AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Super-stable permittivity and low dielectric loss of (1-x)Na0.5Bi0.5+yTiO3-xNaTaO3 ceramics within an ultra-wide temperature range

Pengrong Rena( )Han ZhaoaXin WangbYuhui WanaZhiyong LiucChangbai LongdFuxue YanaTill FrӧmlingeGaoyang Zhaoa
Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
Laboratory of Thin Film Techniques and Optical Test, School of Photoelectrical Engineering, Xi'an Technological University, Xi'an, 710032, China
School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
Institute of Materials Science, Technische Universität Darmstadt, FB Nichtmetallisch-Anorganische Werkstoffe, Alarich-Weiss-Straße 2, D-64287, Darmstadt, Germany

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

This work designs a new system (1-x)Na0.5Bi0.5+yTiO3-xNaTaO3 with a nonstoichiometric bismuth ratio, which is used as dielectrics of ceramics capacitors. Phase structure evolution of (1-x)Na0.5BiTiO3-xNaTaO3 is characterized using XRD, Raman and TEM. Dielectric and resistant properties of (1-x)Na0.5Bi0.5+yTiO3-xNaTaO3 are investigated with increasing concentration of NaTaO3. With these investigations, the structure and defect chemistry of (1-x)Na0.5Bi0.5+yTiO3-xNaTaO3 are rationalized and their respective impact on capacitor properties are elucidated. The optimized composition 0.8Na0.5Bi0.51TiO3-0.2NaTaO3 possesses an ultra-wide operating temperature range (-92–398 ℃), in which both stable permittivity and low dielectric loss is obtained. Furthermore, the fabrication of multilayer ceramics capacitors (MLCC) based on 0.8Na0.5Bi0.51TiO3-0.2NaTaO3 dielectrics is investigated. With the addition of sintering aids, 0.8Na0.5Bi0.51TiO3-0.2NaTaO3 could be co-fired with Ag at 910 ℃ in air, and the low temperature co-fired ceramic (LTCC) capacitors maintain good temperature stability of permittivity and low dielectric loss in -100–352 ℃. Therefore, our work provides a new route for preparing ultra-wide operating temperature capacitors at low manufacturing costs.

References

[1]

Pan M, Randall CA. A brief introduction to ceramic capacitors. IEEE Electr Insul Mag 2010;26:44–50.

[2]

Zhang H, Wei T, Zhang Q, Ma W, Fan P, Salamon D, Zhang S, Nan B, Tan H, Ye Z. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J Mater Chem C 2020;8:16648–67.

[3]

Li D, Zeng X, Li Z, Shen Z, Hao H, Luo W, Wang X, Song F, Wang Z, Li Y. Progress and perspectives in dielectric energy storage ceramics. J. Adv. Ceram 2021;10:675–703.

[4]

Li L, Wang M, Liu Y, Chen J, Zhang N. Decisive role of MgO addition in the ultra-broad temperature stability of multicomponent BaTiO3-based ceramics. Ceram Int 2014;40:1105–10.

[5]

Watson J, Castro G. A review of high-temperature electronics technology and applications. J Mater Sci Mater Electron 2015;26:9226–35.

[6]
Randall CA, Ogihara H, Kim J, Yang G, Stringer CS, Trolier-McKinstry S, Lanagan M. High temperature and high energy density dielectric materials. In: 2009 IEEE pulsed power conference; 2009. p. 346–51.
[7]

Zeb A, Milne SJ. High temperature dielectric ceramics: a review of temperature-stable high-permittivity perovskites. J Mater Sci Mater Electron 2015;26:9243–55.

[8]

Zhong X, Wu X, Zhou W, Sheng K. An all-SiC high-frequency boost DC-DC converter operation at 320 ℃ junction temperature. IEEE Trans Power Electron 2014;29:5091–6.

[9]

Karpinsky DV, Silibin MV, Trukhanov SV, Trukhanov AV, Zhaludkevich AL, Latushka SI, Zhaludkevich DV, Khomchenko VA, Alikin DO, Abramov AS, Maniecki T, Maniukiewicz W, Wol M, Heitmann V, Kholkin AL. Peculiarities of the crystal structure evolution of BiFeO3-BaTiO3 ceramics across structural phase transitions. Nanomaterials 2020;10:801.

