AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Novel properties of vacancy-ordered perovskite-Cs2BCl6 induced by dorbital electrons

Siyu ZhangbLu WangaYujia GuoaJie Sua( )Haidong YuanaZhenhua LinaLixin Guob( )Yue HaoaJingjing Changa( )
Advanced Interdisciplinary Research Center for Flexible Electronics, State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi’an, 710071, China
School of Science, Xidian University, 2 South Taibai Road, Xi’an, 710071, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

The all-inorganic lead-free vacancy-ordered perovskite offers a promising avenue toward nontoxic and stable optoelectronic materials. Herein, we present a first-principles study of the structural stability, optical absorption, electronic structure, and mechanical behavior of Cs2BCl6 compounds with B-site substitutions (B=Ge, Sn, Pb, Cr, Mo, W, Ti, Zr, and Hf). The structural analysis shows that the Cs2BCl6 perovskite with face-centered cubes has a stable chemical environment, especially Cs2HfCl6, Cs2WCl6, and Cs2PbCl6. Hf4+ and W4+ with high-energy d-state external electron configurations can further lower the valence band maximum position of the Cs2BCl6 structures and thus increase the band gap, assisting in tuning the optical absorption and emission properties of these structures in the optoelectronic application. For the light absorption properties of Cs2BCl6 materials, the best light absorption properties have been concluded for Ti4+, Cr4+, and Pb4+-based perovskite in the visible range due to a suitable band gap. Therefore, the excellent optical absorption and electronic properties make these vacancy-ordered perovskites promising candidates for optoelectronic applications.

References

[1]

Zou L, He Y, Liu Z, Jia H, Zhu J, Zheng J, et al. Unlocking the passivation nature of the cathode–air interfacial reactions in lithium ion batteries. Nat Commun 2020;11.

[2]

Buchanan M. Perovskite fever. Nat Phys 2020;16:996.

[3]

Liu D, Luo D, Iqbal AN, Orr KWP, Doherty TAS, Lu ZH, et al. Strain analysis and engineering in halide perovskite photovoltaics. Nat Mater 2021;20:1337-46.

[4]

Igbari F, Wang ZK, Liao LS. Progress of lead-free halide double perovskites. Adv Energy Mater 2019;9:1-32.

[5]

Wang G, Wang D, Shi X. Electronic structure and optical properties of Cs2AX2′X4 (A=Ge,Sn,Pb; X′,X=Cl,Br,I). AIP Adv 2015;5.

[6]

Chen M, Ju MG, Carl AD, Zong Y, Grimm RL, Gu J, et al. Cesium titanium(Ⅳ) bromide thin films based stable lead-free perovskite solar cells. Joule 2018;2:558-70.

[7]

Qiu X, Cao B, Yuan S, Chen X, Qiu Z, Jiang Y, et al. From unstable CsSnI3 to air-stable Cs2SnI6 : a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Sol Energy Mater Sol Cells 2017;159:227-34.

[8]

Zhao Y, Duan J, Yuan H, Wang Y, Yang X, He B, et al. Using SnO2 QDs and CsMBr3 (M = Sn, Bi, Cu) QDs as charge-transporting materials for 10.6%-efficiency all-inorganic CsPbBr3 perovskite solar cells with an ultrahigh open-circuit voltage of 1.610 V. Sol RRL 2019;3:1-7.

[9]

Deng W, Deng ZY, He J, Wang M, Chen ZX, Wei SH, et al. Synthesis of Cs2AgSbCl6 and improved optoelectronic properties of Cs2AgSbCl6/TiO2 heterostructure driven by the interface effect for lead-free double perovskites solar cells. Appl Phys Lett 2017;111:2-7.

[10]

Teimouri R, Mohammadpour R. Potential application of CuSbS2 as the hole transport material in perovskite solar cell: a simulation study. Superlattice Microst 2018;118:116-22.

[11]

Huang LY, Lambrecht WRL. Electronic band structure trends of perovskite halides: beyond Pb and Sn to Ge and Si. Phys Rev B 2016;93(19):195211.

[12]

Cai Y, Xie W, Ding H, Chen Y, Thirumal K, Wong LH, et al. Computational study of halide perovskite-derived A2BX6 inorganic compounds: chemical trends in electronic structure and structural stability. Chem Mater 2017;29:7740-9.

[13]

Qiu X, Cao B, Yuan S, Chen X, Qiu Z, Jiang Y, et al. From unstable CsSnI3 to air-stable Cs2SnI6 : a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Sol Energy Mater Sol Cells 2017;159:227-34.

[14]

Xiao Z, Lei H, Zhang X, Zhou Y, Hosono H, Kamiya T. Ligand-hole in [SnI6] unit and origin of band gap in photovoltaic perovskite variant Cs2SnI6. Bull Chem Soc Jpn 2015;88:1250-5.

