Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Micro/nanoscale photonic barcodes hold great potential for broad applications in items tracking, multiplexed bioassays and anti-counterfeiting. The ever-increasing demand in advanced anti-counterfeiting applications calls for micro/nanoscale barcodes with accurate recognition, large encoding capacity and high security level. Here, we proposed a strategy to construct the dual-stimuli responsive photonic barcodes based on the perovskite quantum dots (PQDs) doped polymer whispering-gallery-mode (WGM) microcavities via swelling-deswelling method. Benefiting from the well-defined spherical microcavities, the photoluminescence (PL) spectra of as-prepared composites exhibit a series of sharp peaks characteristics resulting from the effective WGM modulation, which constitutes the fingerprint of a specific resonator and thus allows a definition of photonic barcodes. On this basis, we achieved responsive photonic barcodes based on the volatile polar-solvent-controlled luminescence in the microspheres benefitting from the space-confined microcavities and the ionic feature of the PQDs. Moreover, the light-controlled photonic barcodes have further been acquired through reversibly regulating the inactivation and activation of the energy transfer (ET) process between the PQDs and photochromic dyes. The well-established protocols of PQDs@WGM enable the development of distinct responsive barcodes with multi-responsive features, which will pave an avenue to new types of flexible WGM-based components for optical data recording and security labels.
Lee J, Bisso PW, Srinivas RL, Kim JJ, Swiston AJ, Doyle PS. Universal process-inert encoding architecture for polymer microparticles. Nat Mater 2014;13:524–9.
Shikha S, Salafi T, Cheng J, Zhang Y. Versatile design and synthesis of nano-barcodes. Chem Soc Rev 2017;46:7054–93.
Ou Y, Zhou W, Zhu Z, Ma F, Zhou R, Su F, Zheng L, Ma L, Liang H. Host differential sensitization toward color/lifetime-tuned lanthanide coordination polymers for optical multiplexing. Angew Chem Int Ed 2020;59:23810–6.
Deneff JI, Butler KS, Rohwer LES, Pearce CJ, Valdez NR, Rodriguez MA, Luk TS, Sava Gallis DF. Encoding multilayer complexity in anti-counterfeiting heterometallic MOF-based optical tags. Angew Chem Int Ed 2021;60:1203–11.
Leng Y, Sun K, Chen X, Li W. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection. Chem Soc Rev 2015;44:5552–95.
Gao Z, Xu B, Zhang T, Liu Z, Zhang W, Sun X, Liu Y, Wang X, Wang Z, Yan Y, Hu F, Meng X, Zhao YS. Spatially responsive multicolor lanthanide-MOF heterostructures for covert photonic barcodes. Angew Chem Int Ed 2020;59:19060–4.
Gao Z, Yang S, Xu B, Zhang T, Chen S, Zhang W, Sun X, Wang Z, Wang X, Meng X, Zhao YS. Laterally engineering lanthanide-MOFs epitaxial heterostructures for spatially resolved planar 2D photonic barcoding. Angew Chem Int Ed 2021;60:24519–25.
Pan M, Zhu YX, Wu K, Chen L, Hou YJ, Yin SY, Wang HP, Fan YN, Su CY. Epitaxial growth of hetero-Ln-MOF hierarchical single crystals for domain- and orientation-controlled multicolor luminescence 3D coding capability. Angew Chem Int Ed 2017;56:14582–6.
Makino K, Susaki EA, Endo M, Asanuma H, Kashida H. Color-changing fluorescent barcode based on strand displacement reaction enables simple multiplexed labeling. J Am Chem Soc 2022;144:1572–9.
Chandrasekaran AR, MacIsaac M, Vilcapoma J, Hansen CH, Yang D, Wong WP, Halvorsen K. DNA nanoswitch barcodes for multiplexed biomarker profiling. Nano Lett 2021;21:469–75.
Li D, Tang L, Wang J, Liu X, Ying Y. Multidimensional SERS barcodes on flexible patterned plasmonic metafilm for anticounterfeiting applications. Adv Opt Mater 2016;4:1475–80.
Shang L, Fu F, Cheng Y, Wang H, Liu Y, Zhao Y, Gu Z. Photonic crystal microbubbles as suspension barcodes. J Am Chem Soc 2015;137:15533–9.
Ying W, Nie J, Fan X, Xu S, Gu J, Liu S. Dual-wavelength responsive broad range multicolor upconversion luminescence for high-capacity photonic barcodes. Adv Opt Mater 2021;9:2100197.