[10]

Karpinsky DV, Silibin MV, Latushka SI, Zhaludkevich DV, Sikolenko VV, Svetogorov R, Sayyed MI, Almousa N, Trukhanov A, Trukhanov S, Belik AA. Temperature driven transformation of the crystal and magnetic structures of BiFe0.7Mn0.3O3 ceramics. Nanomaterials 2022;12:2813.

[11]

Turchenko VA, Trukhanov AV, Bobrikov IA, Trukhanov SV, Balagurov AM. Investigation of the crystal and magnetic structures of BaFe12-xAlxO19 solid solutions (x=0.1-1.2). Crystallogr Rep 2015;60:629–35.

[12]

Zdorovets MV, Kozlovski AL, Shlimas DI, Borgekov DB. Phase transformations in FeCo-Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J Mater Sci Mater Electron 2021;32:16694–705.

[13]

Ren P, Wang Y, Fang X, Hofmann K, Venkataraman LK. A new family of high temperature lead-free Na1/2Bi1/2TiO3-BiFeO3 piezoelectrics, Mater. Today Phys 2021;21:100526.

[14]

Zang J, Li M, Sinclair DC, Frömling T, Jo W, Rödel J. Impedance spectroscopy of (Bi1/2Na1/2)TiO3-BaTiO3 based high-temperature dielectrics. J Am Ceram Soc 2014;97:1523–9.

[15]

Takenaka T, Maruyama K, Sakata K. (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 1991;30:2236–9.

[16]

Yoshii K, Hiruma Y, Nagata H, Takenaka T. Electrical properties and depolarization temperature of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics. Jpn J Appl Phys 2006;45:4493–6.

[17]

Zeb A, Jan S, Bamiduro F, Hall DA, Milne SJ. Temperature-stable dielectric ceramics based on Na0.5Bi0.5TiO3. J Eur Ceram Soc 2018;38:1548–55.

[18]

Dittmer R, Jo W, Damjanovic D, Rödel J. Lead-free high-temperature dielectrics with wide operational range. J Appl Phys 2011;109:034107.

[19]

Yang F, Wu P, Sinclair DC. Suppression of electrical conductivity and switching of conduction mechanisms in ‘stoichiometric’ (Bi1/2Na1/2TiO3)1-x-(BiAlO3)x (0≤x≤0.08) solid solutions. J Mater Chem C 2017;5:7243–52.

[20]

Ren P, Gehringer M, Huang B, Hoang A, Steiner S, Klein A, Frömling T. High field electroformation of sodium bismuth titanate and its solid solutions with barium titanate. J Mater Chem C 2021;9:3334–42.

[21]

Wang X, Fan H, Ren P, Liu K. High-temperature dielectrics based on 0.95(0.94Bi0.5Na0.5TiO3-0.07BiAlO3)-0.05K0.5Na0.5NbO3. Ceram Int 2019;45:12360–5.

[22]

Ren P, Wang J, He J, Wang Y, Yuan H, Hao Y, Frömling T, Wan Y, Shi Y, Zhao G. Ultrawide temperature range with stable permittivity and low dielectric loss in (1-x)[0.90Na0.5Bi0.5TiO3-0.10BiAlO3]-xNaNbO3 system. Adv. Electron. Mater 2020;6:1901429.

[23]

Ren P, He J, Sun L, Frömling T, Wan Y, Yang S, Cao X, Wang B, Yang J, Zhao G. High-temperature dielectrics based on (1-y)[(1-x)Bi0.5Na0.5TiO3-xBiAlO3]- yCaZrO3 ternary system with stable permittivity and low dielectric loss in a wide temperature range. J Eur Ceram Soc 2019;39:4160–7.

[24]

Ren P, He J, Yan F, Wang X. Temperature-stable dielectric and energy storage properties of (1-x)(0.94Bi0.5Na0.5TiO3-0.09BiAlO3)-xSrTiO3 Ceramics. J Alloys Compd 2019;807:151676.

[25]

Ren P, Wang Y, Wang J, Ren D, Sun L, Liu X, Yan F, Zhao G. Electrical properties and defect compensation mechanism of B-site Cu2+ substituted K0.5Na0.5NbO3 ceramics. J Mater Sci Mater Electron 2019;30:16041–8.