[15]

Huang HM, Jiang ZY, Luo SJ. First-principles investigations on the mechanical, thermal, electronic, and optical properties of the defect perovskites Cs2SnX6 (X = Cl, Br, I). Chin Phys B 2017;26.

[16]

Maughan AE, Ganose AM, Almaker MA, Scanlon DO, Neilson JR. Tolerance factor and cooperative tilting effects in vacancy-ordered double perovskite halides. Chem Mater 2018;30:3909-19.

[17]

Maughan AE, Ganose AM, Scanlon DO, Neilson JR. Perspectives and design principles of vacancy-ordered double perovskite halide semiconductors. Chem Mater 2019;31:1184-95.

[18]

Maughan AE, Ganose AM, Bordelon MM, Miller EM, Scanlon DO, Neilson JR. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6. J Am Chem Soc 2016;138:8453-64.

[19]

Ajjouri Y El, Locardi F, Gélvez-Rueda MC, Prato M, Bolink HJ. Mechanochemical synthesis of Sn(Ⅱ) and Sn(Ⅳ) iodide perovskites and study of their structural, chemical, thermal, optical and electrical properties. Energy Technol 2020;8(4):1900788.

[20]

Ziye Liu, Jingjing Chang, Zhenhua Lin, et al. High-performance planar perovskite solar cells using low temperature, solution–combustion-based nickel oxide hole transporting layer with efficiency exceeding 20. Adv Energy Mater 2018;8(19):1703432.

[21]

Zhou L, Guo X, Lin Z, Ma J, Su J, Hu Z, et al. Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward PCE exceeding 14. Nano Energy 2019;60:583-90.

[22]

Kang J, Wang L-W. High defect tolerance in lead halide perovskite CsPbBr3. J Phys Chem Lett 2017;8(2):489-93.

[23]

Maqbool M, Rehman G, Ali L, Shafiq M, Iqbal R, Ahmad R, et al. Structural, electronic and optical properties of CsPbX3 (X=Cl, Br, I) for energy storage and hybrid solar cell applications. J Alloys Compd 2017;705:828-39.

[24]

Lee B, Stoumpos CC, Zhou N, Hao F, Malliakas C, Yeh CY, et al. Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. J Am Chem Soc 2014;136:15379-85.

[25]

Huang LY, Lambrecht WRL. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Phys Rev B Condens Matter 2013;88:1-12.

[26]

Maughan AE, Ganose AM, Scanlon DO, Neilson JR. Perspectives and design principles of vacancy- ordered double perovskite halide semiconductors perspectives and design principles of vacancy-ordered double perovskite halide semiconductors. Chem Mater 2019;31(4):1184-95.

[27]

Xiao Z, Zhou Y, Hosono H, Kamiya T. Intrinsic defects in photovoltaic perovskite variant Cs2SnI6. Phys Chem Chem Phys 2015;17:189000-3.

[28]

Feng J, Xiao B. Effective masses and electronic and optical properties of nontoxic MASnX3 (X = Cl, Br, and I) perovskite structures as solar cell absorber: a theoretical study using HSE06. J Phys Chem C 2014;118:19655-60.

[29]

Eidsvåg H, Rasukkannu M, Vajeeston P, Velauthapillai D. Bandgap engineering in CsSnxPb(1-x)I3 and their influence on light absorption. Mater Lett 2018;218:253-6.

[30]

Huang LY, Lambrecht WRL. Electronic band structure trends of perovskite halides: beyond Pb and Sn to Ge and Si. Phys Rev B 2016;93(19):195211.

[31]

Xiao Z, Lei H, Zhang X, Zhou Y, Hosono H, Kamiya T. Ligand-hole in [SnI6] unit and origin of band gap in photovoltaic perovskite variant Cs2SnI6. Bull Chem Soc Jpn 2015;88:1250-5.

[32]

Maughan AE, Ganose AM, Bordelon MM, Miller EM, Scanlon DO, Neilson JR. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6. J Am Chem Soc 2016;138:8453-64.

[33]

Zhao P, Su J, Guo Y, Wang L, Lin Z, Hao Y, et al. Cs2TiI6: a potential lead-free all-inorganic perovskite material for ultrahigh-performance photovoltaic cells and alpha-particle detection. Nano Res 2022;15:2697-705.

[34]

Peng H, Xu L, Sheng Y, Sun W, Yang Y, Deng H, et al. Highly conductive ligand-free Cs2PtBr6 perovskite nanocrystals with a narrow bandgap and efficient photoelectrochemical performance. Small 2021;17:1-7.

[35]

Cao M, Li Z, Zhao X, Gong X. Achieving ultrahigh efficiency vacancy-ordered double perovskite microcrystals via ionic liquids. Small 2022;18:1-9.

