AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Improving open-circuit voltage and short-circuit current of high-efficiency silicon-based planar heterojunction solar cells by combining V2O5 with PEDOT:PSS

Zhiting LuoaChen YangaXiuhua Chena,c( )Wenhui MabShaoyuan LibKaixin Fua
School of Materials and Energy, Yunnan University, Yunnan, 650500, China
Yunnan Silicon Materials Engineering Technology Research Center, Kunming University of Science and Technology, 650093, China
National Joint International Research Center for Optoelectronic Energy Materials, Yunnan University, Yunnan, 650500, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

In recent years, a novel PEDOT:PSS/n-Si planar heterojunction solar cell has been extensively studied in the photovoltaic field. Different V2O5-IPA concentrations mixed in PEDOT:PSS samples as hole transport layer were prepared by means of spin coating technique and mechanical mixing of organic and inorganic materials. V2O5 was studied for its effects on the surface morphology, chemical composition, and optical transmittance of PEDOT:PSS films. The findings of the study show that the addition of V2O5 particles changes the surface morphology of PEDOT:PSS films and promotes its superior ohmic contact with the Si interface. Furthermore, PEDOT:PSS incorporated with V2O5 particles that have outstanding optical and semiconductor properties reduces the rate of carrier recombination at the device interface and blocks electron transport to the anode in the fabricated Si-based solar cells. When compared to conventional PEDOT:PSS/Si planar heterojunction solar cells, the fill factor, photoelectric conversion efficiency, open-circuit voltage, and short-circuit current density of the devices prepared in this study can be significantly improved, reaching up to 70.98%, 15.17%, 652 mV and 32.8 mA/cm2, respectively. This research provides a promising and effective method for improving the photoelectric conversion performance of PEDOT:PSS/Si heterojunction solar cells, which enables the application of V2O5 in Si solar cells.

References

[1]
Sun Z, He Y, Xiong B, Chen S, Li M, Zhou Y, et al. Performance-enhancing approaches for PEDOT:PSS-Si hybrid solar cells. Angew Chem Int Ed Engl. Mar 1 2021;60(10):5036–55. https://doi.org/10.1002/anie.201910629.
[2]

Kurushima Y, Katsuyama N, Okuzaki H. Effect of PEDOT:PSS composition on photovoltaic performance of PEDOT:PSS/n-Si hybrid solar cells. Jpn J Appl Phys 2021;60(9):091001. https://doi.org/10.35848/1347-4065/ac19d2.

[3]

Liu Y, Li Y, Wu Y, Yang G, Mazzarella L, Procel-Moya P, et al. High-efficiency silicon heterojunction solar cells: materials, devices and applications. Mater Sci Eng R Rep 2020;142:100579. https://doi.org/10.1016/j.mser.2020.100579.

[4]

Pham DP, Kim S, Kim S, Lee S, Le AHT, Park J, et al. Ultra-thin stack of n-type hydrogenated microcrystalline silicon and silicon oxide front contact layer for rear-emitter silicon heterojunction solar cells. Mater Sci Semicond Process 2019;96:1–7. https://doi.org/10.1016/j.mssp.2019.02.017.

[5]

Wang X, Liu Z, Yang Z, He J, Yang X, Yu T, et al. Heterojunction hybrid solar cells by formation of conformal contacts between PEDOT:PSS and periodic silicon nanopyramid arrays. Small. Apr 2018;14(15):e1704493. https://doi.org/10.1002/smll.201704493.

[6]

Sun B, Shao M, Lee S. Nanostructured silicon used for flexible and mobile electricity generation. Adv Mater. Dec 2016;28(47):10539–47. https://doi.org/10.1002/adma.201601012.

[7]

He J, Gao P, Yang Z, Yu J, Yu W, Zhang Y, et al. Silicon/organic hybrid solar cells with 16.2% efficiency and improved stability by formation of conformal heterojunction coating and moisture-resistant capping layer. Adv Mater 2017;29(15):1606321.

[8]

Lin G, Gao Z, Gao T, Chen Y, Geng Q, Li Y, et al. Research progress in improving the performance of PEDOT:PSS/Micro- and Nano-textured Si heterojunction for hybrid solar cells. J Materiomics 2021;7(5):1161–79. https://doi.org/10.1016/j.jmat.2020.12.013.

[9]

Khang D-Y. Recent progress in Si-PEDOT:PSS inorganic–organic hybrid solar cells. J Phys Appl Phys 2019;52(50). https://doi.org/10.1088/1361-6463/ab3f64.

[10]

Bullock J, Ota H, Wang H, Xu Z, Hettick M, Yan D, et al. Microchannel contacting of crystalline silicon solar cells. Sci Rep 2017;7:9085.