Yao Y, Gao Z, Lv Y, Lin X, Liu Y, Du Y, Hu F, Zhao YS. Heteroepitaxial growth of multiblock Ln-MOF microrods for photonic barcodes. Angew Chem Int Ed 2019;58:13803–7.
Hou Y, Gao Z, Zhao YS, Yan Y. Organic micro/nanoscale materials for photonic barcodes. Org Chem Front 2020;7:2776–88.
Zhang W, Yao J, Zhao YS. Organic micro/nanoscale lasers. Acc Chem Res 2016;49:1691–700.
Wei C, Du Y, Liu Y, Lin X, Zhang C, Yao J, Zhao YS. Organic janus microspheres: a general approach to all-color dual-wavelength microlasers. J Am Chem Soc 2019;141:5116–20.
Gao Z, Wei C, Yan Y, Zhang W, Dong H, Zhao J, Yi J, Zhang C, Li YJ, Zhao YS. Covert photonic barcodes based on light controlled acidichromism in organic dye doped Whispering-Gallery-Mode microdisks. Adv. Mater. 2017;29:1701558.
Schubert M, Steude A, Liehm P, Kronenberg NM, Karl M, Campbell EC, Powis SJ, Gather MC. Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking. Nano Lett 2015;15:5647–52.
Zhang W, Peng L, Liu J, Tang A, Hu JS, Yao J, Zhao YS. Controlling the cavity structures of two-photon-pumped perovskite microlasers. Adv. Mater. 2016;28:4040–6.
Dong H, Zhang C, Liu X, Yao J, Zhao YS. Materials chemistry and engineering in metal halide perovskite lasers. Chem Soc Rev 2020;49:951–82.
Cheng LQ, Li JF. A review on one dimensional perovskite nanocrystals for piezoelectric applications. J Mater 2016;2:25–36.
Geng W, Tong CJ, Tang ZK, Yam C, Zhang YN, Lau WM, et al. Effect of surface composition on electronic properties of methylammonium lead iodide perovskite. J Mater 2015;1:213–20.
Pu X, Han J, Wang S, Zhou H, Cao Q, Yang J, He Z, Li X. Surface modification with ionic liquid for efficient CsPbI2Br perovskite solar cells. J Mater 2021;7:1039–48.
Xu B, Gao Z, Yang S, Sun H, Song L, Li Y, Zhang W, Sun X, Wang Z, Wang X, Meng X. Multicolor random lasers based on perovskite quantum dots embedded in intrinsic Pb-MOFs. J Phys Chem C 2021;125:25757–64.
Jeong S, Jung Y, Bok S, Ryu YM, Lee S, Kim YE, Song J, Kim M, Kim SY, Ahn GO, Kim S. Multiplexed in vivo imaging using size-controlled quantum dots in the second near-infrared window. Adv. Healthcare Mater 2018;7:e1800695.
Zhang D, Zhou W, Liu Q, Xia Z. CH3NH3PbBr3 perovskite nanocrystals encapsulated in lanthanide metal-organic frameworks as a photoluminescence converter for anti-counterfeiting. ACS Appl Mater Interfaces 2018;10:27875–84.
Xu W, Li F, Cai Z, Wang Y, Luo F, Chen X. An ultrasensitive and reversible fluorescence sensor of humidity using perovskite CH3NH3PbBr3. J Mater Chem C 2016;4:9651–5.
Li X, Yang C, Yu Y, Li Z, Lin J, Guan X, Zheng Z, Chen D. Dual-modal photon upconverting and downshifting emissions from ultra-stable CsPbBr3 perovskite nanocrystals triggered by Co-growth of Tm:NaYbF4 nanocrystals in glass. ACS Appl Mater Interfaces 2020;12:18705–14.
Zeng Z, Huang B, Wang X, Lu L, Lu Q, Sun M, Wu T, Ma T, Xu J, Xu Y, Wang S, Du Y, Yan CH. Multimodal luminescent Yb3+/Er3+/Bi3+ -doped perovskite single crystals for X-ray detection and anti-counterfeiting. Adv. Mater. 2020;32:e2004506.
Yu X, Wu L, Yang D, Cao M, Fan X, Lin H, Zhong Q, Xu Y, Zhang Q. Hydrochromic CsPbBr3 nanocrystals for anti-counterfeiting. Angew Chem Int Ed 2020;59:14527–32.