[26]

Hao SZ, Zhou D, Hussain F, Liu WF, Su JZ, Wang DW, Wang QP, Qi ZM, Singh C, Trukhanovi S. Structure, spectral analysis and microwave dielectric properties of novel x(NaBi)0.5MoO4-(1-x)Bi2/3MoO4 (x=0.2-0.8) ceramics with low sintering temperatures. J Eur Ceram Soc 2020;40:3569–76.

[27]

Hao SZ, Zhou D, Pang LX, Dang MZ, Sun SK, Zhou T, Trukhanov S, Trukhanov A, Sombra ASB, Li Q, Zhang XQ, Xia S, Darwish MA. Ultra-low temperature co-fired ceramics with adjustable microwave dielectric properties in Na2O-Bi2O3-MoO3 ternary system: a comprehensive study. J Mater Chem C 2022;10:2008–16.

[28]

Kozlovskiy AL, Alina A, Zdorovets MV. Study of the effect of ion irradiation on increasing the photocatalytic activity of WO3 microparticles. J Mater Sci Mater Electron 2021;32:3863–77.

[29]

El-Shater RE, Shimy HE, Saafan SA, Darwish MA, Zhou D, Trukhanov AV, Trukhanove SV, Fakhry F. Synthesis, characterization, and magnetic properties of Mn nanoferrites. J Alloys Compd 2022;928:166954.

[30]
Yesner G, Kuciej M, Safari A. Low temperature sintering of Bi0.5Na0.5TiO3 based ceramics. In: International symposium on applications of ferroelectric. IEEE; 2015.
[31]

Turchenko VA, Trukhanov SV, Kostishin VG, Damay F, Porcher F, Klygach DS, Vakhitov MG, Lyakhov D, Michels D, Bozzo B, Fina I, Almessiere MA, Slimani Y, Baykal A, Zhou D, Trukhanov AV. Features of structure, magnetic state and electrodynamic performance of SrFe12-xInxO19. Sci Rep 2021;11:18342.

[32]

Turchenko VA, Trukhanov SV, Kostishin VG, Damay F, Porcher F, Klygach DS, Vakhitov MG, Matzui LY, Yakovenko OS, Bozzo B, Fina I, Almessiere MA, Slimani Y, Baykal A, Zhou D, Trukhanov AV. Impact of In3+ cations on structure and electromagnetic state of M-type hexaferrites. J Energy Chem 2022;69:667–76.

[33]

Jia W, Hou Y, Zheng M, Xu Y, Yu X, Zhu M, Yang K, Cheng H, Sun S, Xing J. Superior temperature-stable dielectrics for MLCCs based on Bi0.5Na0.5TiO3-NaNbO3 system modified by CaZrO3. J Am Ceram Soc 2018;101:3468–79.

[34]

Hoang A, Steiner S, Yang F, Li L, Sinclair DC, Frömling T. Reducing dielectric loss in Na0.5Bi0.5TiO3 based high temperature capacitor material. J Eur Ceram Soc 2021;41:2587–95.

[35]

Xu Q, Song Z, Tang W, Hao H, Zhang L, Appiah M, Cao M, Yao Z, He Z, Liu H. Ultra-wide temperature stable dielectrics based on Bi0.5Na0.5TiO3-NaNbO3 system. J Am Ceram Soc 2015;98:3119–26.

[36]

Jia W, Hou Y, Zheng M, Zhu M. High-temperature dielectrics based on (1-x) (0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xNaNbO3 system. J Alloys Compd 2017;724:306–15.

[37]

Zhang L, Pu Y, Chen M, Zhuo F, Dietz C, Frömling T. Decreasing polar-structure size: achieving superior energy storage properties and temperature stability in Na0.5Bi0.5TiO3-based ceramics for low electric field and high-temperature applications. J Eur Ceram Soc 2021;41:5890–9.

[38]

Liu Z, Fan H, Lei S, Ren X, Long C. Duplex structure in K0.5Na0.5NbO3-SrZrO3 ceramics with temperature-stable dielectric properties. J Eur Ceram Soc 2017;37:115–22.