[11]

Gao P, Yang Z, He J, Yu J, Liu P, Zhu J, et al. Dopant-free and carrier-selective heterocontacts for silicon solar cells: recent advances and perspectives. Adv Sci (Weinh). Mar 2018;5(3):1700547. https://doi.org/10.1002/advs.201700547.

[12]

Sakata T, Ikeda N, Koganezawa T, Kajiya D, Saitow K-i. Performance of Si/PEDOT:PSS solar cell controlled by dipole moment of additives. J Phys Chem C 2019;123(33):20130–5. https://doi.org/10.1021/acs.jpcc.9b05144.

[13]

Geng Q, Wang Z, Gao Z, Gao T, Li Y, Chen L, et al. Phase separation to improve the conductivity and work function of the PEDOT:PSS solution for silicon hybrid solar cells. J Phys Chem C 2021;125(48):26379–88. https://doi.org/10.1021/acs.jpcc.1c08816.

[14]

Yu LM, Chen T, Feng N, Wang R, Sun T, Zhou Y, et al. Highly conductive and wettable PEDOT:PSS for simple and efficient organic/c-Si planar heterojunction solar cells. Solar RRL 2020;4(4):1900513. https://doi.org/10.1002/solr.201900513.

[15]

Gao T, Geng Q, Gao Z, Li Y, Chen L, Li M. Improving junction quality via modifying the Si surface to enhance the performance of PEDOT:PSS/Si hybrid solar cells. ACS Appl Energy Mater 2021;4(11):12543–51. https://doi.org/10.1021/acsaem.1c02338.

[16]

Wageh S, Raissi M, Berthelot T, Laurent M, Rousseau D, Abusorrah AM, et al. Digital printing of a novel electrode for stable flexible organic solar cells with a power conversion efficiency of 8.5. Sci Rep Jul 9 2021;11(1):14212. https://doi.org/10.1038/s41598-021-93365-8.

[17]

Li J, Qin J, Liu X, Ren M, Tong J, Zheng N, et al. Enhanced organic photovoltaic performance through promoting crystallinity of photoactive layer and conductivity of hole-transporting layer by V2O5 doped PEDOT:PSS hole-transporting layers. Sol Energy 2020;211:1102–9. https://doi.org/10.1016/j.solener.2020.10.036.

[18]

Liu Q, Khatri I, Ishikawa R, Ueno K, Shirai H. Effects of molybdenum oxide molecular doping on the chemical structure of poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) and on carrier collection efficiency of silicon/poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) heterojunction solar cells. Appl Phys Lett 2013;102(18):183503. https://doi.org/10.1063/1.4804298.

[19]

Markose KK, Jasna M, Subha PP, Antony A, Jayaraj MK. Performance enhancement of organic/Si solar cell using CNT embedded hole selective layer. Sol Energy 2020;211:158–66. https://doi.org/10.1016/j.solener.2020.09.024.

[20]

Cui K, Anisimov AS, Chiba T, Fujii S, Kataura H, Nasibulin AG, et al. Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films. J Mater Chem 2014;2(29):11311–8. https://doi.org/10.1039/c4ta01353k.

[21]

Fang X, Song T, Liu R, Sun B. Two-dimensional CoS nanosheets used for high-performance organic–inorganic hybrid solar cells. J Phys Chem C 2014;118(35):20238–45. https://doi.org/10.1021/jp506345a.

[22]

Xia Z, Song T, Sun J, Lee S-T, Sun B. Plasmonic enhancement in hybrid organic/Si heterojunction solar cells enabled by embedded gold nanoparticles. Appl Phys Lett 2014;105(24):241110. https://doi.org/10.1063/1.4904955.

[23]

Kanwat A, Jang J. High work function with reduced phase separation of PSS in metal oxide modified PEDOT:PSS interlayers for organic photovoltaics. RSC Adv 2016;6(115):114800–7. https://doi.org/10.1039/c6ra23170e.

[24]

Rafique S, Abdullah SM, Mahmoud WE, Al-Ghamdi AA, Sulaiman K. Stability enhancement in organic solar cells by incorporating V2O5 nanoparticles in the hole transport layer. RSC Adv 2016;6(55):50043–52. https://doi.org/10.1039/c6ra07210k.

[25]

Kim J, Kanwat A, Kim H-M, Jang J. Solution processed polymer light emitting diode with vanadium-oxide doped PEDOT:PSS. Phys Status Solidi 2015;212(3):640–5. https://doi.org/10.1002/pssa.201431419.

[26]

Sheng J, Fan K, Wang D, Han C, Fang J, Gao P, et al. Improvement of the SiOx passivation layer for high-efficiency Si/PEDOT:PSS heterojunction solar cells. ACS Appl Mater Interfaces Sep 24 2014;6(18):16027–34. https://doi.org/10.1021/am503949g.

