AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Local manipulation of skyrmion lattice in Fe3GaTe2 at room temperature

Shuaizhao JinaZhan WangbShouzhe DongcYiting Wangd,eKun Hand,eGuangcheng WangfZunyi DengaXingan Jianga,gYing ZhangbHoubing HuangcJiawang HongaXiaolei Wangf( )Tianlong Xiad,e( )Sang-Wook CheonghXueyun Wanga( )
School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
Beijing National State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
Advanced Research Institute of Multidisciplinary Science, and School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
Beijing Key Laboratory of Opto-Electronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing, 100872, China
Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, China
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City, 315211, China
Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Motivated by advances in spintronic devices, extensive explorations are underway to uncover materials that host topologically protected spin textures, exemplified by skyrmions. One critical challenge involved in the potential application of skyrmions in van der Waals (vdW) materials is the attainment and manipulation of skyrmions at room temperature. In this study, we report the creation of an intrinsic skyrmion state in the van der Waals ferromagnet Fe3GaTe2. By employing variable temperature magnetic force microscopy, the skyrmion lattice can be locally manipulated on Fe3GaTe2 flakes. The ordering of skyrmion state is further analyzed. Our results suggest Fe3GaTe2 emerges as a highly promising contender for the realization of skyrmion-based layered spintronic memory devices.

References

[1]

Sampaio J, Cros V, Rohart S, Thiaville A, Fert A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat Nanotechnol 2013;8:839–44.

[2]

Jiang W, Chen G, Liu K, Zang J, te Velthuis SGE, Hoffmann A. Skyrmions in magnetic multilayers. Phys Rep 2017;704:1-49.

[3]

Tokura Y, Kanazawa N. Magnetic skyrmion materials. Chem Rev 2021;121:2857–97.

[4]

Fert A, Reyren N, Cros V. Magnetic skyrmions: advances in physics and potential applications. Nat Rev Mater 2017;2:17031.

[5]

Nagaosa N, Tokura Y. Topological properties and dynamics of magnetic skyrmions. Nat Nanotechnol 2013;8:899-911.

[6]

Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, et al. Skyrmion lattice in a chiral magnet. Science 2009;323:915–9.

[7]

Woo S, Litzius K, Krüger B, Im M-Y, Caretta L, Richter K, et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat Mater 2016;15:501–6.

[8]

Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz CaF, Van Horne N, et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat Nanotechnol 2016;11:444–8.

[9]

Soumyanarayanan A, Raju M, Gonzalez Oyarce AL, Tan AKC, Im M-Y, Petrović AP, et al. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/ Pt multilayers. Nat Mater 2017;16:898-904.

[10]

Wang X, Stuart AR, Swyt MS, Flores CMQ, Clark AT, Fiagbenu A, et al. Topological spin memory of antiferromagnetically coupled skyrmion pairs in Co/ Gd/Pt multilayers. Phys Rev Mater 2022;6:084412.

[11]

Chen R, Li Y, Griggs W, Zang Y, Pavlidis VF, Moutafis C. Encoding and multiplexing information signals in magnetic multilayers with fractional skyrmion tubes. ACS Appl Mater Interfaces 2023;15:34145–58.

[12]

Yu XZ, Tokunaga Y, Kaneko Y, Zhang WZ, Kimoto K, Matsui Y, et al. Biskyrmion states and their current-driven motion in a layered manganite. Nat Commun 2014;5:3198.

[13]

Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, et al. A centrosymmetric hexagonal magnet with superstable biskyrmion magnetic nanodomains in a wide temperature range of 100-340 K. Adv Mater 2016;28:6887–93.

[14]

Hou Z, Ren W, Ding B, Xu G, Wang Y, Yang B, et al. Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated Kagome magnet with uniaxial magnetic anisotropy. Adv Mater 2017;29:1701144.

[15]

Burch KS, Mandrus D, Park J-G. Magnetism in two-dimensional van der Waals materials. Nature 2018;563:47-52.

[16]

Deng Y, Yu Y, Song Y, Zhang J, Wang NZ, Sun Z, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018;563:94–9.