[36]

Zhao P, Su J, Guo Y, Wang L, Lin Z, Zhang J, et al. A new all-inorganic vacancy-ordered double perovskite Cs2CrI6 for high-performance photovoltaic cells and alpha-particle detection in space environment. Mater Today Phys 2021;20:100446.

[37]

Zhou J, Luo J, Rong X, Wei P, Molokeev MS, Huang Y, et al. Lead-free perovskite derivative Cs2SnCl6-xBrx single crystals for narrowband photodetectors. Adv Opt Mater 2019;7:1-7.

[38]

Jin M, Zheng W, Gong Z, Huang P, Li R, Xu J, et al. Unraveling the triplet excited-state dynamics of Bi3+ in vacancy-ordered double perovskite Cs2SnCl6 nanocrystals. Nano Res 2022;15:6422-9.

[39]

Liu D, Sa R. Theoretical study of Zr doping on the stability, mechanical, electronic and optical properties of Cs2TiI6. Opt Mater 2020;110:110497.

[40]

Saparov B, Sun JP, Meng W, Xiao Z, Duan HS, Gunawan O, et al. Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs2SnI6. Chem Mater 2016;28:2315-22.

[41]

Faizan M, Bhamu KC, Murtaza G, He X, Kulhari N, AL-Anazy MM, et al. Electronic and optical properties of vacancy ordered double perovskites A2BX6 (A = Rb, Cs; B = Sn, Pd, Pt; and X = Cl, Br, I): a first principles study. Sci Rep 2021;11:6965.

[42]

Nazir G. Study of curie temperature, spin polarization, ferromagnetism and transport behavior of Ba2CrXO6 (X = Ta, W, Re, Os) for spintronic. J Phys Chem Solid 2024.

[43]

Nazir G, Liu H, Rehman A, Hussain S, Vikraman D, Aftab S, et al. Cellulose acetate-derived ternary-doped hierarchically porous carbons blended perovskite active layers for solar cells and X-ray detectors. Surface Interfac 2023;39:102945.

[44]

Tariq B, Murtaza G, Ali H, Razzaq S, Arif Khalil RM, Iqbal Hussain M, et al. First principles study of the structural, half-metallic ferromagnetism, magnetic, and transport properties of KXO2 (X = Pr, Nd, and Pm) hexagonal oxides. Solid State Commun 2023;370:115229.

[45]

Piracha MI, Murtaza G, Nazir G, Zelai T, Aloufi NM, Hassan M, et al. Investigation of structural, magnetic and dielectric properties of SrM/PEEK: a potential microwave absorber. Ceram Int 2023;49:7796-805.

[46]

Nazir G, Alofi AS, Rehman A, Mahmood Q, AL-Anazy MM, Karmouch R, et al. Rare earth based Mg- chalcogenides MgDy2(S/Se)4 as an emerging aspirant for spintronic and thermoelectric applications. Mater Sci Semicond Process 2024;173:108129.

[47]

Hussain S, Liu H, Vikraman D, Jaffery SHA, Nazir G, Shahzad F, et al. Tuning of electron transport layers using MXene/metal–oxide nanocomposites for perovskite solar cells and X-ray detectors. Nanoscale 2023;15:7329-43.

[48]

Tanaka H, Oku T, Ueoka N. Structural stabilities of organic–inorganic perovskite crystals. Jpn J Appl Phys 2018;57(8S3):08RE12.

[49]

Li C, Lu X, Ding W, Feng L, Gao Y, Guo Z. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr B 2008;64:702-7.

[50]

Fedorovskiy AE, Drigo NA, Nazeeruddin MK. The role of goldschmidt’ s tolerance factor in the formation of A2BX6 double halide perovskites and its optimal range. Small Methods 2020;4:1900426.

[51]

Mouhat F, Coudert F-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 2014;90:224104.

[52]

Wang J, Fu X, Yalcin BG, Salmankurt B, Duman S, Erum N, et al. First-principles investigations on the mechanical , thermal , electronic , and optical properties of the defect perovskites Cs2SnX6 (X = Cl , Br , I) First-principles investigations on the mechanical , thermal , electronic , and optical properties of n.d. Chin Phys B 2017;26(9):096301.

[53]

Liu Z, Qin X, Chen Q, Chen Q, Jing Y, Zhou Z, et al. Highly stable lead-free perovskite single crystals with NIR emission beyond 1100 nm. Adv Opt Mater 2022;10:2201254.

Journal of Materiomics
Article number: 100861
Cite this article:
Zhang S, Wang L, Guo Y, et al. Novel properties of vacancy-ordered perovskite-Cs2BCl6 induced by dorbital electrons. Journal of Materiomics, 2025, 11(2): 100861. https://doi.org/10.1016/j.jmat.2024.03.006

104

Views

0

Crossref

0

Web of Science

1

Scopus

Altmetrics

Received: 20 November 2023
Revised: 27 February 2024
Accepted: 08 March 2024
Published: 13 April 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return