor-like effect via fast extrusion engineering for high thermoelectric performance of polycrystalline Bi2Te2.79Se0.21. J Materiomics 2023;9(2):345–52.
Snyder GJ, Snyder AH, Wood M, Gurunathan R, Snyder BH, Niu C. Weighted Mobility. Adv Mater 2020;32(25):2001537.
Liu W, Tan XJ, Yin K, Liu HJ, Tang XF, Shi J, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1–xSnx solid solutions. Phys Rev Lett 2012;108(16):1–5. 166601.
Imasato K, Kang SD, Ohno S, Snyder GJ. Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance. Mater Horiz 2018;5(1):59–64.
Li AR, Hu CL, He B, Yao MY, Fu CG, Wang YC, et al. Demonstration of valley anisotropy utilized to enhance the thermoelectric power factor. Nat Commun 2021;12(1):5408.
Pan Y, Fan FR, Hong XC, He B, Le CC, Schnelle W, et al. Thermoelectric properties of novel semimetals: a case study of YbMnSb2. Adv Mater. 2021;33(7):2003168.
Feng JH, Wang W, Huang S, Jiang BB, Zhu B, Zhou Y, et al. Porous thermoelectric zintl: YbCd2Sb2. ACS Appl Energy Mater 2021;4(1):913–20.
Pathak R, Xie L, Das S, Ghosh T, Bhui A, Dolui K, et al. Vacancy controlled nanoscale cation ordering leads to high thermoelectric performance. Energy Environ Sci 2023;16(7):3110–8.
Zhou J, Feng JH, Li H, Liu D, Qiu GJ, Qiu F, et al. Modulation of vacancy defects and texture for high performance n-type Bi2Te3 via high energy refinement. Small 2023;19(24):2300654.
Zhang P, Lou ZH, Hu GX, Wu ZZ, Xu J, Gong LY, et al. Construction of all-scale hierarchical microstructure and thermoelectric properties of (Sr0.25Ca0.25Ba0.25La0.25)TiO3/Pb@Bi composite oxide ceramics. J Materiomics 2023;9(4):661–72.
Liu HL, Shi X, Xu FF, Zhang LL, Zhang WQ, Chen LD, et al. Copper ion liquid-like thermoelectrics. Nat Mater 2012;11(5):422–5.
Zhao LD, Tan GJ, Hao SQ, He JQ, Pei YL, Chi H, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016;351(6269):141–4.
Tamaki H, Sato HK, Kanno T. Isotropic Conduction Network and defect chemistry in Mg3+dSb2-based layered zintl compounds with high thermoelectric performance. Adv Mater 2016;28(46):10182–7.
Wu Y, Qiu PF, Yu Y, Xiong YF, Deng TT, Cojocaru-Mirédin O, et al. High-performance and stable AgSbTe-based thermoelectric materials for near room temperature applications. J Materiomics 2022;8(6):1095–103.
Mao J, Wu YX, Song SW, Zhu Q, Shuai J, Liu ZH, et al. Defect engineering for realizing high thermoelectric performance in n-type Mg3Sb2-based materials. ACS Energy Lett 2017;2(10):2245–50.
Kuo JJ, Kang SD, Imasato K, Tamaki H, Ohno S, Kanno T, et al. Grain boundary dominated charge transport in Mg3Sb2-based compounds. Energy Environ Sci 2018;11(2):429–34.
Wu YH, Liu F, Zhang Q, Zhu TJ, Xia KY, Zhao XB. Enhancing the average thermoelectric figure of merit of elemental Te by suppressing grain boundary scattering. J Mater Chem A 2020;8(17):8455–61.
Li F, Liu X, Ma N, Chen L, Wu LM. Thermoelectric zintl compound In1–xGaxTe: pure acoustic phonon scattering and dopant-induced deformation potential reduction and lattice shrink. Angew Chem, Int Ed 2022;61(35):e202208216.
Hogg JHC, Sutherland HH. Indium telluride. Acta Crystallogr B 1976;32(9):2689–90.
Zhang JW, Ishikawa D, Koza MM, Nishibori E, Song LR, Baron AQR, et al. Dynamic lone pair expression as chemical bonding origin of giant phonon anharmonicity in thermoelectric InTe. Angew Chem, Int Ed 2023;62(13):e202218458.
Cahill DG, Watson SK, Pohl RO. Lower limit to the thermal-conductivity of disordered crystals. Phys Rev B 1992;46(10):6131–40.