[17]

Mak KF, Shan J, Ralph DC. Probing and controlling magnetic states in 2D layered magnetic materials. Nat Rev Phys 2019;1:646–61.

[18]

Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat Mater 2018;17:778–82.

[19]

Gibertini M, Koperski M, Morpurgo AF, Novoselov KS. Magnetic 2D materials and heterostructures. Nat Nanotechnol 2019;14:408–19.

[20]

Ding B, Li Z, Xu G, Li H, Hou Z, Liu E, et al. Observation of Magnetic Skyrmion Bubbles in a van der Waals Ferromagnet Fe3GeTe2. Nano Lett 2020;20:868–73.

[21]

Powalla L, Birch MT, Litzius K, Wintz S, Yasin FS, Turnbull LA, et al. Seeding and Emergence of Composite Skyrmions in a van der Waals Magnet. Adv Mater 2023;35:2208930.

[22]

Li Y, Hu X, Fereidouni A, Basnet R, Pandey K, Wen J, et al. Visualizing the effect of oxidation on magnetic domain behavior of nanoscale Fe3GeTe2 for applications in spintronics. ACS Appl Nano Mater 2023;6:4390–7.

[23]

Birch MT, Powalla L, Wintz S, Hovorka O, Litzius K, Loudon JC, et al. History-dependent domain and skyrmion formation in 2D van der Waals magnet Fe3GeTe2. Nat Commun 2022;13:3035.

[24]

Liu C, Jiang J, Zhang C, Wang Q, Zhang H, Zheng D, et al. Controllable Skyrmionic Phase Transition between Néel Skyrmions and Bloch Skyrmionic Bubbles in van der Waals Ferromagnet Fe3–δGeTe2. Adv Sci 2023:2303443.

[25]

Wu Y, Zhang S, Zhang J, Wang W, Zhu YL, Hu J, et al. Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure. Nat Commun 2020;11:3860.

[26]

Park T-E, Peng L, Liang J, Hallal A, Yasin FS, Zhang X, et al. Néel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures. Phys Rev B 2021;103:104410.

[27]

Wu Y, Francisco B, Chen Z, Wang W, Zhang Y, Wan C, et al. A Van der Waals Interface Hosting Two Groups of Magnetic Skyrmions. Adv Mater 2022;34:2110583.

[28]

Tian C, Pan F, Xu S, Ai K, Xia T, Cheng P. Tunable magnetic properties in van der Waals crystals (Fe1–xCox)5GeTe2. Appl Phys Lett 2020;116:202402.

[29]

Zhang H, Raftrey D, Chan Y-T, Shao Y-T, Chen R, Chen X, et al. Room-temperature skyrmion lattice in a layered magnet (Fe0.5Co0.5)5GeTe2. Sci Adv 2022;8:eabm7103.

[30]

Zhang G, Guo F, Wu H, Wen X, Yang L, Jin W, et al. Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy. Nat Commun 2022;13:5067.

[31]

Zhang G, Yu J, Wu H, Yang L, Jin W, Zhang W, et al. Field-free room-temperature modulation of magnetic bubble and stripe domains in 2D van der Waals ferromagnetic Fe3GaTe2. Appl Phys Lett 2023;123:101901.

[32]

Zhang G, Luo Q, Wen X, Wu H, Yang L, Jin W, et al. Giant 2D skyrmion topological Hall effect with ultrawide temperature window and low-current manipulation in 2D room-temperature ferromagnetic crystals. Chin Phys Lett 2023;40:117501.

[33]

Li Z, Zhang H, Li G, Guo J, Wang Q, Deng Y, et al. Room-temperature sub-100 nm Néel-type skyrmions in non-stoichiometric van der Waals ferromagnet Fe3–xGaTe2 with ultrafast laser writability. Nat Commun 2024;15:1017.

[34]

Zhang H, Chen R, Zhai K, Chen X, Caretta L, Huang X, et al. Itinerant ferromagnetism in van der Waals Fe5–xGeTe2 crystals above room temperature. Phys Rev B 2020;102:064417.

[35]

Alahmed L, Nepal B, Macy J, Zheng W, Casas B, Sapkota A, et al. Magnetism and spin dynamics in room-temperature van der Waals magnet Fe5GeTe2. 2D Mater 2021;8:045030.

