AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Controlled lattice deformation for high-mobility two-dimensional MoTe2 growth

Ruishan Lia,1Mengyu Honga,b,1Wei ShangguanaYanzhe ZhangaYihe LiuaHe JiangaHuihui Yua,bLi Gaoa,bXiankun Zhanga,b( )Zheng Zhanga,b( )Yue Zhanga,b( )
Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
Beijing Key Laboratory for Advanced Energy Materials and Technologies, Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China

1 R Li and M Hong have equal contributions.

Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2D) MoTe2 shows great potential for future semiconductor devices, but the lab-to-fab transition is still in its preliminary stage due to the constraints in the crystal growth level. Currently, the chemical vapor deposition growth of 2D MoTe2 primarily relies on the tellurization process of Mo-source precursor (MSP). However, the target product 2H-MoTe2 from Mo precursor suffers from long growth time and suboptimal crystal quality, and MoOx precursor confronts the dilemma of unclear growth mechanism and inconsistent growth products. Here, we developed magnetron-sputtered MoO3 film for fast and high-mobility 2H-MoTe2 growth. The solid-to-solid phase transition growth mechanism of 2D MoTe2 from Mo and MoOx precursor was first experimentally unified, and the effect mechanism of MSPs on 2D MoTe2 growth was systematically elucidated. Compared with Mo and MoO2, the MoO3 precursor has the least Mo-unit lattice deformation and exhibits the optimal crystal quality of growth products. Meanwhile, the lowest Gibbs free energy change of the chemical reaction results in an impressive 2HMoTe2 growth rate of 8.07 μm/min. The constructed 2H-MoTe2 field-effect transistor array from MoO3 precursor showcases record-high hole mobility of 85 cm2·V-1·s-1, competitive on-off ratio of 3×104, and outstanding uniformity. This scalable method not only offers efficiency but also aligns with industry standards, making it a promising guideline for diverse 2D material preparation towards real-world applications.

References

[1]

Lemme MC, Akinwande D, Huyghebaert C, Stampfer C. 2D materials for future heterogeneous electronics. Nat Commun 2022;13:1392.

[2]

Cao W, Bu H, Vinet M, Cao M, Takagi S, Hwang S, et al. The future transistors. Nature 2023;620:501–15.

[3]

Zhang X, Zhao H, Wei X, Zhang Y, Zhang Z, Zhang Y. Two-dimensional transition metal dichalcogenides for post-silicon electronics. Natl. Sci. Open. 2023;2:20230015.

[4]

Tang Z, Chen S, Li D, Wang X, Pan A. Two-dimensional optoelectronic devices for silicon photonic integration. J. Materiomics 2023;9:551–67.

[5]

Gao M, Yu L, Lv Q, Kang F, Huang ZH, Lv R. Photoluminescence manipulation in two-dimensional transition metal dichalcogenides. J. Materiomics 2023;9:768–86.

[6]

Pradhan NR, Rhodes D, Feng S, Xin Y, Memaran S, Moon BH, et al. Field-effect transistors based on few-layered α-MoTe2. ACS Nano 2014;8:5911–20.

[7]

Cheng R, Wang F, Yin L, Wang Z, Wen Y, Shifa TA, et al. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron. 2018;1:356–61.

[8]

Sung JH, Heo H, Si S, Kim YH, Noh HR, Song K. et al. Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. Nat Nanotechnol 2017;12:1064–70.

[9]

Guo Z, Wang L, Han M, Zhao E, Zhu L, Guo W, et al. One-step growth of bilayer 2H-1T’ MoTe2 van der Waals heterostructures with interlayer-coupled resonant phonon vibration. ACS Nano 2022;16:11268–77.

[10]

Li T, Guo W, Ma L, Li W, Yu Z, Han Z, et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat Nanotechnol 2021;16:1201–7.

[11]

Liu L, Li T, Ma L, Li W, Gao S, Sun W, et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 2022;605:69-75.

[12]

Wang J, Xu X, Cheng T, Gu L, Qiao R, Liang Z. et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat Nanotechnol 2022;17:33–8.

[13]

Park JC, Yun SJ, Kim H, Park JH, Chae SH, An SJ, et al. Phase-engineered synthesis of centimeter-scale 1T’- and 2H-molybdenum ditelluride thin films. ACS Nano 2015;9:6548–54.

[14]

Zhou L, Zubair A, Wang Z, Zhang X, Ouyang F, Xu K, et al. Synthesis of high-quality large-area homogenous 1T’- MoTe2 from chemical vapor deposition. Adv Mater 2016;28:9526–31.

[15]

Xu X, Chen S, Liu S, Cheng X, Xu W, Li P, et al. Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation. J Am Chem Soc 2019;141:2128–34.

