AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Fabry–Pérot cavity smart windows with superior solar and thermal modulation capabilities

Jin Lia,1Chunhui Zhanga,1Yunxiang Chena( )Ke JiaoaZhang ChenbYifei LiuaYanfeng Gaob( )Zongtao Zhanga( )
School of Materials Science and Engineering, Zhengzhou University, Kexue Ave 100, Zhengzhou, 450001, China
School of Materials Science and Engineering, Shanghai University, Shangda 99, Shanghai 200444, China

1 These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Smart windows are an important strategy to reduce the energy consumption in buildings, which accounts for as much as 30%e40% of the society's energy consumption. VO2-based thermochromic materials can intelligently regulate the solar heat gains of building interiors. However, the unmatched thermal emissivity (ε) modulation of traditional VO2/glass systems, i.e., high emissivity at low temperatures and low emissivity at high temperatures, leads to additional heating and cooling energy loads in winter and summer, respectively. In this study, we propose a novel VO2/polyacrylonitrile (PAN)/AgNW multilayer possessing flexible Ag nanowire supported Fabry–Pérot cavities, which synchronously ach-ieves high modulation abilities in both solar spectrum (ΔTsol of 13.6%) and middle infrared region (Δε of 0.50 at 8–13 μm). These achievements are the best among reports for pure VO2 smart windows. This study provides a flexible and effective protocol to dynamically enhance the light and heat utilization for practical building windows.

References

[1]

Long Y, Gao Y. Vanadium dioxide-based thermochromic smart windows. First ed. Singapore: CRC Press; 2021.

[2]

Zhang Z, Zhang L, Zhou Y, Cui Y, Chen Z, Liu Y, Li J, Long Y, Gao Y. Thermochromic energy efficient windows: fundamentals, recent advances, and perspectives. Chem Rev 2023;123:7025–80.

[3]

Peng Y, Fan L, Jin W, Ye Y, Huang Z, Zhai S, Luo X, Ma Y, Tang J, Zhou J, et al. Coloured low-emissivity films for building envelopes for year-round energy savings. Nat Sustain 2022;5:339–47.

[4]

Granqvist CG. Solar energy materials. Adv Mater 2003;15:1789–803.

[5]

Zhou Y, Dong X, Mi Y, Fan F, Xu Q, Zhao H, Wang S, Long Y. Hydrogel smart windows. J Mater Chem A 2020;8:10007–25.

[6]

Cui Y, Ke Y, Liu C, Chen Z, Wang N, Zhang L, Zhou Y, Wang S, Gao Y, Long Y. Thermochromic VO2 for energy-efficient smart windows. Joule 2018;2:1707–46.

[7]

Zhang Z, Gao Y, Chen Z, Du J, Cao C, Kang L, Luo H. Thermochromic VO2 thin films: solution-based processing, improved optical properties, and lowered phase transformation temperature. Langmuir 2010;26:10738–44.

[8]

Morin FJ. Oxides which show a metal-to-insulator transition at the Neel temperature. Phys Rev Lett 1959;3:34–6.

[9]

Hudes I, Lefkowitz I, Hensler D. Onset and shift of insulator-metallic transition in VO2 and titanium doped VO2. Ferroelectrics 1977;16:257–8.

[10]

Chen Z, Cao C, Chen S, Luo H, Gao Y. Crystallised mesoporous TiO2(A)–VO2(M/R) nanocomposite films with self-cleaning and excellent thermochromic properties. J Mater Chem A 2014;2:11874–84.

[11]

Zhou J, Gao Y, Liu X, Chen Z, Dai L, Cao C, Luo H, Kanahira M, Sun C, Yan L. Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal–insulator transition temperature. Phys Chem Chem Phys 2013;15:7505–11.

[12]

Chen S, Dai L, Liu J, Gao Y, Liu X, Chen Z, Zhou J, Cao C, Han P, Luo H, et al. The visible transmittance and solar modulation ability of VO2 flexible foils simultaneously improved by Ti doping: an optimization and first principle study. Phys Chem Chem Phys 2013;15:17537–43.

[13]

Yu D, Huang H, Lu L, Che J, Chen X, Zhu X, Song Y, Li D. Templated deposition of multiscale periodic metallic nanodot arrays with sub-10 nm gaps on rigid and flexible substrates. Nanotechnology 2014;25:465303.

[14]

Cui Y, Cao C, Chen Z, Luo H, Gao Y. Atomic and electronic structures of thermochromic VO2 with Sb-doping. Comp Mater Sci 2017;130:103–8.

[15]

Dietrich MK, Kuhl F, Polity A, Klar PJ. Optimizing thermochromic VO2 by co-doping with Wand Sr for smart window applications. Appl Phys Lett 2017;110:141907.