[36]

Zhang C, Liu C, Zhang S, Zhou B, Guan C, Ma Y, et al. Magnetic skyrmions with unconventional helicity polarization in a van der Waals ferromagnet. Adv Mater 2022;34:2204163.

[37]

Pollard SD, Garlow JA, Yu J, Wang Z, Zhu Y, Yang H. Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy. Nat Commun 2017;8:14761.

[38]

Nagao M, So Y-G, Yoshida H, Isobe M, Hara T, Ishizuka K, et al. Direct observation and dynamics of spontaneous skyrmion-like magnetic domains in a ferromagnet. Nat Nanotechnol 2013;8:325–8.

[39]

Wilhelm H, Baenitz M, Schmidt M, Naylor C, Lortz R, Rößler UK, et al. Confinement of chiral magnetic modulations in the precursor region of FeGe. J Phys Condens Matter 2012;24:294204.

[40]

Peng L, Zhang Y, Wang W, He M, Li L, Ding B, et al. Real-space observation of nonvolatile zero-field biskyrmion lattice generation in MnNiGa magnet. Nano Lett 2017;17:7075–9.

[41]

McCray ARC, Li Y, Qian E, Li Y, Wang W, Huang Z, et al. Direct Observation of Magnetic Bubble Lattices and Magnetoelastic Effects in van der Waals Cr2Ge2Te6. Adv Funct Mater 2023;33:2214203.

[42]

Oike H, Kikkawa A, Kanazawa N, Taguchi Y, Kawasaki M, Tokura Y, et al. Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice. Nat Phys 2016;12:62–6.

[43]

Karube K, White JS, Reynolds N, Gavilano JL, Oike H, Kikkawa A, et al. Robust metastable skyrmions and their triangular–square lattice structural transition in a high-temperature chiral magnet. Nat Mater 2016;15:1237–42.

[44]

Peng L, Zhang Y, Ke L, Kim T-H, Zheng Q, Yan J, et al. Relaxation dynamics of zero-field skyrmions over a wide temperature range. Nano Lett 2018;18:7777–83.

[45]

Hohenberg PC. Existence of long-range order in one and two dimensions. Phys Rev 1967;158:383–6.

[46]

Mermin ND, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett 1966;17:1133–6.

[47]

Halperin BI. On the Hohenberg–Mermin–Wagner Theorem and its limitations. J Stat Phys 2019;175:521–9.

[48]

Kim T-H, Zhao H, Xu B, Jensen BA, King AH, Kramer MJ, et al. Mechanisms of skyrmion and skyrmion crystal formation from the conical phase. Nano Lett 2020;20:4731–8.

[49]

Kosterlitz JM, Thouless DJ. Ordering, metastability and phase transitions in two-dimensional systems. J Phys C Solid State Phys 1973;6:1181.

[50]

Halperin BI, Nelson DR. Theory of two-dimensional melting. Phys Rev Lett 1978;41:121–4.

[51]

Young AP. Melting and the vector Coulomb gas in two dimensions. Phys Rev B 1979;19:1855–66.

[52]

Huang P, Schönenberger T, Cantoni M, Heinen L, Magrez A, Rosch A, et al. Melting of a skyrmion lattice to a skyrmion liquid via a hexatic phase. Nat Nanotechnol 2020;15:761–7.

[53]

Meisenheimer P, Zhang H, Raftrey D, Chen X, Shao Y-T, Chan Y-T, et al. Ordering of room-temperature magnetic skyrmions in a polar van der Waals magnet. Nat Commun 2023;14:3744.

Journal of Materiomics
Article number: 100865
Cite this article:
Jin S, Wang Z, Dong S, et al. Local manipulation of skyrmion lattice in Fe3GaTe2 at room temperature. Journal of Materiomics, 2025, 11(2): 100865. https://doi.org/10.1016/j.jmat.2024.03.010

81

Views

2

Crossref

3

Web of Science

3

Scopus

Altmetrics

Received: 30 January 2024
Revised: 21 March 2024
Accepted: 22 March 2024
Published: 23 April 2024
© 2024 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return