[16]

Xu X, Pan Y, Liu S, Han B, Gu P, Li S, et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H-MoTe2. Science 2021;372:195-200.

[17]

Zhou L, Xu K, Zubair A, Liao AD, Fang W, Ouyang F, et al. Large-area synthesis of high-quality uniform few-layer MoTe2. J Am Chem Soc 2015;137:11892–5.

[18]

Yang L, Zhang W, Li J, Cheng S, Xie Z, Chang H, et al. Tellurization velocity-dependent metallic-semiconducting-metallic phase evolution in chemical vapor deposition growth of large-area, few-layer MoTe2. ACS Nano 2017;11:1964–72.

[19]

Zhang Q, Wang F, Shen H, Lu Q, Liu X, Li H, et al. Simultaneous synthesis and integration of two-dimensional electronic components. Nat. Electron. 2019;2:164–70.

[20]

Pace S, Martini L, Convertino D, Keum DH, Forti S, Pezzini S, et al. Synthesis of large-scale monolayer 1T’-MoTe2 and its stabilization via scalable hBN encapsulation. ACS Nano 2021;15:4213–25.

[21]

Ma T, Chen H, Yananose K, Zhou X, Wang L, Li R, et al. Growth of bilayer MoTe2 single crystals with strong non-linear hall effect. Nat Commun 2022;13:5465.

[22]

Shangguan W, Yan C, Li W, Long C, Liu L, Qi C, et al. Two-dimensional semiconductor materials with high stability and electron mobility in group-11 chalcogenide compounds: MNX (M = Cu, Ag, Au; N = Cu, Ag, Au; X = S, Se, Te; M ≠ N). Nanoscale 2022;14:4271–80.

[23]

Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 2012;33:580–92.

[24]

Kim SG, Kim DI, Kim WT. Park Y.B. Computer simulations of two-dimensional and three-dimensional ideal grain growth. Phys Rev 2006;74:061605.

[25]

Bernède JC, Amory C, Assmann L. Spiesser M. X-ray photoelectron spectroscopy study of MoTe2 single crystals and thin films. Appl Surf Sci 2003;219:238–48.

[26]

Iqbal MW, Shahzad K, Akbar R, Hussain G. A review on Raman finger prints of doping and strain effect in TMDCs. Microelectron Eng 2020;219:111152.

[27]

Karki B, Freelon B, Rajapakse M, Musa R, Riyadh SMS, Morris B, et al. Strain-induced vibrational properties of few layer black phosphorus and MoTe2 via Raman spectroscopy. Nanotechnology 2020;31:425707.

[28]

Yamamoto M, Wang ST, Ni M, Lin YF, Li SL, Aikawa S, et al. Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe2. ACS Nano 2014;8:3895–903.

[29]
Eshelby JD. The continuum theory of lattice defects. In: Seitz F, Turnbull D, editors. Solid state physics. Academic Press; 1956. p. 79-144.
[30]

Kondo S, Mitsuma T, Shibata N. Ikuhara Y. Direct observation of individual dislocation interaction processes with grain boundaries. Sci Adv 2016;2:e1501926.

[31]

Pan Y, Guzman R, Li S, Xu W, Li Y, Tang N, et al. Heteroepitaxy of semiconducting 2H-MoTe2 thin films on arbitrary surfaces for large-scale heterogeneous integration. Nat. Synth. 2022;1:701–8.

[32]

Hynek DJ, Singhania RM, Xu S, Davis B, Wang L, Yarali M, et al. cm2-scale synthesis of MoTe2 thin films with large grains and layer control. ACS Nano 2021;15:410–8.

[33]

Flöry N, Ma P, Salamin Y, Emboras A, Taniguchi T, Watanabe K, et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat Nanotechnol 2020;15:118–24.

[34]

Schulman DS, Arnold AJ, Das S. Contact engineering for 2D materials and devices. Chem Soc Rev 2018;47:3037–58.

[35]

Kim C, Moon I, Lee D, Choi MS, Ahmed F, Nam S, et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 2017;11:1588–96.

[36]

Empante TA, Zhou Y, Klee V, Nguyen AE, Lu IH, Valentin MD, et al. Chemical vapor deposition growth of few-layer MoTe2 in the 2H, 1T’, and 1T phases: tunable properties of MoTe2 films. ACS Nano 2017;11:900–5.

[37]

Song S, Yoon A, Jang S, Lynch J, Yang J, Han J, et al. Fabrication of p-type 2D single-crystalline transistor arrays with fermi-level-tuned van der Waals semimetal electrodes. Nat Commun 2023;14:4747.