[27]

He C, Zhong C, Wu H, Yang R, Yang W, Huang F, et al. Origin of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using conjugated polyelectrolytes. J Mater Chem 2010;20(13):2617–22. https://doi.org/10.1039/b921775d.

[28]

Kondratenko S, Lysenko V, Gomeniuk YV, Kondratenko O, Kozyrev Y, Selyshchev O, et al. Charge carrier transport, trapping, and recombination in PEDOT:PSS/n-Si solar cells. ACS Appl Energy Mater 2019;2(8):5983–91. https://doi.org/10.1021/acsaem.9b01083.

[29]

Li C, He Z, Wang Q, Liu J, Li S, Chen X, et al. Performance improvement of PEDOT:PSS/N-Si heterojunction solar cells by alkaline etching. Silicon 2021;14(5):2299–307. https://doi.org/10.1007/s12633-021-01034-2.

[30]

Na SI, Wang G, Kim S-S, Kim T-W, Oh S-H, Yu B-K, et al. Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells. J Mater Chem 2009;19(47):9045–53. https://doi.org/10.1039/b915756e.

[31]

Yan H, Okuzaki H. Effect of solvent on PEDOT/PSS nanometer-scaled thin films: XPS and STEM/AFM studies. Synth Met 2009;159(21–22):2225–8. https://doi.org/10.1016/j.synthmet.2009.07.032.

[32]

Alhummiany H, Rafique S, Sulaiman K. XPS analysis of the improved operational stability of organic solar cells using a V2O5 and PEDOT:PSS composite layer: effect of varied atmospheric conditions. J Phys Chem C 2017;121(14):7649–58. https://doi.org/10.1021/acs.jpcc.6b13016.

[33]

Xia Y, Sun K, Ouyang J. Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells. Energy Environ Sci 2012;5(1):5325–32. https://doi.org/10.1039/c1ee02475b.

[34]

Gong X, Li M, Shi X-B, Ma H, Wang Z-K, Liao L-S. Controllable perovskite crystallization by water additive for high-performance solar cells. Adv Funct Mater 2015;25(42):6671–8. https://doi.org/10.1002/adfm.201503559.

[35]

Jackle S, Mattiza M, Liebhaber M, Bronstrup G, Rommel M, Lips K, et al. Junction formation and current transport mechanisms in hybrid n-Si/PEDOT:PSS solar cells. Sci Rep Aug 17 2015;5:13008. https://doi.org/10.1038/srep13008.

[36]

Li S, Chen L, Zhang K, Wu S, Shen X, Zhao J. Doped the electropolymerized PEDOT for high performance and air stable Si/organic solar cells. Org Electron 2018;59:1–6. https://doi.org/10.1016/j.orgel.2018.04.030.

[37]

Liu Q, Imamura T, Hiate T, Khatri I, Tang Z, Ishikawa R, et al. Optical anisotropy in solvent-modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) and its effect on the photovoltaic performance of crystalline silicon/organic heterojunction solar cells. Appl Phys Lett 2013;102(24). https://doi.org/10.1063/1.4811355.

[38]

Seo H, Sakamoto D, Chou H, Itagaki N, Koga K, Shiratani M. Progress in photovoltaic performance of organic/inorganic hybrid solar cell based on optimal resistive Si and solvent modified poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) junction. Prog Photovoltaics Res Appl 2018;26(2):145–50. https://doi.org/10.1002/pip.2961.

[39]

Jiang X, Wang Z, Han W, Liu Q, Lu S, Wen Y, et al. High performance silicon–organic hybrid solar cells via improving conductivity of PEDOT:PSS with reduced graphene oxide. Appl Surf Sci 2017;407:398–404. https://doi.org/10.1016/j.apsusc.2017.02.193.

[40]

Funda S, Ohki T, Liu Q, Hossain J, Ishimaru Y, Ueno K, et al. Correlation between the fine structure of spin-coated PEDOT:PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells. J Appl Phys 2016;120(3):033103. https://doi.org/10.1063/1.4958845.

[41]

Thomas JP, Leung KT. Mixed co-solvent engineering of PEDOT:PSS to enhance its conductivity and hybrid solar cell properties. J Mater Chem 2016;4(44):17537–42. https://doi.org/10.1039/c6ta07410c.

Journal of Materiomics
Pages 438-446
Cite this article:
Luo Z, Yang C, Chen X, et al. Improving open-circuit voltage and short-circuit current of high-efficiency silicon-based planar heterojunction solar cells by combining V2O5 with PEDOT:PSS. Journal of Materiomics, 2023, 9(3): 438-446. https://doi.org/10.1016/j.jmat.2022.12.008

204

Views

10

Crossref

12

Web of Science

12

Scopus

Altmetrics

Received: 03 November 2022
Revised: 09 December 2022
Accepted: 27 December 2022
Published: 21 January 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return