[39]

Skidmore TA, Comyn TP, Milne SJ. Dielectric and piezoelectric properties in the system: (1-x)[(Na0.5K0.5NbO3)0.93-(LiTaO3)0.07]-x[BiScO3]. J Am Ceram Soc 2010;93:624–6.

[40]

Ogihara H, Randall CA, Trolier-Mckinstry S. High-Energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics. J Am Ceram Soc 2009;92:1719–24.

[41]

Zeb A, Milne SJ. Temperature-stable dielectric properties from 20 ℃ to 430 ℃ in the system BaTiO3-Bi(Mg0.5Zr0.5)O3. J Eur Ceram Soc 2014;34:3159–66.

[42]

Brown T, Brown AP, Hall DA, Hooper TE, Li Y, Micklethwaite S, Aslam Z, Milne SJ. New high temperature dielectric: Bi-free tungsten bronze ceramics with stable permittivity over a very wide temperature range. J Eur Ceram Soc 2021;41:3416–24.

[43]

Acosta M, Zang J, Jo W, Rödel J. High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics. J Eur Ceram Soc 2012;32:4327–34.

[44]

Lim J, Zhang S, Kim N, Shrout TR. High-temperature dielectrics in the BiScO3-BaTiO3-(K1/2Bi1/2)TiO3 ternary system. J Am Ceram Soc 2009;92:679–82.

[45]

Ren P, Wang Y, Waidha AI, Clemens O, V LK. Compositionally driven relaxor to ferroelectric crossover in (1-x)Na0.5Bi0.5TiO3-xBiFeO3 (0≤x≤0.60). J Mater Chem C 2020;8:8613–21.

[46]

Kӧnig J, Jančar B, Suvorov D. New Na0.5Bi0.5TiO3–NaTaO3-based perovskite ceramics. J Am Ceram Soc 2007;90:3621–7.

[47]

Turchenko V, Kostishin VG, Trukhanov S, Damay F, Balasoiu M, Bozzo B, Fina I, Burkhovetsky VV, Polosan S, Zdorovets MV, Kozlovskiy AL, Astapovich KA, Trukhanov A. Structural features, magnetic and ferroelectric properties of SrFe10.8In1.2O19 compound. Mater Res Bull 2021;138:111236.

[48]

Vinnik DA, Zhivulin VE, Uchaev DA, Gudkova SA, Zhivulin DE, Starikov AY, Trukhanov SV, Turchenko VA, Zubar TI, Gavrilova TP, Eremina RM, Fadeev E, Lähderanta E, Sombra ASB, Zhou D, Jotania RB, Singh Charanjeet, Trukhanov AV. Effect of titanium substitution and temperature variation on structure and magnetic state of barium hexaferrites. J Alloys Compd 2021;859:158365.

[49]

Schütz D, Deluca M, Krauss W, Feteira A, Jackson T, Reichmann K. Lone-pair-induced covalency as the cause of temperature-and field-induced instabilities in bismuth sodium titanate. Adv Funct Mater 2012;22:2285–94.

[50]

Yang X, Zhou Z, Wang Y, Li J, Guo N, Zheng W, Peng J, Sun C. Raman spectroscopic determination of the length, energy, Debye temperature, and compressibility of the C-C bond in carbon allotropes. Chem Phys Lett 2013;575:86–90.

[51]

Ma C, Tan X, Dulkin E, Roth M. Domain structure-dielectric property relationship in lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J Appl Phys 2010;108:104105.

[52]

Woodward DI, Reaney IM. Electron diffraction of tilted perovskites. Acta Crystallogr B: Struct 2005;61:387–99.

[53]

Dorcet V, Trolliard G. A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3. Acta Mater 2008;56:1753–61.

[54]

Hu C, Tsai C, Teng H. Structure characterization and tuning of perovskite-like NaTaO3 for applications in photoluminescence and photocatalysis. J Am Ceram Soc 2009;92:460–6.

[55]

Darlington CNW, Knight KS. High-temperature phases of NaNbO3 and NaTaO3. Acta Crystallogr B 1999;B55:24–30.