[38]

Zhang S, Wu Y, Gao F, Shang H, Zhang J, Li Z, et al. Field effect transistor sensors based on in-plane 1T’/2H/1T’ MoTe2 heterophase with superior sensitivity and output signals. Adv Funct Mater 2022;32:2205299.

[39]

Cheng S, Yang L, Li J, Liu Z, Zhang W, Chang H. Large area, phase-controlled growth of few-layer, two-dimensional MoTe2 and lateral 1T’-2H heterostructures by chemical vapor deposition. CrystEngComm 2017;19:1045–51.

[40]

Zhang X, Jin Z, Wang L, Hachtel JA, Villarreal E, Wang Z, et al. Low contact barrier in 2H/1T’ MoTe2 in-plane heterostructure synthesized by chemical vapor deposition. ACS Appl Mater Interfaces 2019;11:12777–85.

[41]

Ma R, Zhang H, Yoo Y, Degregorio ZP, Jin L, Golani P, et al. MoTe2 lateral homojunction field-effect transistors fabricated using flux-controlled phase engineering. ACS Nano 2019;13:8035–46.

[42]

Xu X, Han B, Liu S, Yang S, Jia X, Xu W, et al. Atomic-precision repair of a few-layer 2H-MoTe2 thin film by phase transition and recrystallization induced by a heterophase interface. Adv Mater 2020;32:2000236.

[43]

Xu X, Liu S, Han B, Han Y, Yuan K, Xu W, et al. Scaling-up atomically thin coplanar semiconductor-metal circuitry via phase engineered chemical assembly. Nano Lett 2019;19:6845–52.

[44]

Yang S, Xu X, Xu W, Han B, Ding Z, Gu P, et al. Large-scale vertical 1T’/2H MoTe2 nanosheet-based heterostructures for low contact resistance transistors. ACS Appl Nano Mater 2020;3:10411–7.

[45]

Lin F, Xu Y, Wang T, Li L, Yamamoto M, Ferreira AA, et al. Ambipolar MoTe2 transistors and their applications in logic circuits. Adv Mater 2014;26:3263–9.

[46]

Chang M, Yang H, Lin Y, Chen CH, Lien CH, Jian WB, et al. Reversible and precisely controllable p/n-type doping of MoTe2 transistors through electrothermal doping. Adv Mater 2018;30:1706995.

[47]

Chen J, Feng Z, Fan S, Shi S, Yue Y, Shen W, et al. Contact engineering of molybdenum ditelluride field effect transistors through rapid thermal annealing. ACS Appl Mater Interfaces 2017;9:30107–14.

[48]

Cho Y, Park JH, Kim M, Jeong Y, Ahn J, Kim T, et al. Fully transparent p-MoTe2 2D transistors using ultrathin MoOx/Pt contact media for indium-tin-oxide source/drain. Adv Funct Mater 2018;28:1801204.

[49]

Qu D, Liu X, Huang M, Lee C, Ahmed F, Kim H, et al. Carrier-type modulation and mobility improvement of thin MoTe2. Adv Mater 2017;29:1606433.

[50]

Lim JY, Pezeshki A, Oh S, Kim JS, Lee YT, Yu S, et al. Homogeneous 2D MoTe2 p-n junctions and CMOS inverters formed by atomic-layer-deposition-induced doping. Adv Mater 2017;29:1701798.

[51]

Huang H, Deng Y, Liu S, Wu CT, Chou CT, Chang WH, et al. Large-area 2D layered MoTe2 by physical vapor deposition and solid-phase crystallization in a tellurium-free atmosphere. Adv Mater Interfac 2017;4:1700157.

[52]

He Q, Li P, Wu Z, Yuan B, Luo Z, Yang W, et al. Molecular beam epitaxy scalable growth of wafer-scale continuous semiconducting monolayer MoTe2 on inert amorphous dielectrics. Adv Mater 2019;31:1901578.

[53]

Kim T, Park H, Joung D, Kim D, Lee R, Shin CH, et al. Wafer-scale epitaxial 1T’, 1T’-2H mixed, and 2H phases MoTe2 thin films grown by metal-organic chemical vapor deposition. Adv Mater Interfac 2018;5:1800439.

Journal of Materiomics
Article number: 100868
Cite this article:
Li R, Hong M, Shangguan W, et al. Controlled lattice deformation for high-mobility two-dimensional MoTe2 growth. Journal of Materiomics, 2025, 11(2): 100868. https://doi.org/10.1016/j.jmat.2024.03.013

115

Views

2

Crossref

1

Web of Science

2

Scopus

Altmetrics

Received: 22 February 2024
Revised: 01 March 2024
Accepted: 12 March 2024
Published: 24 April 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return