Shantanu M, Céline B, Jean-Claude C, Valentina MG, John-Paul C, Yvan S, et al. Reduced phase space of heat-carrying acoustic phonons in single-crystalline InTe. Phys Rev Res 2020;2(4):043371.
Zhang JW, Roth N, Tolborg K, Takahashi S, Song LR, Bondesgaard M, et al. Direct observation of one-dimensional disordered diffusion channel in a chain-like thermoelectric with ultralow thermal conductivity. Nat Commun 2021;12(1):6709.
Zhu HX, Wang GW, Wang GY, Zhou XY, Lu X. The role of electronic affinity for dopants in thermoelectric transport properties of InTe. J Alloys Compd 2021;869:159224.
Misra S, Leon A, Levinsky P, Hejtmanek J, Lenoir B, Candolfi C. Enhanced thermoelectric performance of InTe through Pb doping. J Mater Chem C 2021;9(40):14490–6.
Pan SS, Liu H, Li ZL, You L, Dai SN, Yang J, et al. Enhancement of the thermoelectric performance of InTe via introducing Cd dopant and regulating the annealing time. J Alloys Compd 2020;813:152210.
Zhou M, Li J, Dong G, Gao S, Feng J, Liu R. Enhancement of thermoelectric performance for InTe by selective substitution and grain size modulation. Crystals 2023;13(4):601.
Song L, Zhang J, Mamakhel A, Iversen BB. Crystal structure, electronic transport, and improved thermoelectric properties of doped InTe. ACS Appl Electron Mater 2024;6(5):2925–34.
Back SY, Kim YK, Cho H, Han MK, Kim SJ, Rhyee JS. Temperature-induced lifshitz transition and charge density wave in InTe1-delta thermoelectric materials. ACS Appl Energy Mater 2020;3(4):3628–36.
Jana MK, Pal K, Waghmare UV, Biswas K. The origin of ultralow thermal conductivity in InTe: lone-pair-induced anharmonic rattling. Angew Chem, Int Ed 2016;55(27):7792–6.
Misra S, Levinsky P, Dauscher A, Medjahdi G, Hejtmanek J, Malaman B, et al. Synthesis and physical properties of single-crystalline InTe: towards high thermoelectric performance. J Mater Chem C 2021;9(15):5250–60.
Feng JH, Zhou MH, Li J, Dong GY, Gao SF, Min ER, et al. A boost of thermoelectric generation performance for polycrystalline InTe by texture modulation. Mater Horiz 2023;10(8):3082–9.
Wang H, Pei YZ, LaLonde AD, Snyder GJ. Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe. P Natl Acad Sci USA 2012;109(25):9705–9.
Bouaziz M, Mahmoudi A, Kremer G, Chaste J, González C, Dappe YJ, et al. Intrinsic defects and mid-gap states in quasi-one-dimensional indium telluride. Phys Rev Res 2023;5(3):033152.
Turnbull D. Kinetics of heterogeneous nucleation. J Chem Phys 1950;18(2):198–203.
Turnbull D. Kinetics of solidification of supercooled liquid mercury droplets. J Chem Phys 1952;20(3):411–24.
Zhu HX, Zhang B, Wang GW, Peng KL, Yan YC, Zhang Q, et al. Promoted high temperature carrier mobility and thermoelectric performance of InTe enabled by altering scattering mechanism. J Mater Chem A 2019;7(19):11690–8.
Zhang D, Wang XC, Wu H, Huang YL, Zheng SK, Zhang B, et al. High thermoelectric performance in earth-abundant CuSbS4 by promoting doping efficiency via rational vacancy design. Adv Funct Mater 2023;33(15):202214163.
Zlomanov VP, Sheiman MS, Demin VN, Legendre A. Phase diagram and thermodynamic properties of phases in the In-Te system. J Phase Equil 2001;22(3):339–44.
Misra S, Levinsky P, Hejtmanek J, Candolfi C, Lenoir B. Controlling Defect chemistry in InTe by saturation annealing. ACS Appl Energy Mater 2022;5(11):13714–22.
Imasato K, Fu CG, Pan Y, Wood M, Kuo JJ, Felser C, et al. Metallic n-type Mg3Sb2 single crystals demonstrate the absence of ionized impurity scattering and enhanced thermoelectric performance. Adv Mater 2020;32(16):1908218.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).