[16]

Riapanitra A, Asakura Y, Cao W, Noda Y, Yin S. Supercritical temperature synthesis of fluorine-doped VO2(M) nanoparticle with improved thermochromic property. Nanotechnology 2018;29:244005.

[17]

Zhang L, Xia F, Yao J, Zhu T, Xia H, Yang G, Liu B, Gao Y. Facile synthesis, formation mechanism and thermochromic properties of W-doped VO2(M) nanoparticles for smart window applications. J Mater Chem C 2020:13396–404.

[18]

Cao C, Hu B, Tu G, Ji X, Li Z, Xu F, Chang T, Jin P, Cao X. Sputtering flexible VO2 films for effective thermal modulation. ACS Appl Mater Interfaces 2022;14:28105–13.

[19]

Ji H, Liu D, Zhang C, Cheng H. VO2/ZnS core-shell nanoparticle for the adaptive infrared camouflage application with modified color and enhanced oxidation resistance. Sol Energ Mat Sol C 2018;176:1-8.

[20]

Chang T, Cao X, Li N, Long S, Zhu Y, Huang J, Luo H, Jin P. Mitigating deterioration of vanadium dioxide thermochromic films by interfacial encapsulation. Matter 2019;1:734–44.

[21]

Qu Z, Yao L, Li J, He J, Mi J, Ma S, Tang S, Feng L. Bifunctional template-induced VO2@SiO2 dual-shelled hollow nanosphere-based coatings for smart windows. ACS Appl Mater Interfaces 2019;11:15960–8.

[22]

Lin KC, Lin CL, Tsai CA, Juan PC. The effect of TiO2 buffer layer thickness on the thermochromic properties of VO2 thin-film fabricated by high density plasma source. Jpn J Appl Phys 2021;60:SAAB04.

[23]

Zong H, Zhou D, Yan L, Liu H, Wu J, Hu Q, Kang C, Li M. ZrO2/VO2/ZrO2 sandwich structure with improved optical properties and weatherability for smart window application. Appl Phys A: Mater Sci Process 2021;127:472.

[24]

Liang J, Li X, Zhang D, Wang S, Wang Z. Fabrication and optical performance research of VO2/SiO2/VO2 composite spherical structure films. J Opt Soc Am B 2022;39:2229–36.

[25]

Vu TD, Cao X, Hu H, Bao J, Cao T, Hu J, Zeng X, Long Y. A universal robust bottom-up approach to engineer Greta-oto-inspired anti-reflective structure. Cell Rep Phys Sci 2021;2:100479.

[26]

Kang L, Gao Y, Luo H, Wang J, Zhu B, Zhang Z, Du J, Kanehira M, Zhang Y. Thermochromic properties and low emissivity of ZnO:Al/VO2 double-layered films with a lowered phase transition temperature. Sol Energ Mat Sol C 2011;95:3189–94.

[27]

Zhang Z, Gao Y, Luo H, Kang L, Chen Z, Du J, Kanehira M, Zhang Y, Wang ZL. Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications. Energy Environ Sci 2011;4:4290–7.

[28]

Tang KC, Dong KC, Li JC, Gordon MP, Reichertz FG, Kim H, Rho Y, Wang QJ, Lin CY, Grigoropoulos CP, et al. Temperature-adaptive radiative coating for all-season household thermal regulation. Science 2021;374:1504–9.

[29]

Wang S, Jiang T, Meng Y, Yang R, Tan G, Long Y. Scalable thermochromic smart windows with passive radiative cooling regulation. Science 2021;374:1501–4.

[30]

Benkahoul M, Chaker M, Margot J, Haddad E, Kruzelecky R, Wong B, Jamroz W, Poinas P. Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications. Sol Energ Mat Sol C 2011;95:3504–8.

[31]

Zhang XR, Wang W, Zhao Y, Hu X, Reinhardt K, Knize RJ, Lu Y. Temperature-agile and structure-tunable optical properties of VO2/Ag thin films. Appl Phys A 2012;109:845–9.

[32]

Kang L, Gao Y, Chen Z, Du J, Zhang Z, Luo H. Pt/VO2 double-layered films combining thermochromic properties with low emissivity. Sol Energ Mat Sol C 2010;94:2078–84.

[33]

Madaras SE, Creeden J, Kittiwatanakul S, Lu J, Lukaszew RA. Insulator to metal transition induced by surface plasmon polaritons in VO2/Au thin films. Opt Express 2018;26:25657–66.

[34]

Jian J, Wang X, Li L, Fan M, Zhang W, Huang J, Qi Z, Wang H. Continuous tuning of phase transition temperature in VO2 thin films on c-cut sapphire substrates via strain variation. ACS Appl Mater Interfaces 2017;9:5319–27.