[56]

Trukhanov SV, Troyanchuk IO, Pushkarev NV, Szymczak H. The magnetic properties of anion-deficient La1–xBaxMnO3–x/2 (0≤x≤0.30) manganites. J Exp Theor Phys 2003;96:110–7.

[57]

Kozlovskiy A, Egizbek K, Zdorovets MV, Ibragimova M, Shumskaya A, Rogachev AA, Ignatovich ZV, Kadyrzhanov K. Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5. Sensors 2020;20:4851.

[58]

Ren P, Wang Y, Waidha AI, Clemens O, V LK. Compositionally driven relaxor to ferroelectric crossover in (1-x)Na0.5Bi0.5TiO3-xBiFeO3 (0≤x≤0.60). J Mater Chem C 2020;8:8613–21.

[59]

Steiner S, Seo I, Ren P, Li M, Keeble DJ, Frӧmling T. The effect of Fe-acceptor doping on the eelectrical properties of Na1/2Bi1/2TiO3 and 0.94(Na1/2Bi1/2)TiO3-0.06BaTiO3. J Am Ceram Soc 2019;102:5295–304.

[60]

Jr AF, Banerjee P, Romanholo PL. Effect of composition induced transition in the optical band-gap, dielectric and magnetic properties of Gd doped Na0.5Bi0.5TiO3 complex perovskite. J. Allpy. Compd. 2018;764:122–7.

[61]

Yang F, Wu P, Sinclair DC. Enhanced bulk conductivity of A-site divalent acceptor-doped non-stoichiometric sodium bismuth titanate. Solid State Ionics 2017;299:38–45.

[62]

Yang F, Dean JS, Hu Q, Wu P, Pradal-Velazquez E, Li L, Sinclair DC. From insulator to oxide-ion conductor by a synergistic effect from defect chemistry and microstructure: acceptor-doped Bi-excess sodium bismuth titanate Na0.5Bi0.51TiO3.015. J Mater Chem 2020;8:25120–30.

[63]

Trukhanov SV, Trukhanov AV, Stepin SG, Szymczak H, Botez CE. Effect of the size factor on the magnetic properties of manganite La0.50Ba0.50MnO3. Phys Solid State 2008;50:886–93.

[64]

Zdorovets MV, Kozlovskiy AL, Borgekov DB, Shlimas DI. Influence of irradiation with heavy Kr15+ ions on the structural, optical and strength properties of BeO ceramic. J Mater Sci Mater Electron 2021;32:15375–85.

[65]

Zhao H, Ren P, Hua Q, Liu L, Wang X, Wan Y, Yan F, Zhao G, Wang D. Temperature stable (1-x)(0.9Na0.5Bi0.5TiO3-0.1BiAlO3)-xNaTaO3 ceramics and capacitors with ultra-wide operational range. J Alloys Compd 2021;886:161315.

[66]

Shih DPC, Aguadero A, Skinner SJ. Improvement of ionic conductivity in A-site lithium doped sodium bismuth titanate. Solid State Ionics 2018;317:32–8.

[67]

Cai G, Duan P, Cong J, Zhang C, zheng Y, Zhong F, Xiao Y, Jiang L. Cu incorporated perovskite Na0.5Bi0.5TiO3 oxygen-defect conductor as NO2 sensor using CuO sensitive electrode. Ceram Int 2019;45:8494–503.

[68]

Bremecker D, Lalitha KV, Teuber S, Koruza J, Rödel J. Influence of Zn2+ doping on the morphotropic phase boundary in lead-free piezoelectric (1-x)Na1/2Bi1/2TiO3-xBaTiO3. J Am Ceram Soc 2021;105:1232–40.

Journal of Materiomics
Pages 482-491
Cite this article:
Ren P, Zhao H, Wang X, et al. Super-stable permittivity and low dielectric loss of (1-x)Na0.5Bi0.5+yTiO3-xNaTaO3 ceramics within an ultra-wide temperature range. Journal of Materiomics, 2023, 9(3): 482-491. https://doi.org/10.1016/j.jmat.2022.12.004

200

Views

14

Crossref

20

Web of Science

21

Scopus

Altmetrics

Received: 06 November 2022
Revised: 10 December 2022
Accepted: 11 December 2022
Published: 13 January 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return