Zhang C, Wang B, Li W, Huang S, Kong L, Li Z, Li L. Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nat Commun 2017;8:1138.
Gao Z, Xu B, Fan Y, Zhang T, Chen S, Yang S, Zhang W, Sun X, Wei Y, Wang Z, Wang X, Meng X, Zhao YS. Topological-distortion-driven amorphous spherical metal-organic frameworks for high-quality single-mode microlasers. Angew Chem Int Ed 2021;60:6362–6.
Vahala KJ. Optical microcavities. Nature 2003;424:839–46.
Xu FF, Li YJ, Lv Y, Dong H, Lin X, Wang K, Yao J, Zhao YS. Flat-panel laser displays based on liquid crystal microlaser arrays. CCS Chem 2020;2:369–75.
Zhao J, Yan Y, Gao Z, Du Y, Dong H, Yao J, Zhao YS. Full-color laser displays based on organic printed microlaser arrays. Nat Commun 2019;10:870.
Berggren M, Dodabalapur A, Slusher RE, Bao Z. Light amplification in organic thin films using cascade energy transfer. Nature 1997;389:466–9.
Incel A, Guner T, Parlak O, Demir MM. Null Extinction of ceria@silica hybrid particles: transparent polystyrene composites. ACS Appl Mater Interfaces 2015;7:27539–46.
Gao Z, Zhang W, Yan Y, Yi J, Dong H, Wang K, Yao J, Zhao YS. Proton-controlled organic microlaser switch. ACS Nano 2018;12:5734–40.
Wei C, Gao M, Hu F, Yao J, Zhao YS. Excimer emission in self-assembled organic spherical microstructures: an effective approach to wavelength switchable microlasers. Adv Opt Mater 2016;4:1009–14.
Gao Z, Wang K, Yan Y, Yao J, Zhao YS. Smart responsive organic microlasers with multiple emission states for high-security optical encryption. Natl Sci Rev 2021;8:nwaa162.
Wang Y, He J, Chen H, Chen J, Zhu R, Ma P, Towers A, Lin Y, Gesquiere AJ, Wu S-T, Dong Y. Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films. Adv. Mater. 2016;28:10710–7.
Liu L, Zhao R, Xiao C, Zhang F, Pevere F, Shi K, Huang H, Zhong H, Sychugov I. Size-dependent phase transition in perovskite nanocrystals. J Phys Chem Lett 2019;10:5451–7.
Kim YH, Wolf C, Kim YT, Cho H, Kwon W, Do S, Sadhanala A, Park CG, Rhee SW, Im SH, Friend RH, Lee TW. Highly efficient light-emitting diodes of colloidal metal-halide perovskite nanocrystals beyond quantum size. ACS Nano 2017;11:6586–93.
Wei C, Liu SY, Zou CL, Liu Y, Yao J, Zhao YS. Controlled self-assembly of organic composite microdisks for efficient output coupling of whispering-gallery-mode lasers. J Am Chem Soc 2015;137:62–5.
Qin F, Meng W, Fan J, Ge C, Luo B, Ge R, Hu L, Jiang F, Liu T, Jiang Y, Zhou Y. Enhanced thermochemical stability of CH3NH3PbI3 perovskite films on Zinc Oxides via new precursors and surface engineering. ACS Appl Mater Interfaces 2017;9:26045–51.
Zhang J, Wang H, Cao F, Wang S, Wu J, Dou Y, Zhang J, Chen J, Zhao D, Yang X. Efficient all-Solution-processed perovskite light-emitting diodes enabled by small-molecule doped electron injection layers. Adv Opt Mater 2019;8:1900567.
Sun T, Fan R, Zhang J, Qin M, Chen W, Jiang X, Zhu K, Ji C, Hao S, Yang Y. Stimuli-responsive metal-organic framework on a metal-organic framework heterostructure for efficient antibiotic detection and anticounterfeiting. ACS Appl Mater Interfaces 2021;13:35689–99.
Li H, Zhang L, Yang Y, Hu E, Li B, Cui Y, Yang D, Qian G. Polarized laser switching with giant contrast in MOF-based mixed-matrix membrane. Adv Sci 2022;9:e2200953.
Qiao C, Zhang C, Zhou Z, Yao J, Zhao YS. An optically reconfigurable Förster resonance energy transfer process for broadband switchable organic single-mode microlasers. CCS Chem 2022;4:250–8.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).