[35]

Sato K, Hoshino H, Mian MS, Okimura K. Low-temperature growth of VO2 films on transparent ZnO/glass and Al-doped ZnO/glass and their optical transition properties. Thin Solid Films 2018;651:91–6.

[36]

Montero J, Ji Y-X, Li S-Y, Niklasson GA, Granqvist CG. Sputter deposition of thermochromic VO2 films on In2O3:Sn, SnO2, and glass: structure and composition versus oxygen partial pressure. J Vac Sci Technol B 2015;33:031805.

[37]

Lin T, Wang L, Wang X, Zhang Y. Low-temperature fabrication of VO2 thin film on ITO glass with a Mott transition. Funct Mater Lett. 2016;09:1650062.

[38]

Wei H, Gu J, Ren F, Zhang L, Xu G, Wang B, Song S, Zhao J, Dou S, Li Y. Smart materials for dynamic thermal radiation regulation. Small 2021;17:2100446.

[39]

Beaini R, Baloukas B, Loquai S, Klemberg-Sapieha JE, Martinu L. Thermochromic VO2-based smart radiator devices with ultralow refractive index cavities for increased performance. Sol Energ Mat Sol C 2020;205:110260.

[40]

Sun K, Xiao W, Wheeler C, Simeoni M, Urbani A, Gaspari M, Mengali S, de Groot CH, Muskens OL. VO2 metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applications. Nanophotonics 2022;11:4101–14.

[41]

Long L, Taylor S, Wang L. Enhanced infrared emission by thermally switching the excitation of magnetic polariton with scalable microstructured VO2 metasurfaces. ACS Photonics 2020;7:2219–27.

[42]

Wu X, Yuan L, Weng X, Qi L, Wei B, He W. Passive smart thermal control coatings incorporating CaF2/VO2 core–shell microsphere structures. Nano Lett 2021;21:3908–14.

[43]

Xu F, Xu W, Mao B, Shen W, Yu Y, Tan R, Song W. Preparation and cold welding of silver nanowire based transparent electrodes with optical transmittances >90% and sheet resistances <10 ohm/sq. J Colloid Interface Sci 2018;512:208–18.

[44]

Ran Y, He W, Wang K, Ji S, Ye C. A one-step route to Ag nanowires with a diameter below 40 nm and an aspect ratio above 1000. Chem Commun 2014;50:14877–80.

[45]

Chen Z, Gao Y, Kang L, Cao C, Chen S, Luo H. Fine crystalline VO2 nanoparticles: synthesis, abnormal phase transition temperatures and excellent optical properties of a derived VO2 nanocomposite foil. J Mater Chem A 2014;2:2718–27.

[46]

Hsu P-C, Liu X, Liu C, Xie X, Lee HR, Welch AJ, Zhao T, Cui Y. Personal thermal management by metallic nanowire-coated Textile. Nano Lett 2014;15:365–71.

[47]

Van De Groep J, Spinelli P, Polman A. Transparent conducting silver nanowire networks. Nano Lett 2012;12:3138–44.

[48]

Peter ARA, Giampaolo P, Carole T, Samuel W. A review of metal mesh filters. Proc SPIE 2006;6275:62750U.

[49]

Catrysse PB, Fan S. Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices. Nano Lett 2010;10:2944–9.

[50]

Hanauer S, Celle C, Crivello C, Szambolics H, Muñoz-Rojas D, Bellet D, Simonato J-P. Transparent and mechanically resistant silver-nanowire-based low-emissivity coatings. ACS Appl Mater Interfaces 2021;13:21971–8.

[51]

Li T, Gao Y, Zheng K, Ma Y, Ding D, Zhang H. Achieving Better Greenhouse effect than glass: Visibly transparent and low emissivity metal-Polymer Hybrid metamaterials. ES Energ Environ 2019;5:102–7.

[52]

Morsy AM, Barako MT, Jankovic V, Wheeler VD, Knight MW, Papadakis GT, Sweatlock LA, Hon PWC, Povinelli ML. Experimental demonstration of dynamic thermal regulation using vanadium dioxide thin films. Sci Rep 2020;10:13964.

[53]

Yan R, Simes RJ, Coldren LA. Surface-normal electroabsorption reflection modulators using asymmetric Fabry-Perot structures. IEEE J Quant Electron 1991;27:1922–31.

Journal of Materiomics
Article number: 100871
Cite this article:
Li J, Zhang C, Chen Y, et al. Fabry–Pérot cavity smart windows with superior solar and thermal modulation capabilities. Journal of Materiomics, 2025, 11(2): 100871. https://doi.org/10.1016/j.jmat.2024.03.015

61

Views

0

Crossref

1

Web of Science

2

Scopus

Altmetrics

Received: 13 December 2023
Revised: 22 February 2024
Accepted: 24 March 2024
Published: 09 May 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return